Как найти скорость вдогонку формула

1. Когда два объекта движутся навстречу друг другу или вдогонку, то до встречи расстояние между ними уменьшается.

За единицу времени объекты вместе проходят расстояние, равное скорости сближения 

v сбл.

, а за время

tвстр.

 движения до встречи они проходят расстояние (s), которое было между ними в момент начала движения.

Начальное расстояние между объектами при движении навстречу друг другу или движении вдогонку равно произведению скорости сближения и времени движения до встречи:

s=vсбл.⋅tвстр.

Эти виды движения отличаются только нахождением скорости сближения.

При движении навстречу друг другу скорость сближения равна

vсбл.=v1+v2

.

Frame 717.png

При движении вдогонку скорость сближения равна

vсбл.=v1−v2

 (

v1>v2

).

Frame 719.png

2. При движении в противоположных направлениях и с отставанием расстояние между объектами увеличивается, поэтому встреча не может произойти.

При движении в противоположных направлениях скорость удаления равна

vуд.=v1+v2

.

За (t) единиц времени начальное расстояние между объектами увеличивается на

s=vуд.⋅t

.

Frame 718.png

При движении с отставанием скорость удаления равна

vуд.=v1−v2

 (

v1>v2

).

За (t) единиц времени начальное расстояние между объектами увеличивается на

s=vуд.⋅t

.

Frame 720.png

Источники:

Изображения: схемы движения. © ЯКласс.

Движение является способом существования всего, что человек видит вокруг себя. Поэтому задачи на перемещение разных объектов в пространстве являются типичными проблемами, которые предлагается разрешить школьникам. В данной статье подробно рассмотрим движение вдогонку и формулы, которые необходимо знать, чтобы уметь решать задачи такого типа.

Что такое движение?

Примеры движения

Перед тем, как переходить к рассмотрению формул движения вдогонку, необходимо разобраться с этим понятием подробнее.

Под движением подразумевают изменение пространственных координат объекта за определенный промежуток времени. Например, автомобиль, который движется по дороге, самолет, который летит в небесах, или кошка, бегущая по траве, – все это примеры движения.

Важно отметить, что рассматриваемый движущийся объект (автомобиль, самолет, кошка) считают безмерным, то есть его размеры не имеют совершенно никакого значения для решения проблемы, поэтому ими пренебрегают. Это своего рода математическая идеализация, или модель. Для подобного объекта существует название: материальная точка.

Движение вдогонку и его особенности

Теперь перейдем к рассмотрению популярных школьных задач на движение вдогонку и формул для него. Под этим видом движения понимают перемещение двух или более объектов в одном направлении, которые отправляются в свой путь из разных пунктов (материальные точки имеют разные начальные координаты) или/и в разное время, но из одного и того же пункта. То есть создается ситуация, при которой одна материальная точка пытается догнать другую (другие), поэтому эти задачи получили такое название.

Согласно определению, особенностями движения вдогонку являются следующие:

  • Наличие двух и более движущихся объектов. Если двигаться будет только одна материальная точка, то ей “некого” будет догонять.
  • Прямолинейное перемещение в одном направлении. То есть объекты осуществляют движение вдоль одной и той же траектории и в одном направлении. Движение навстречу друг другу не входит в число рассматриваемых задач.
  • Пункт отправления играет важную роль. Идея заключается в том, чтобы в момент начала движения объекты были разделены в пространстве. Такое разделение будет иметь место, если они стартуют в одинаковое время, но из разных пунктов или же из одного пункта, но в разное время. Старт двух материальных точек из одного пункта и в одинаковое время к задачам вдогонку не относится, поскольку в этом случае один объект будет постоянно удаляться от другого.

Формулы движения вдогонку

Прямолинейное движение

В 4 классе общеобразовательной школы обычно рассматриваются подобные задачи. Это означает, что формулы, которые необходимы для решения, должны быть максимально простыми. Такому случаю удовлетворяет равномерное прямолинейное движение, в котором фигурируют три физических величины: скорость, пройденный путь и время движения:

  • Скорость – величина, показывающая расстояние, которое проходит тело за единицу времени, то есть она характеризует быстроту изменения координат материальной точки. Обозначается скорость латинской буквой V и измеряется, как правило, в метрах в секунду (м/с) или в километрах в час (км/ч).
  • Путь – это расстояние, которое проходит тело за время своего движения. Он обозначается буквой S (D) и выражается обычно в метрах или километрах.
  • Время – период движения материальной точки, который обозначается буквой T и приводится в секундах, минутах или часах.

Описав основные величины, приведем формулы движения вдогонку:

  • s = v*t;
  • v = s/t;
  • t = s/v.

Решение любой задачи рассматриваемого типа базируется на применении этих трех выражений, которые необходимо запомнить каждому школьнику.

Пример решения задачи №1

Автомобиль обгоняет грузовик

Приведем пример задачи движения вдогонку и решения (формулы, необходимые для него, приведены выше). Проблема формулируется следующим образом: “Грузовик и легковой автомобиль одновременно выезжают из пунктов A и B со скоростями 60 км/ч и 80 км/ч соответственно. Оба транспортных средства движутся в одном направлении так, что автомобиль приближается к пункту A, а грузовик удаляется от обоих пунктов. Через какое время автомобиль догонит грузовик, если расстояние между A и B составляет 40 км?”.

Перед тем как решать задачу, необходимо научить ребят определять суть проблемы. В данном случае она заключается в неизвестном времени, которое проведут оба транспортных средства в пути. Предположим, что это время равно t часам. То есть через время t автомобиль догонит грузовик. Найдем это время.

Рассчитаем расстояние, которое пройдет каждый из движущихся объектов за время t, имеем: s1 = v1*t и s2 = v2*t, здесь s1, v1 = 60 км/ч и s2, v2 = 80 км/ч – пройденные пути и скорости движения грузовика и автомобиля до того момента, когда второй догонит первого. Поскольку расстояние между пунктами A и B равно 40 км, то автомобиль, догнав грузовик, пройдет путь на 40 км больше, то есть s2 – s1 = 40. Подставляя в последнее выражение формулы для путей s1 и s2, получим: v2*t – v1*t = 40 или 80*t – 60*t = 40, откуда t = 40/20 = 2 ч.

Отметим, что данный ответ можно получить, если использовать понятие скорости сближения между движущимися объектами. В задаче она равна 20 км/ч (80-60). То есть при этом подходе возникает ситуация, когда один объект движется (автомобиль), а второй относительно него стоит на месте (грузовик). Поэтому достаточно поделить расстояние между пунктами A и B на скорость сближения, чтобы решить задачу.

Пример решения задачи №2

Автомобиль обгоняет велосипедиста

Приведем еще один пример задач на движение вдогонку (формулы для решения используются те же): “Из одного пункта выезжает велосипедист, а через 3 часа в ту же сторону выезжает автомобиль. Через какое время после начала своего движения автомобиль догонит велосипедиста, если известно, что он движется в 4 раза быстрее?”.

Решать эту задачу следует так же, как и предыдущую, то есть необходимо определить, какой путь пройдет каждый участник движения до момента, когда один догонит другого. Предположим, что автомобиль догнал велосипедиста через время t, тогда получаем следующие пройденные пути: s1 = v1*(t+3) и s2 = v2*t, здесь s1, v1 и s2, v2 – пути и скорости велосипедиста и автомобиля соответственно. Заметим, что до того, как автомобиль догнал велосипедиста, последний находился в пути t + 3 часа, так как он выехал на 3 часа раньше.

Зная, что оба участника отправились из одного пункта, и пройденные ими пути будут равны, получаем: s2 = s1 или v1*(t+3) = v2*t. Скорости v1 и v2 нам не известны, однако в условии задачи сказано, что v2 = 4*v1. Подставляя это выражение в формулу для равенства путей, получим: v1*(t+3) = 4*v1*t или t+3 = 4*t. Решая последнее, приходим к ответу: t = 3/3 = 1 ч.

Некоторые советы

Занятия в 4 классе

Формулы движения вдогонку являются простыми, тем не менее школьников в 4 классе важно научить мыслить логически, понимать значение величин, с которыми они имеют дело, и осознавать проблему, которая перед ними стоит. Ребят рекомендуется призывать к рассуждениям вслух, а также к командной работе. Кроме того, для наглядности задач можно использовать компьютер и проектор. Все это способствует развитию у них абстрактного мышления, коммуникативных навыков, а также математических способностей.

Рассмотрим задачи на движение вдогонку, в которых объекты движутся в одном направлении, но выезжают из разных пунктов, находящихся на некотором расстоянии друг от друга.

При движении вдогонку объекты могут как сближаться, так и удаляться.

Если скорость объекта, который идет впереди, меньше скорости идущего вслед за ним объекта, то второй догоняет первого и они сближаются.

Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:

    [{v_c} = {v_1} - {v_2}]

    [({v_1} > {v_2}).]

Если скорость идущего впереди объекта больше скорости объекта, который движется следом, то второй не сможет  догнать первого и они удаляются друг от друга.

Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:

    [{v_y} = {v_2} - {v_1}]

    [({v_2} > {v_1}).]

Скорость, время и расстояние связаны между собой формулой пути:

    [s = v cdot t]

Задача 1.

Расстояние между двумя пунктами 20 км. Из этих пунктов в одном направлении одновременно выехали автомобиль и мотоциклист, причем автомобиль двигался впереди. Через 5 часов расстояние между ними стало 170 км. Найти скорость мотоциклиста, если скорость автомобиля 70 км/ч.

Решение:

dvizhenie vdogonku

v, км/ч

t, ч

s, км

Автомобиль

70

5

?

Мотоциклист

?

5

?

1) 170-20=150 (км) на столько увеличилось расстояние между автомобилем и мотоциклистом за 5 часов

2) 150:5=30 (км/ч) скорость удаления автомобиля от мотоциклиста

3) 70-30=40 (км/ч) скорость мотоциклиста.

Ответ: 40 км/ч.

Задача 2.

Расстояние между двумя станциями 40 км. Из этих станций одновременно в одном направлении вышли скорый и товарный поезда, причем товарный поезд едет впереди. Через сколько часов скорый поезд догонит товарный, если его скорость равна 80 км/ч, а скорость товарного поезда — 60 км/ч?

Решение:

zadachi na dvizhenie vdogonku

v, км/ч

t, ч

s, км

Пассажирский

80

?

? на 40 км больше

Товарный

60

?

?

1) 80-60=20 (км/ч) скорость сближения поездов

2) 40:20=2 (ч) через такое время скорый поезд догонит товарный.

Ответ: через 2 ч.

Задача 3.

Расстояние между пунктами равно 50 км. Из этих пунктов одновременно в одном направлении выезжают велосипедист и мотоциклист, причем велосипедист едет впереди. Скорость велосипедиста равна 13 км/ч, скорость мотоциклиста — 38 км/ч. На каком расстоянии от пункта своего выезда мотоциклист догонит велосипедиста?

Решение:

reshenie zadach na dvizhenie vdogonku

v, км/ч

t, ч

s, км

Мотоциклист

38

?

? на 50 км больше

Велосипедист

13

?

?

1) 38-13=25 (км/ч) скорость сближения мотоциклиста и велосипедиста

2) 50:25=2 (ч) через столько часов после своего выезда мотоциклист догонит велосипедиста

3) 38∙2=76 (км) на таком расстоянии от пункта своего выезда мотоциклист догонит велосипедиста.

Ответ: 76 км.

Задачи в которых двигаются вдогонку из разных пунктов решаются по определенному правилу. Два объекта могут сближаться или удаляться в зависимости от их скоростей.

  • Если скорость объекта, который впереди больше, то они удаляются. 

Движение вдогонку

  • Если скорость объекта, который впереди меньше, то они сближаются

Движение вдогонку


Задача 1.  (S) между двумя станциями (60) км. Одновременно в одном и том же направлении выехали поезд и мотоциклист, так что поезд едет впереди. Через сколько часов мотоциклист догонит поезд, если его скорость равна (90) км/ч, а скорость  поезда — (60) км/ч?

Движение вдогонку

Решение:

1) (90-60=30) км/час скорость сближения.

2)(60:30 =2) часа понадобится мотоциклисту, чтобы догнать поезд.

Ответ(2) часа.


Задача 2.  (S) между двумя пристанями равно (80) км. Одновременно из этих пристаней в одном направлении выплывают катер и моторная лодка, так что  моторная лодка плывет впереди. Скорость моторной лодки равна (20) км/ч, скорость катера — (40) км/ч. На каком расстоянии от своей пристани катер догонит моторную лодку?

Движение вдогонку

Решение: 

1)(40-20=20) км/час скорость сближения.

2)(80:20= 4) через такое время катер догонит моторную лодку.

3)(4*40=160 ) км такой путь пройдет катер, прежде чем догонит моторную лодку.

Ответ(160 ) км.

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Содержание:

  • § 1  Формула одновременного движения
  • § 2  Задачи на встречное движение
  • § 3  Задачи на движение вдогонку
  • § 4  Задачи на движение в противоположных направлениях
  • § 5  Задачи на движение с отставанием
  • § 6  Краткие итоги по теме урока

§ 1  Формула одновременного движения

С формулами одновременного движения мы сталкиваемся при решении задач на одновременное движение. Умение решать ту или иную задачу на движение зависит от некоторых факторов. Прежде всего, необходимо различать основные типы задач.

Задачи на одновременное движение условно делятся на 4 типа: задачи на встречное движение, задачи на движение в противоположных направлениях, задачи на движение вдогонку и задачи на движение с отставанием.

Основными компонентами этих типов задач являются:

пройденный путь – S, скорость – ʋ, время – t.

Зависимость между ними выражается формулами:

S = ʋ · t, ʋ = S : t, t = S : ʋ.

Помимо названных основных компонентов при решении задач на движение мы можем столкнуться с такими компонентами, как: скорость первого объекта – ʋ1, скорость второго объекта – ʋ2, скорость сближения – ʋсбл., скорость удаления – ʋуд., время встречи – tвстр., первоначальное расстояние – S0 и т.д.

§ 2  Задачи на встречное движение

При решении задач данного типа применяются следующие компоненты: скорость первого объекта – ʋ1; скорость второго объекта – ʋ2; скорость сближения – ʋсбл.; время до встречи – tвстр.; путь (расстояние), пройденный первым объектом – S1; путь (расстояние), пройденный вторым объектом – S2; весь путь, пройденный обоими объектами – S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на встречное движение выражается следующими формулами: 

1.первоначальное расстояние между объектами можно вычислить по следующим формулам: S = ʋсбл. · tвстр. или S = S1 + S2;

2.скорость сближения находится по формулам: ʋсбл. = S : tвстр. или ʋсбл. = ʋ1 + ʋ2;

3.время встречи вычисляется следующим образом:

tвстр. = S : ʋсбл., tвстр. = S1 : ʋ1 или tвстр. = S2 : ʋ2.

Рассмотрим применение данных формул на примере следующей задачи.

Два теплохода плывут навстречу друг другу. Скорости теплоходов 35 км/ч и 28 км/ч. Через какое время они встретятся, если расстояние между ними 315 км?

ʋ1 = 35 км/ч, ʋ2 = 28 км/ч, S = 315 км, tвстр. = ? ч.

Чтобы найти время встречи, необходимо знать первоначальное расстояние и скорость сближения, так как tвстр. = S : ʋсбл. Поскольку расстояние известно по условию задачи, найдем скорость сближения. ʋсбл. = ʋ1 + ʋ2 = 35 + 28 = 63 км/ч. Теперь можем найти и искомое время встречи. tвстр. = S : ʋсбл = 315 : 63 = 5 ч. Получили, что теплоходы встретятся через 5 часов.

§ 3  Задачи на движение вдогонку

При решении задач данного типа применяются следующие компоненты: скорость первого объекта – ʋ1; скорость второго объекта – ʋ2; скорость сближения – ʋсбл.; время до встречи – tвстр.; путь (расстояние), пройденный первым объектом – S1; путь (расстояние), пройденный вторым объектом – S2; первоначальное расстояние между объектами – S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на движение вдогонку выражается следующими формулами:

1.Первоначальное расстояние между объектами можно вычислить по следующим формулам:

S = ʋсбл. · tвстр.илиS = S1 – S2;

2.скорость сближения находится по формулам: ʋсбл. = S : tвстр. или ʋсбл. = ʋ1 – ʋ2;

3.Время встречи вычисляется следующим образом:

tвстр. = S : ʋсбл., tвстр. = S1 : ʋ1 или tвстр. = S2 : ʋ2.

Рассмотрим применение данных формул на примере следующей задачи.

Тигр погнался за оленем и догнал его через 7 минут. Каково первоначальное расстояние между ними, если скорость тигра равна 700 м/мин, а скорость оленя – 620 м/мин?

ʋ1 = 700 м/мин, ʋ2 = 620 м/мин, S = ? м, tвстр. = 7 мин.

Чтобы найти первоначальное расстояние между тигром и оленем, необходимо знать время встречи и скорость сближения, так как S =tвстр. · ʋсбл. Поскольку время встречи известно по условию задачи, найдем скорость сближения. ʋсбл. = ʋ1 – ʋ2 = 700 – 620 = 80 м/мин. Теперь можем найти и искомое первоначальное расстояние. S =tвстр. · ʋсбл = 7 · 80 = 560 м. Получили, что первоначальное расстояние между тигром и оленем составляло 560 метров.

§ 4  Задачи на движение в противоположных направлениях

При решении задач данного типа применяются следующие компоненты: скорость первого объекта – ʋ1; скорость второго объекта – ʋ2; скорость удаления – ʋуд.; время в пути – t.; путь (расстояние), пройденный первым объектом – S1; путь (расстояние), пройденный вторым объектом – S2; первоначальное расстояние между объектами – S0; расстояние, которое будет между объектами через определенное время – S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на движение в противоположных направлениях выражается следующими формулами:

1.Конечное расстояние между объектами можно вычислить по следующим формулам:

S = S0 + ʋуд.· tили S = S1 + S2 + S0; а первоначальное расстояние – по формуле: S0 = S – ʋуд. · t.

2.Скорость удаления находится по формулам:

ʋуд. = (S1 + S2) : t илиʋуд. = ʋ1 + ʋ2;

3.Время в пути вычисляется следующим образом:

t = (S1 + S2) : ʋуд., t = S1 : ʋ1или t = S2 : ʋ2.

Рассмотрим применение данных формул на примере следующей задачи.

Два автомобиля выехали из автопарков одновременно в противоположных направлениях. Скорость одного – 70 км/час, другого – 50 км/час. Какое расстояние будет между ними через 4 часа, если расстояние между автопарками составляет 45 км?

ʋ1 = 70 км/ч, ʋ2 = 50 км/ч, S0 = 45 км, S = ? км, t = 4 ч.

Чтобы найти расстояние между автомобилями в конце пути, необходимо знать время в пути, первоначальное расстояние и скорость удаления, так как S = ʋуд. · t+ S0Поскольку время и первоначальное расстояние известны по условию задачи, найдем скорость удаления. ʋуд. = ʋ1 + ʋ2 = 70 + 50 = 120 км/ч. Теперь можем найти и искомое расстояние. S = ʋуд. · t+ S0 = 120 · 4 + 45 = 525 км. Получили, что через 4 часа между автомобилями будет расстояние в 525 км

§ 5  Задачи на движение с отставанием

При решении задач данного типа применяются следующие компоненты: скорость первого объекта – ʋ1; скорость второго объекта – ʋ2; скорость удаления – ʋуд.; время в пути – t.; первоначальное расстояние между объектами – S0; расстояние, которое станет между объектами через определенное количество времени – S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на движение с отставанием выражается следующими формулами:

1.Первоначальное расстояние между объектами можно вычислить по следующей формуле: S0 = S – ʋуд.· t; а расстояние, которое станет между объектами через определенное время, – по формуле: S = S0 + ʋуд. · t;

2.Скорость удаления находится по формулам: ʋуд.= (S – S0) : t или ʋуд. = ʋ1 – ʋ2;

3.Время вычисляется следующим образом: t = (S – S0) : ʋуд.

Рассмотрим применение данных формул на примере следующей задачи:

Из двух городов в одном направлении выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через сколько часов между машинами будет 700 км, если расстояние между городами 560 км?

ʋ1 = 80 км/ч, ʋ2 = 60 км/ч, S = 700 км, S0 = 560 км, t = ? ч.

Чтобы найти время, необходимо знать первоначальное расстояние между объектами, расстояние в конце пути и скорость удаления, так как t = (S – S0) : ʋуд. Поскольку оба расстояния известны по условию задачи, найдем скорость удаления. ʋуд. = ʋ1 – ʋ2 = 80 – 60 = 20 км/ч. Теперь можем найти и искомое время. t = (S – S0) : ʋуд = (700 – 560) : 20 = 7ч. Получили, что через 7 часов между машинами будет 700 км.

§ 6  Краткие итоги по теме урока

При одновременном встречном движении и движении вдогонку расстояние между двумя движущимися объектами уменьшается (до встречи). За единицу времени оно уменьшается на ʋсбл., а за все время движения до встречи оно уменьшится на первоначальное расстояние S. Значит, в обоих случаях первоначальное расстояние равно скорости сближения, умноженной на время движения до встречи: S = ʋсбл. · tвстр.. Разница лишь в том, что при встречном движении ʋсбл. = ʋ1 + ʋ2, а при движении вдогонку ʋсбл. = ʋ1 – ʋ2.

При движении в противоположных направлениях и с отставанием расстояние между объектами увеличивается, поэтому встреча не произойдет. За единицу времени оно увеличивается на ʋуд., а за все время движения оно увеличится на значение произведения ʋуд.· t. Значит, в обоих случаях расстояние между объектами в конце пути равно сумме первоначального расстояния и произведения ʋуд.· t. S = S0 + ʋуд.· t.Разница лишь в том, что при противоположном движении ʋуд. = ʋ1 + ʋ2, а при движении с отставанием ʋуд. = ʋ1 – ʋ2.

Список использованной литературы:

  1. Петерсон Л.Г. Математика. 4 класс. Часть 2. / Л.Г. Петерсон. – М.: Ювента, 2014. – 96 с.: ил.
  2. Математика. 4 класс. Методические рекомендации к учебнику математики «Учусь учиться» для 4 класса / Л.Г. Петерсон. – М.: Ювента, 2014. – 280 с.: ил.
  3. Зак С.М. Все задания к учебнику математики для 4 класса Л.Г. Петерсон и комплекту самостоятельных и контрольных работ. ФГОС. – М.: ЮНВЕС, 2014.
  4. CD-ROM. Математика. 4 класс. Сценарии уроков к учебнику к 2 части Петерсон Л.Г. – М.: Ювента, 2013.

Использованные изображения:

Добавить комментарий