Как найти скорость звука в среде

Скорость звука в различных средах[1]

0 °C, 101325 Па м/с км/ч
Азот 333 1202,4
Аммиак 415 1494,0
Ацетилен 327 1177,2
Водород 1284 4622,4
Воздух 331 1191,6
Гелий 965 3474,0
Кислород 316 1137,6
Метан 430 1548,0
Угарный газ 338 1216,8
Неон 435 1566,0
Углекислый газ 259 932,4
Хлор 206 741,6
Жидкости
Вода 1403 5050,8
Ртуть 1383 4978,0
Твёрдые тела
Алмаз 12000 43200,0
Железо 5950 21420,0
Золото 3240 11664,0
Литий 6000 21600,0
Стекло 4800 17280,0

Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах).

Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях — меньше, чем в твёрдых телах. Также в газах скорость звука зависит от температуры данного вещества, в монокристаллах — от направления распространения волны.

Обычно не зависит от частоты волны и её амплитуды; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

История измерения скорости звука[править | править код]

Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука[2]. Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф. Бэкон в «Новом органоне» указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела.
Применив этот метод, различные исследователи (М. Мерсенн, П. Гассенди, У. Дерхам, группа учёных Парижской академии наук — Д. Кассини, Ж. Пикар, Гюйгенс, Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350—390 м/с).

Теоретически вопрос о скорости звука впервые рассмотрел И. Ньютон в своих «Началах»; он фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку.
Правильное теоретическое значение скорости звука было получено Лапласом[3][4][5][6].

В 2020 г. британские и российские физики впервые рассчитали максимально возможную скорость звука, которая составляет 36 км/с (этот показатель приблизительно втрое превышает скорость звука в алмазе (12 км/с), самом твёрдом известном материале в мире). Теория предсказывает наибольшую скорость звука в среде твёрдого атомарного металлического водорода, при давлении выше 1 млн атмосфер[7][8].

Расчёт скорости звука в жидкости и газе[править | править код]

Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

{displaystyle c={sqrt {frac {1}{beta rho }}}.}

В частных производных:

{displaystyle c={sqrt {-v^{2}left({frac {partial p}{partial v}}right)_{s}}}={sqrt {-v^{2}{frac {C_{p}}{C_{v}}}left({frac {partial p}{partial v}}right)_{T}}},}

где beta  — адиабатическая упругость среды; rho  — плотность; C_p — изобарная теплоёмкость; C_v — изохорная теплоёмкость; p, v, T — давление, удельный объём и температура, s — энтропия среды.

Для идеальных газов эта формула выглядит так:

{displaystyle c={sqrt {frac {gamma kT}{m}}}={sqrt {frac {gamma RT}{M}}}=alpha {sqrt {T}}={sqrt {frac {gamma }{3}}}v},

где gamma  — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; k — постоянная Больцмана; R — универсальная газовая постоянная; T — абсолютная температура; m — молекулярная масса; M — молярная масса, alpha = sqrt{frac{gamma R}{M}}; v — средняя скорость теплового движения частиц газа.

По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул (см. Распределение Максвелла) и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

Данные выражения являются приближёнными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.

Для расчёта сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.

Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

Влияние высоты на атмосферную акустику[править | править код]

Плотность и давление плавно уменьшаются с высотой, а температура (красный цвет) — нет. Скорость звука (синий цвет) зависит сложным образом от температуры на высоте и может быть рассчитана исходя из неё, поскольку влияние плотности и давления на скорость звука незначительно и зависит в основном от температуры. Скорость звука увеличивается с высотой в двух областях стратосферы и термосферы из-за разогрева газа в этих областях.

В атмосфере Земли температура выступает главным фактором, влияющим на скорость звука. Для данного идеального газа с постоянной теплоемкостью и составом скорость звука зависит исключительно от температуры. В таком идеальном случае эффекты пониженной плотности и пониженного давления на высоте нейтрализуют друг друга, за исключением остаточного влияния температуры.

Поскольку температура (и, следовательно, скорость звука) уменьшается с увеличением высоты до 11 км, звук преломляется вверх, удаляясь от слушателей на земле, создавая акустическую тень на некотором расстоянии от источника[9]. Уменьшение скорости звука с высотой называется отрицательным градиентом скорости звука.

Однако выше 11 км в этой тенденции происходят изменения. В частности, в стратосфере на высоте более 20 км скорость звука увеличивается с высотой из-за повышения температуры в результате нагрева озонового слоя. Это дает положительный градиент скорости звука в этой области. Ещё одна область положительного градиента наблюдается на очень больших высотах, в слое, называемом термосферой (выше 90 км).

Твёрдые тела[править | править код]

Смотрите также: P-волна

Смотрите также: S-волна

В однородных твёрдых телах могут существовать два типа объёмных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой {displaystyle (c_{P})} всегда выше, чем скорость второй {displaystyle (c_{S})}:

{displaystyle c_{P}={sqrt {frac {K+{frac {4}{3}}G}{rho }}}={sqrt {frac {E(1-nu )}{(1+nu )(1-2nu )rho }}},}
{displaystyle c_{S}={sqrt {frac {G}{rho }}}={sqrt {frac {E}{2(1+nu )rho }}},}

где K — модуль всестороннего сжатия, G — модуль сдвига, E — модуль Юнга, nu  — коэффициент Пуассона. Как и для случая с жидкой или газообразной средой, при расчётах должны использоваться адиабатические модули упругости.

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.

При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объёмных волн.

Скорость звука в воде[править | править код]

В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона — Штурма) и увеличивается с ростом температуры. Прикладное значение имеет также скорость звука в солёной воде океана. Скорость звука увеличивается с увеличением солёности и температуры. При увеличении давления скорость также возрастает, то есть, увеличивается с глубиной. Предложено несколько различных эмпирических формул для вычисления скорости распространения звука в воде.

Например, формула Вильсона 1960 года для нулевой глубины даёт следующее значение скорости звука:

{displaystyle c=1449,2+4,623 T-0,0546 T^{2}+1,39(S-35),}
где c — скорость звука в метрах в секунду,
T — температура в градусах Цельсия,
S — солёность в промилле.

Иногда также пользуются упрощённой формулой Лероя:

{displaystyle c=1492,9+3(T-10)-0,006(T-10)^{2}-0,04(T-18)^{2} +}
{displaystyle + 1,2(S-35)-0,01(T-18)(S-35)+z/61,}
где z — глубина в метрах.

Эта формула обеспечивает точность около 0,1 м/с для {displaystyle T<+20} °C и при {displaystyle z<800} м.

При температуре +24 °C, солёности 35 промилле и нулевой глубине скорость звука равна около 1532,3 м/c. При {displaystyle T=+4} °C, глубине 100 м и той же солёности скорость звука равна 1468,5 м/с[10].

Коэффициенты формулы ЮНЕСКО

Коэффициент Значение Коэффициент Значение
{displaystyle C_{00}} 1402,388 {displaystyle A_{02}} 7,166·10−5
{displaystyle C_{01}} 5,03830 {displaystyle A_{03}} 2,008·10−6
{displaystyle C_{02}} -5,81090·10−2 {displaystyle A_{04}} -3,21·10−8
{displaystyle C_{03}} 3,3432·10−4 {displaystyle A_{10}} 9,4742·10−5
{displaystyle C_{04}} -1,47797·10−6 {displaystyle A_{11}} -1,2583·10−5
{displaystyle C_{05}} 3,1419·10−9 {displaystyle A_{12}} -6,4928·10−8
{displaystyle C_{10}} 0,153563 {displaystyle A_{13}} 1,0515·10−8
{displaystyle C_{11}} 6,8999·10−4 {displaystyle A_{14}} -2,0142·10−10
C_{12} -8,1829·10−6 {displaystyle A_{20}} -3,9064·10−7
{displaystyle C_{13}} 1,3632·10−7 {displaystyle A_{21}} 9,1061·10−9
{displaystyle C_{14}} -6,1260·10−10 {displaystyle A_{22}} -1,6009·10−10
{displaystyle C_{20}} 3,1260·10−5 {displaystyle A_{23}} 7,994·10−12
{displaystyle C_{21}} -1,7111·10−6 {displaystyle A_{30}} 1,100·10−10
{displaystyle C_{22}} 2,5986·10−8 {displaystyle A_{31}} 6,651·10−12
{displaystyle C_{23}} -2,5353·10−10 {displaystyle A_{32}} -3,391·10−13
{displaystyle C_{24}} 1,0415·10−12 {displaystyle B_{00}} -1,922·10−2
{displaystyle C_{30}} -9,7729·10−9 {displaystyle B_{01}} -4,42·10−5
{displaystyle C_{31}} 3,8513·10−10 {displaystyle B_{10}} 7,3637·10−5
{displaystyle C_{32}} -2,3654·10−12 {displaystyle B_{11}} 1,7950·10−7
{displaystyle A_{00}} 1,389 {displaystyle D_{00}} 1,727·10−3
{displaystyle A_{01}} -1,262·10−2 {displaystyle D_{10}} -7,9836·10−6

Международная стандартная формула, применяемая для определения скорости звука в морской воде известна как формула ЮНЕСКО и описана в работе[11]. Она более сложная, чем простые формулы, приведённые выше, и вместо глубины в неё входит давление как параметр. Оригинальный алгоритм ЮНЕСКО для расчётов по формуле описан в работе N. P. Fofonoff и R. C. Millard[12].

В 1995 году коэффициенты, применяемые в данной формуле были уточнены[13] после принятия международной температурной шкалы 1990 года. Конечная форма формулы ЮНЕСКО имеет следующий вид, входящие в формулу постоянные коэффициенты согласно[13] приведены в таблице:

{displaystyle c(S,T,P)=C_{w}(T,P)+A(T,P)S+B(T,P)S^{3/2}+D(T,P)S^{2},}
где {displaystyle C_{w}(T,P)=C_{00}+C_{01}T+C_{02}T^{2}+C_{03}T^{3}+C_{04}T^{4}+C_{05}T^{5} +}
{displaystyle + (C_{10}+C_{11}T+C_{12}T^{2}+C_{13}T^{3}+C_{14}T^{4})P +}
{displaystyle + (C_{20}+C_{21}T+C_{22}T^{2}+C_{23}T^{3}+C_{24}T^{4})P^{2} +}
{displaystyle + (C_{30}+C_{31}T+C_{32}T^{2})P^{3},}
{displaystyle A(T,P)=A_{00}+A_{01}T+A_{02}T^{2}+A_{03}T^{3}+A_{04}T^{4} +}
{displaystyle + (A_{10}+A_{11}T+A_{12}T^{2}+A_{13}T^{3}+A_{14}T^{4})P +}
{displaystyle + (A_{20}+A_{21}T+A_{22}T^{2}+A_{23}T^{3})P^{2} +}
{displaystyle + (A_{30}+A_{31}T+A_{32}T^{2})P^{3},}
{displaystyle B(T,P)=B_{00}+B_{01}T+(B_{10}+B_{11}T)P,}
{displaystyle D(T,P)=D_{00}+D_{10}P.}
Здесь T — температура в градусах Цельсия (в диапазоне от 0 °С до 40 °С),
S — солёность в промилле (в диапазоне от 0 до 40 промилле),
P — давление в барах (в диапазоне от 0 до 1000 бар).

В библиотеке приводится исходный код алгоритма ЮНЕСКО на языке C#.

См. также[править | править код]

  • Скорость света
  • Эффект Доплера
  • Сверхзвуковая скорость
  • Сверхзвуковой самолёт
  • Звуковой барьер
  • Число Маха
  • Гиперзвуковая скорость
  • Сейсмическая волна

Примечания[править | править код]

  1. Скорость звука // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: Советская энциклопедия, 1988. — Т. 4. Архивировано 9 марта 2011 года.
  2. Тимкин С. История естествознания
  3. The Speed of Sound. mathpages.com. Дата обращения: 3 мая 2015. Архивировано 25 июля 2020 года.
  4. Bannon, Mike; Kaputa, Frank The Newton–Laplace Equation and Speed of Sound. Thermal Jackets. Дата обращения: 3 мая 2015. Архивировано 15 августа 2020 года.
  5. Murdin, Paul. Full Meridian of Glory: Perilous Adventures in the Competition to Measure the Earth (англ.). — Springer Science & Business Media, 2008. — P. 35—36. — ISBN 9780387755342.
  6. Fox, Tony. Essex Journal (неопр.). — Essex Arch & Hist Soc, 2003. — С. 12—16.
  7. Скорость звука: каков ее предел? / Блог компании ua-hosting.company / Хабр. Дата обращения: 26 декабря 2020. Архивировано 3 декабря 2020 года.
  8. Источник. Дата обращения: 26 декабря 2020. Архивировано 30 декабря 2020 года.
  9. Everest, F. The Master Handbook of Acoustics. — New York : McGraw-Hill, 2001. — P. 262–263. — ISBN 978-0-07-136097-5.
  10. Роберт Дж. Урик (Rodert J. Urick) Основы гидроакустики (Principles of underwater sound) Л: Судостроение, 1978; McGraw-Hill 1975.
  11. Chen‐Tung Chen, Frank J. Millero. Speed of sound in seawater at high pressures (англ.) // Journal of the Acoustical Society of America  (англ.) (рус.. — 1977-11-01. — Vol. 62, iss. 5. — P. 1129—1135. — ISSN 0001-4966. — doi:10.1121/1.381646. Архивировано 5 августа 2019 года.
  12. Millard R. C., Jr; Fofonoff N. P. Algorithms for the computation of fundamental properties of seawater (англ.). — 1983. Архивировано 5 августа 2019 года.
  13. 1 2 George S. K. Wong, Shi‐ming Zhu. Speed of sound in seawater as a function of salinity, temperature, and pressure (англ.) // Journal of the Acoustical Society of America  (англ.) (рус.. — 1995-03-01. — Vol. 97, iss. 3. — P. 1732—1736. — ISSN 0001-4966. — doi:10.1121/1.413048. Архивировано 5 августа 2019 года.

Литература[править | править код]

  • Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953;
  • Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964;
  • Колесников А. Е., Ультразвуковые измерения, М., 1970;
  • Исакович М. А., Общая акустика, М., 1973.

Ссылки[править | править код]

  • Вычисление скорости звука
  • Таблицы скоростей звука
  • Акустические свойства различных материалов и скорости звука в них

An F/A-18 Hornet displaying rare localized condensation near the speed of sound

Sound measurements

Characteristic

Symbols

 Sound pressure  p, SPL,LPA
 Particle velocity  v, SVL
 Particle displacement  δ
 Sound intensity  I, SIL
 Sound power  P, SWL, LWA
 Sound energy  W
 Sound energy density  w
 Sound exposure  E, SEL
 Acoustic impedance  Z
 Audio frequency  AF
 Transmission loss  TL

  • v
  • t
  • e

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or one kilometre in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s (1,086 ft/s; 1,192 km/h; 740 mph; 643 kn).[1] More simply, the speed of sound is how fast vibrations travel.

The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior.
In colloquial speech, speed of sound refers to the speed of sound waves in air. However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1,481 m/s in water (almost 4.3 times as fast) and at 5,120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond, sound travels at 12,000 metres per second (39,000 ft/s),[2]— about 35 times its speed in air and about the fastest it can travel under normal conditions.
In theory, the speed of sound is actually the speed of vibrations.
Sound waves in solids are composed of compression waves (just as in gases and liquids) and a different type of sound wave called a shear wave, which occurs only in solids. Shear waves in solids usually travel at different speeds than compression waves, as exhibited in seismology. The speed of compression waves in solids is determined by the medium’s compressibility, shear modulus, and density. The speed of shear waves is determined only by the solid material’s shear modulus and density.

In fluid dynamics, the speed of sound in a fluid medium (gas or liquid) is used as a relative measure for the speed of an object moving through the medium. The ratio of the speed of an object to the speed of sound (in the same medium) is called the object’s Mach number. Objects moving at speeds greater than the speed of sound (Mach1) are said to be traveling at supersonic speeds.

History[edit]

Sir Isaac Newton’s 1687 Principia includes a computation of the speed of sound in air as 979 feet per second (298 m/s). This is too low by about 15%.[3] The discrepancy is due primarily to neglecting the (then unknown) effect of rapidly-fluctuating temperature in a sound wave (in modern terms, sound wave compression and expansion of air is an adiabatic process, not an isothermal process). This error was later rectified by Laplace.[4]

During the 17th century there were several attempts to measure the speed of sound accurately, including attempts by Marin Mersenne in 1630 (1,380 Parisian feet per second), Pierre Gassendi in 1635 (1,473 Parisian feet per second) and Robert Boyle (1,125 Parisian feet per second).[5] In 1709, the Reverend William Derham, Rector of Upminster, published a more accurate measure of the speed of sound, at 1,072 Parisian feet per second.[5] (The Parisian foot was 325 mm. This is longer than the standard “international foot” in common use today, which was officially defined in 1959 as 304.8 mm, making the speed of sound at 20 °C (68 °F) 1,055 Parisian feet per second).

Derham used a telescope from the tower of the church of St. Laurence, Upminster to observe the flash of a distant shotgun being fired, and then measured the time until he heard the gunshot with a half-second pendulum. Measurements were made of gunshots from a number of local landmarks, including North Ockendon church. The distance was known by triangulation, and thus the speed that the sound had travelled was calculated.[6]

Basic concepts[edit]

The transmission of sound can be illustrated by using a model consisting of an array of spherical objects interconnected by springs.

In real material terms, the spheres represent the material’s molecules and the springs represent the bonds between them. Sound passes through the system by compressing and expanding the springs, transmitting the acoustic energy to neighboring spheres. This helps transmit the energy in-turn to the neighboring sphere’s springs (bonds), and so on.

The speed of sound through the model depends on the stiffness/rigidity of the springs, and the mass of the spheres. As long as the spacing of the spheres remains constant, stiffer springs/bonds transmit energy quicker, while larger spheres transmit the energy slower.

In a real material, the stiffness of the springs is known as the “elastic modulus”, and the mass corresponds to the material density. Sound will travel slower in spongy materials and faster in stiffer ones. Effects like dispersion and reflection can also be understood using this model.[citation needed]

For instance, sound will travel 1.59 times faster in nickel than in bronze, due to the greater stiffness of nickel at about the same density. Similarly, sound travels about 1.41 times faster in light hydrogen (protium) gas than in heavy hydrogen (deuterium) gas, since deuterium has similar properties but twice the density. At the same time, “compression-type” sound will travel faster in solids than in liquids, and faster in liquids than in gases, because the solids are more difficult to compress than liquids, while liquids, in turn, are more difficult to compress than gases.

Some textbooks mistakenly state that the speed of sound increases with density. This notion is illustrated by presenting data for three materials, such as air, water, and steel; they each have vastly different compressibility, which more than makes up for the density differences. An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the larger density of water, which works to slow sound in water relative to air, nearly makes up for the compressibility differences in the two media.

A practical example can be observed in Edinburgh when the “One o’Clock Gun” is fired at the eastern end of Edinburgh Castle. Standing at the base of the western end of the Castle Rock, the sound of the Gun can be heard through the rock, slightly before it arrives by the air route, partly delayed by the slightly longer route. It is particularly effective if a multi-gun salute such as for “The Queen’s Birthday” is being fired.

Compression and shear waves[edit]

Pressure-pulse or compression-type wave (longitudinal wave) confined to a plane. This is the only type of sound wave that travels in fluids (gases and liquids). A pressure-type wave may also travel in solids, along with other types of waves (transverse waves, see below)

Transverse wave affecting atoms initially confined to a plane. This additional type of sound wave (additional type of elastic wave) travels only in solids, for it requires a sideways shearing motion which is supported by the presence of elasticity in the solid. The sideways shearing motion may take place in any direction which is at right-angle to the direction of wave-travel (only one shear direction is shown here, at right angles to the plane). Furthermore, the right-angle shear direction may change over time and distance, resulting in different types of polarization of shear-waves

In a gas or liquid, sound consists of compression waves. In solids, waves propagate as two different types. A longitudinal wave is associated with compression and decompression in the direction of travel, and is the same process in gases and liquids, with an analogous compression-type wave in solids. Only compression waves are supported in gases and liquids. An additional type of wave, the transverse wave, also called a shear wave, occurs only in solids because only solids support elastic deformations. It is due to elastic deformation of the medium perpendicular to the direction of wave travel; the direction of shear-deformation is called the “polarization” of this type of wave. In general, transverse waves occur as a pair of orthogonal polarizations.

These different waves (compression waves and the different polarizations of shear waves) may have different speeds at the same frequency. Therefore, they arrive at an observer at different times, an extreme example being an earthquake, where sharp compression waves arrive first and rocking transverse waves seconds later.

The speed of a compression wave in a fluid is determined by the medium’s compressibility and density. In solids, the compression waves are analogous to those in fluids, depending on compressibility and density, but with the additional factor of shear modulus which affects compression waves due to off-axis elastic energies which are able to influence effective tension and relaxation in a compression. The speed of shear waves, which can occur only in solids, is determined simply by the solid material’s shear modulus and density.

Equations[edit]

The speed of sound in mathematical notation is conventionally represented by c, from the Latin celeritas meaning “velocity”.

For fluids in general, the speed of sound c is given by the Newton–Laplace equation:

{displaystyle c={sqrt {frac {K_{s}}{rho }}},}

where

  • Ks is a coefficient of stiffness, the isentropic bulk modulus (or the modulus of bulk elasticity for gases);
  • rho is the density.

Thus, the speed of sound increases with the stiffness (the resistance of an elastic body to deformation by an applied force) of the material and decreases with an increase in density. For ideal gases, the bulk modulus K is simply the gas pressure multiplied by the dimensionless adiabatic index, which is about 1.4 for air under normal conditions of pressure and temperature.

For general equations of state, if classical mechanics is used, the speed of sound c can be derived[7] as follows:

Consider the sound wave propagating at speed v through a pipe aligned with the x axis and with a cross-sectional area of A. In time interval dt it moves length {displaystyle dx=v,dt}. In steady state, the mass flow rate {displaystyle {dot {m}}=rho vA} must be the same at the two ends of the tube, therefore the mass flux {displaystyle j=rho v} is constant and {displaystyle v,drho =-rho ,dv}. Per Newton’s second law, the pressure-gradient force provides the acceleration:

{displaystyle {begin{aligned}{frac {dv}{dt}}&=-{frac {1}{rho }}{frac {dP}{dx}}\[1ex]rightarrow dP&=(-rho ,dv){frac {dx}{dt}}=(v,drho )v\[1ex]rightarrow v^{2}&equiv c^{2}={frac {dP}{drho }}end{aligned}}}

And therefore:

{displaystyle c={sqrt {left({frac {partial P}{partial rho }}right)_{s}}},}

where

  • P is the pressure;
  • rho is the density and the derivative is taken isentropically, that is, at constant entropy s. This is because a sound wave travels so fast that its propagation can be approximated as an adiabatic process.

If relativistic effects are important, the speed of sound is calculated from the relativistic Euler equations.

In a non-dispersive medium, the speed of sound is independent of sound frequency, so the speeds of energy transport and sound propagation are the same for all frequencies. Air, a mixture of oxygen and nitrogen, constitutes a non-dispersive medium. However, air does contain a small amount of CO2 which is a dispersive medium, and causes dispersion to air at ultrasonic frequencies (> 28 kHz).[8]

In a dispersive medium, the speed of sound is a function of sound frequency, through the dispersion relation. Each frequency component propagates at its own speed, called the phase velocity, while the energy of the disturbance propagates at the group velocity. The same phenomenon occurs with light waves; see optical dispersion for a description.

Dependence on the properties of the medium[edit]

The speed of sound is variable and depends on the properties of the substance through which the wave is travelling. In solids, the speed of transverse (or shear) waves depends on the shear deformation under shear stress (called the shear modulus), and the density of the medium. Longitudinal (or compression) waves in solids depend on the same two factors with the addition of a dependence on compressibility.

In fluids, only the medium’s compressibility and density are the important factors, since fluids do not transmit shear stresses. In heterogeneous fluids, such as a liquid filled with gas bubbles, the density of the liquid and the compressibility of the gas affect the speed of sound in an additive manner, as demonstrated in the hot chocolate effect.

In gases, adiabatic compressibility is directly related to pressure through the heat capacity ratio (adiabatic index), while pressure and density are inversely related to the temperature and molecular weight, thus making only the completely independent properties of temperature and molecular structure important (heat capacity ratio may be determined by temperature and molecular structure, but simple molecular weight is not sufficient to determine it).

Sound propagates faster in low molecular weight gases such as helium than it does in heavier gases such as xenon. For monatomic gases, the speed of sound is about 75% of the mean speed that the atoms move in that gas.

For a given ideal gas the molecular composition is fixed, and thus the speed of sound depends only on its temperature. At a constant temperature, the gas pressure has no effect on the speed of sound, since the density will increase, and since pressure and density (also proportional to pressure) have equal but opposite effects on the speed of sound, and the two contributions cancel out exactly. In a similar way, compression waves in solids depend both on compressibility and density—just as in liquids—but in gases the density contributes to the compressibility in such a way that some part of each attribute factors out, leaving only a dependence on temperature, molecular weight, and heat capacity ratio which can be independently derived from temperature and molecular composition (see derivations below). Thus, for a single given gas (assuming the molecular weight does not change) and over a small temperature range (for which the heat capacity is relatively constant), the speed of sound becomes dependent on only the temperature of the gas.

In non-ideal gas behavior regimen, for which the Van der Waals gas equation would be used, the proportionality is not exact, and there is a slight dependence of sound velocity on the gas pressure.

Humidity has a small but measurable effect on the speed of sound (causing it to increase by about 0.1%–0.6%), because oxygen and nitrogen molecules of the air are replaced by lighter molecules of water. This is a simple mixing effect.

Altitude variation and implications for atmospheric acoustics[edit]

Density and pressure decrease smoothly with altitude, but temperature (red) does not. The speed of sound (blue) depends only on the complicated temperature variation at altitude and can be calculated from it since isolated density and pressure effects on the speed of sound cancel each other. The speed of sound increases with height in two regions of the stratosphere and thermosphere, due to heating effects in these regions.

In the Earth’s atmosphere, the chief factor affecting the speed of sound is the temperature. For a given ideal gas with constant heat capacity and composition, the speed of sound is dependent solely upon temperature; see § Details below. In such an ideal case, the effects of decreased density and decreased pressure of altitude cancel each other out, save for the residual effect of temperature.

Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source.[9] The decrease of the speed of sound with height is referred to as a negative sound speed gradient.

However, there are variations in this trend above 11 km. In particular, in the stratosphere above about 20 km, the speed of sound increases with height, due to an increase in temperature from heating within the ozone layer. This produces a positive speed of sound gradient in this region. Still another region of positive gradient occurs at very high altitudes, in the aptly-named thermosphere above 90 km.

Details[edit]

Speed of sound in ideal gases and air[edit]

For an ideal gas, K (the bulk modulus in equations above, equivalent to C, the coefficient of stiffness in solids) is given by

{displaystyle K=gamma cdot p.}

Thus, from the Newton–Laplace equation above, the speed of sound in an ideal gas is given by

{displaystyle c={sqrt {gamma cdot {p over rho }}},}

where

  • γ is the adiabatic index also known as the isentropic expansion factor. It is the ratio of the specific heat of a gas at constant pressure to that of a gas at constant volume (C_p/C_v) and arises because a classical sound wave induces an adiabatic compression, in which the heat of the compression does not have enough time to escape the pressure pulse, and thus contributes to the pressure induced by the compression;
  • p is the pressure;
  • ρ is the density.

Using the ideal gas law to replace p with nRT/V, and replacing ρ with nM/V, the equation for an ideal gas becomes

{displaystyle c_{mathrm {ideal} }={sqrt {gamma cdot {p over rho }}}={sqrt {gamma cdot Rcdot T over M}}={sqrt {gamma cdot kcdot T over m}},}

where

  • cideal is the speed of sound in an ideal gas;
  • R is the molar gas constant;
  • k is the Boltzmann constant;
  • γ (gamma) is the adiabatic index. At room temperature, where thermal energy is fully partitioned into rotation (rotations are fully excited) but quantum effects prevent excitation of vibrational modes, the value is 7/5 = 1.400 for diatomic gases (such as oxygen and nitrogen), according to kinetic theory. Gamma is actually experimentally measured over a range from 1.3991 to 1.403 at 0 °C, for air. Gamma is exactly 5/3 = 1.667 for monatomic gases (such as argon) and it is 4/3 = 1.333 for triatomic molecule gases that, like H
    2
    O
    , are not co-linear (a co-linear triatomic gas such as CO
    2
    is equivalent to a diatomic gas for our purposes here);
  • T is the absolute temperature;
  • M is the molar mass of the gas. The mean molar mass for dry air is about 0.02897 kg/mol (28.97 g/mol);
  • n is the number of moles;
  • m is the mass of a single molecule.

This equation applies only when the sound wave is a small perturbation on the ambient condition, and the certain other noted conditions are fulfilled, as noted below. Calculated values for cair have been found to vary slightly from experimentally determined values.[10]

Newton famously considered the speed of sound before most of the development of thermodynamics and so incorrectly used isothermal calculations instead of adiabatic. His result was missing the factor of γ but was otherwise correct.

Numerical substitution of the above values gives the ideal gas approximation of sound velocity for gases, which is accurate at relatively low gas pressures and densities (for air, this includes standard Earth sea-level conditions). Also, for diatomic gases the use of γ = 1.4000 requires that the gas exists in a temperature range high enough that rotational heat capacity is fully excited (i.e., molecular rotation is fully used as a heat energy “partition” or reservoir); but at the same time the temperature must be low enough that molecular vibrational modes contribute no heat capacity (i.e., insignificant heat goes into vibration, as all vibrational quantum modes above the minimum-energy-mode have energies that are too high to be populated by a significant number of molecules at this temperature). For air, these conditions are fulfilled at room temperature, and also temperatures considerably below room temperature (see tables below). See the section on gases in specific heat capacity for a more complete discussion of this phenomenon.

For air, we introduce the shorthand

{displaystyle R_{*}=R/M_{mathrm {air} }.}

In addition, we switch to the Celsius temperature theta = T − 273.15 K, which is useful to calculate air speed in the region near 0 °C (273 K). Then, for dry air,

{displaystyle {begin{aligned}c_{mathrm {air} }&={sqrt {gamma cdot R_{*}cdot T}}={sqrt {gamma cdot R_{*}cdot (theta +273.15,mathrm {K} )}},\c_{mathrm {air} }&={sqrt {gamma cdot R_{*}cdot 273.15,mathrm {K} }}cdot {sqrt {1+{frac {theta }{273.15,mathrm {K} }}}}.end{aligned}}}

Substituting numerical values

{displaystyle R=8.314,462,618,153,24~mathrm {J/(mol{cdot }K)} }

{displaystyle M_{mathrm {air} }=0.028,964,5~mathrm {kg/mol} }

and using the ideal diatomic gas value of γ = 1.4000, we have

{displaystyle c_{mathrm {air} }approx 331.3,mathrm {m/s} times {sqrt {1+{frac {theta }{273.15,mathrm {K} }}}}.}

Finally, Taylor expansion of the remaining square root in theta yields

{displaystyle {begin{aligned}c_{mathrm {air} }&approx 331.3,mathrm {m/s} times left(1+{frac {theta }{2times 273.15,mathrm {K} }}right),\&approx 331.3,mathrm {m/s} +theta times 0.606,mathrm {(m/s)/^{circ }C} .end{aligned}}}

A graph comparing results of the two equations is to the right, using the slightly more accurate value of 331.5 m/s (1,088 ft/s) for the speed of sound at 0 °C.[11]: 120-121 

Effects due to wind shear[edit]

The speed of sound varies with temperature. Since temperature and sound velocity normally decrease with increasing altitude, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source.[9] Wind shear of 4 m/(s · km) can produce refraction equal to a typical temperature lapse rate of 7.5 °C/km.[12] Higher values of wind gradient will refract sound downward toward the surface in the downwind direction,[13] eliminating the acoustic shadow on the downwind side. This will increase the audibility of sounds downwind. This downwind refraction effect occurs because there is a wind gradient; the fact that sound is carried along by the wind is not important.[14]

For sound propagation, the exponential variation of wind speed with height can be defined as follows:[15]

{displaystyle {begin{aligned}U(h)&=U(0)h^{zeta },\{frac {mathrm {d} U}{mathrm {d} H}}(h)&=zeta {frac {U(h)}{h}},end{aligned}}}

where

  • U(h) is the speed of the wind at height h;
  • ζ is the exponential coefficient based on ground surface roughness, typically between 0.08 and 0.52;
  • dU/dH(h) is the expected wind gradient at height h.

In the 1862 American Civil War Battle of Iuka, an acoustic shadow, believed to have been enhanced by a northeast wind, kept two divisions of Union soldiers out of the battle,[16] because they could not hear the sounds of battle only 10 km (six miles) downwind.[17]

Tables[edit]

In the standard atmosphere:

  • T0 is 273.15 K (= 0 °C = 32 °F), giving a theoretical value of 331.3 m/s (= 1086.9 ft/s = 1193 km/h = 741.1 mph = 644.0 kn). Values ranging from 331.3 to 331.6 m/s may be found in reference literature, however;
  • T20 is 293.15 K (= 20 °C = 68 °F), giving a value of 343.2 m/s (= 1126.0 ft/s = 1236 km/h = 767.8 mph = 667.2 kn);
  • T25 is 298.15 K (= 25 °C = 77 °F), giving a value of 346.1 m/s (= 1135.6 ft/s = 1246 km/h = 774.3 mph = 672.8 kn).

In fact, assuming an ideal gas, the speed of sound c depends on temperature and composition only, not on the pressure or density (since these change in lockstep for a given temperature and cancel out). Air is almost an ideal gas. The temperature of the air varies with altitude, giving the following variations in the speed of sound using the standard atmosphere—actual conditions may vary.[citation needed]

Effect of temperature on properties of air

Celsius
tempe­rature
θ (°C)
Speed of
sound
c (m/s)
Density
of air
ρ (kg/m3)
Characteristic specific
acoustic impedance
z0 (Pa·s/m)
35 351.88 1.1455 403.2
30 349.02 1.1644 406.5
25 346.13 1.1839 409.4
20 343.21 1.2041 413.3
15 340.27 1.2250 416.9
10 337.31 1.2466 420.5
5 334.32 1.2690 424.3
0 331.30 1.2922 428.0
−5 328.25 1.3163 432.1
−10 325.18 1.3413 436.1
−15 322.07 1.3673 440.3
−20 318.94 1.3943 444.6
−25 315.77 1.4224 449.1

Given normal atmospheric conditions, the temperature, and thus speed of sound, varies with altitude:

Altitude Temperature m/s km/h mph kn
Sea level 15 °C (59 °F) 340 1,225 761 661
11,000 m to 20,000 m
(cruising altitude of commercial jets,
and first supersonic flight)
−57 °C (−70 °F) 295 1,062 660 573
29,000 m (flight of X-43A) −48 °C (−53 °F) 301 1,083 673 585

Effect of frequency and gas composition[edit]

General physical considerations[edit]

The medium in which a sound wave is travelling does not always respond adiabatically, and as a result, the speed of sound can vary with frequency.[18]

The limitations of the concept of speed of sound due to extreme attenuation are also of concern. The attenuation which exists at sea level for high frequencies applies to successively lower frequencies as atmospheric pressure decreases, or as the mean free path increases. For this reason, the concept of speed of sound (except for frequencies approaching zero) progressively loses its range of applicability at high altitudes.[10] The standard equations for the speed of sound apply with reasonable accuracy only to situations in which the wavelength of the sound wave is considerably longer than the mean free path of molecules in a gas.

The molecular composition of the gas contributes both as the mass (M) of the molecules, and their heat capacities, and so both have an influence on speed of sound. In general, at the same molecular mass, monatomic gases have slightly higher speed of sound (over 9% higher) because they have a higher γ (5/3 = 1.66…) than diatomics do (7/5 = 1.4). Thus, at the same molecular mass, the speed of sound of a monatomic gas goes up by a factor of

{displaystyle {c_{mathrm {gas,monatomic} } over c_{mathrm {gas,diatomic} }}={sqrt {{5/3} over {7/5}}}={sqrt {25 over 21}}=1.091ldots }

This gives the 9% difference, and would be a typical ratio for speeds of sound at room temperature in helium vs. deuterium, each with a molecular weight of 4. Sound travels faster in helium than deuterium because adiabatic compression heats helium more since the helium molecules can store heat energy from compression only in translation, but not rotation. Thus helium molecules (monatomic molecules) travel faster in a sound wave and transmit sound faster. (Sound travels at about 70% of the mean molecular speed in gases; the figure is 75% in monatomic gases and 68% in diatomic gases).

Note that in this example we have assumed that temperature is low enough that heat capacities are not influenced by molecular vibration (see heat capacity). However, vibrational modes simply cause gammas which decrease toward 1, since vibration modes in a polyatomic gas give the gas additional ways to store heat which do not affect temperature, and thus do not affect molecular velocity and sound velocity. Thus, the effect of higher temperatures and vibrational heat capacity acts to increase the difference between the speed of sound in monatomic vs. polyatomic molecules, with the speed remaining greater in monatomics.

Practical application to air[edit]

By far, the most important factor influencing the speed of sound in air is temperature. The speed is proportional to the square root of the absolute temperature, giving an increase of about 0.6 m/s per degree Celsius. For this reason, the pitch of a musical wind instrument increases as its temperature increases.

The speed of sound is raised by humidity. The difference between 0% and 100% humidity is about 1.5 m/s at standard pressure and temperature, but the size of the humidity effect increases dramatically with temperature.

The dependence on frequency and pressure are normally insignificant in practical applications. In dry air, the speed of sound increases by about 0.1 m/s as the frequency rises from 10 Hz to 100 Hz. For audible frequencies above 100 Hz it is relatively constant. Standard values of the speed of sound are quoted in the limit of low frequencies, where the wavelength is large compared to the mean free path.[19]

As shown above, the approximate value 1000/3 = 333.33… m/s is exact a little below 5 °C and is a good approximation for all “usual” outside temperatures (in temperate climates, at least), hence the usual rule of thumb to determine how far lightning has struck: count the seconds from the start of the lightning flash to the start of the corresponding roll of thunder and divide by 3: the result is the distance in kilometers to the nearest point of the lightning bolt.

Mach number[edit]

Mach number, a useful quantity in aerodynamics, is the ratio of air speed to the local speed of sound. At altitude, for reasons explained, Mach number is a function of temperature.
Aircraft flight instruments, however, operate using pressure differential to compute Mach number, not temperature. The assumption is that a particular pressure represents a particular altitude and, therefore, a standard temperature. Aircraft flight instruments need to operate this way because the stagnation pressure sensed by a Pitot tube is dependent on altitude as well as speed.

Experimental methods[edit]

A range of different methods exist for the measurement of sound in air.

The earliest reasonably accurate estimate of the speed of sound in air was made by William Derham and acknowledged by Isaac Newton. Derham had a telescope at the top of the tower of the Church of St Laurence in Upminster, England. On a calm day, a synchronized pocket watch would be given to an assistant who would fire a shotgun at a pre-determined time from a conspicuous point some miles away, across the countryside. This could be confirmed by telescope. He then measured the interval between seeing gunsmoke and arrival of the sound using a half-second pendulum. The distance from where the gun was fired was found by triangulation, and simple division (distance/time) provided velocity. Lastly, by making many observations, using a range of different distances, the inaccuracy of the half-second pendulum could be averaged out, giving his final estimate of the speed of sound. Modern stopwatches enable this method to be used today over distances as short as 200–400 metres, and not needing something as loud as a shotgun.

Single-shot timing methods[edit]

The simplest concept is the measurement made using two microphones and a fast recording device such as a digital storage scope. This method uses the following idea.

If a sound source and two microphones are arranged in a straight line, with the sound source at one end, then the following can be measured:

  1. The distance between the microphones (x), called microphone basis.
  2. The time of arrival between the signals (delay) reaching the different microphones (t).

Then v = x/t.

Other methods[edit]

In these methods, the time measurement has been replaced by a measurement of the inverse of time (frequency).

Kundt’s tube is an example of an experiment which can be used to measure the speed of sound in a small volume. It has the advantage of being able to measure the speed of sound in any gas. This method uses a powder to make the nodes and antinodes visible to the human eye. This is an example of a compact experimental setup.

A tuning fork can be held near the mouth of a long pipe which is dipping into a barrel of water. In this system it is the case that the pipe can be brought to resonance if the length of the air column in the pipe is equal to (1 + 2n)λ/4 where n is an integer. As the antinodal point for the pipe at the open end is slightly outside the mouth of the pipe it is best to find two or more points of resonance and then measure half a wavelength between these.

Here it is the case that v = .

High-precision measurements in air[edit]

The effect of impurities can be significant when making high-precision measurements. Chemical desiccants can be used to dry the air, but will, in turn, contaminate the sample. The air can be dried cryogenically, but this has the effect of removing the carbon dioxide as well; therefore many high-precision measurements are performed with air free of carbon dioxide rather than with natural air. A 2002 review[20] found that a 1963 measurement by Smith and Harlow using a cylindrical resonator gave “the most probable value of the standard speed of sound to date.” The experiment was done with air from which the carbon dioxide had been removed, but the result was then corrected for this effect so as to be applicable to real air. The experiments were done at 30 °C but corrected for temperature in order to report them at 0 °C. The result was 331.45 ± 0.01 m/s for dry air at STP, for frequencies from 93 Hz to 1,500 Hz.

Non-gaseous media[edit]

Speed of sound in solids[edit]

Three-dimensional solids[edit]

In a solid, there is a non-zero stiffness both for volumetric deformations and shear deformations. Hence, it is possible to generate sound waves with different velocities dependent
on the deformation mode. Sound waves generating volumetric deformations (compression) and shear deformations (shearing) are called pressure waves (longitudinal waves) and shear waves (transverse waves), respectively. In earthquakes, the corresponding seismic waves are called P-waves (primary waves) and S-waves (secondary waves), respectively. The sound velocities of these two types of waves propagating in a homogeneous 3-dimensional solid are respectively given by[11]

{displaystyle c_{mathrm {solid,p} }={sqrt {frac {K+{frac {4}{3}}G}{rho }}}={sqrt {frac {E(1-nu )}{rho (1+nu )(1-2nu )}}},}

{displaystyle c_{mathrm {solid,s} }={sqrt {frac {G}{rho }}},}

where

  • K is the bulk modulus of the elastic materials;
  • G is the shear modulus of the elastic materials;
  • E is the Young’s modulus;
  • ρ is the density;
  • ν is Poisson’s ratio.

The last quantity is not an independent one, as E = 3K(1 − 2ν). Note that the speed of pressure waves depends both on the pressure and shear resistance properties of the material, while the speed of shear waves depends on the shear properties only.

Typically, pressure waves travel faster in materials than do shear waves, and in earthquakes this is the reason that the onset of an earthquake is often preceded by a quick upward-downward shock, before arrival of waves that produce a side-to-side motion. For example, for a typical steel alloy, K = 170 GPa, G = 80 GPa and ρ = 7,700 kg/m3, yielding a compressional speed csolid,p of 6,000 m/s.[11] This is in reasonable agreement with csolid,p measured experimentally at 5,930 m/s for a (possibly different) type of steel.[21] The shear speed csolid,s is estimated at 3,200 m/s using the same numbers.

Speed of sound in semiconductor solids can be very sensitive to the amount of electronic dopant in them.[22]

One-dimensional solids[edit]

The speed of sound for pressure waves in stiff materials such as metals is sometimes given for “long rods” of the material in question, in which the speed is easier to measure. In rods where their diameter is shorter than a wavelength, the speed of pure pressure waves may be simplified and is given by:[11]: 70 

{displaystyle c_{mathrm {solid} }={sqrt {frac {E}{rho }}},}

where E is Young’s modulus. This is similar to the expression for shear waves, save that Young’s modulus replaces the shear modulus. This speed of sound for pressure waves in long rods will always be slightly less than the same speed in homogeneous 3-dimensional solids, and the ratio of the speeds in the two different types of objects depends on Poisson’s ratio for the material.

Speed of sound in liquids[edit]

Speed of sound in water vs temperature.

In a fluid, the only non-zero stiffness is to volumetric deformation (a fluid does not sustain shear forces).

Hence the speed of sound in a fluid is given by

{displaystyle c_{mathrm {fluid} }={sqrt {frac {K}{rho }}},}

where K is the bulk modulus of the fluid.

Water[edit]

In fresh water, sound travels at about 1481 m/s at 20 °C (see the External Links section below for online calculators).[23] Applications of underwater sound can be found in sonar, acoustic communication and acoustical oceanography.

Seawater[edit]

In salt water that is free of air bubbles or suspended sediment, sound travels at about 1500 m/s (1500.235 m/s at 1000 kilopascals, 10 °C and 3% salinity by one method).[24] The speed of sound in seawater depends on pressure (hence depth), temperature (a change of 1 °C ~ 4 m/s), and salinity (a change of 1‰ ~ 1 m/s), and empirical equations have been derived to accurately calculate the speed of sound from these variables.[25][26] Other factors affecting the speed of sound are minor. Since in most ocean regions temperature decreases with depth, the profile of the speed of sound with depth decreases to a minimum at a depth of several hundred metres. Below the minimum, sound speed increases again, as the effect of increasing pressure overcomes the effect of decreasing temperature (right).[27] For more information see Dushaw et al.[28]

An empirical equation for the speed of sound in sea water is provided by Mackenzie:[29]

{displaystyle c(T,S,z)=a_{1}+a_{2}T+a_{3}T^{2}+a_{4}T^{3}+a_{5}(S-35)+a_{6}z+a_{7}z^{2}+a_{8}T(S-35)+a_{9}Tz^{3},}

where

  • T is the temperature in degrees Celsius;
  • S is the salinity in parts per thousand;
  • z is the depth in metres.

The constants a1, a2, …, a9 are

{displaystyle {begin{aligned}a_{1}&=1,448.96,&a_{2}&=4.591,&a_{3}&=-5.304times 10^{-2},\a_{4}&=2.374times 10^{-4},&a_{5}&=1.340,&a_{6}&=1.630times 10^{-2},\a_{7}&=1.675times 10^{-7},&a_{8}&=-1.025times 10^{-2},&a_{9}&=-7.139times 10^{-13},end{aligned}}}

with check value 1550.744 m/s for T = 25 °C, S = 35 parts per thousand, z = 1,000 m. This equation has a standard error of 0.070 m/s for salinity between 25 and 40 ppt. See [1] for an online calculator.

(Note: The Sound Speed vs. Depth graph does not correlate directly to the MacKenzie formula.
This is due to the fact that the temperature and salinity varies at different depths.
When T and S are held constant, the formula itself is always increasing with depth.)

Other equations for the speed of sound in sea water are accurate over a wide range of conditions, but are far more complicated, e.g., that by V. A. Del Grosso[30] and the Chen-Millero-Li Equation.[28][31]

Speed of sound in plasma[edit]

The speed of sound in a plasma for the common case that the electrons are hotter than the ions (but not too much hotter) is given by the formula (see here)

{displaystyle c_{s}=left({frac {gamma ZkT_{mathrm {e} }}{m_{mathrm {i} }}}right)^{1/2}=left({frac {gamma ZT_{e}}{mu }}right)^{1/2}times 90.85~mathrm {m/s} ,}

where

  • mi is the ion mass;
  • μ is the ratio of ion mass to proton mass μ = mi/mp;
  • Te is the electron temperature;
  • Z is the charge state;
  • k is Boltzmann constant;
  • γ is the adiabatic index.

In contrast to a gas, the pressure and the density are provided by separate species: the pressure by the electrons and the density by the ions. The two are coupled through a fluctuating electric field.

Mars[edit]

The speed of sound on Mars varies as a function of frequency. Higher frequencies travel faster than lower frequencies. Higher frequency sound from lasers travels at 250 m/s (820 ft/s), while low frequency sound topped out at 240 m/s (790 ft/s).[32]

Gradients[edit]

When sound spreads out evenly in all directions in three dimensions, the intensity drops in proportion to the inverse square of the distance. However, in the ocean, there is a layer called the ‘deep sound channel’ or SOFAR channel which can confine sound waves at a particular depth.

In the SOFAR channel, the speed of sound is lower than that in the layers above and below. Just as light waves will refract towards a region of higher refractive index, sound waves will refract towards a region where their speed is reduced. The result is that sound gets confined in the layer, much the way light can be confined to a sheet of glass or optical fiber. Thus, the sound is confined in essentially two dimensions. In two dimensions the intensity drops in proportion to only the inverse of the distance. This allows waves to travel much further before being undetectably faint.

A similar effect occurs in the atmosphere. Project Mogul successfully used this effect to detect a nuclear explosion at a considerable distance.

See also[edit]

  • Acoustoelastic effect
  • Elastic wave
  • Second sound
  • Sonic boom
  • Sound barrier
  • Speeds of sound of the elements
  • Underwater acoustics
  • Vibrations

References[edit]

  1. ^ “Speed of Sound Calculator”. National Weather Service. Retrieved 23 July 2021.
  2. ^ “Speed of Sound”. hyperphysics.phy-astr.gsu.edu. Retrieved 24 October 2022.
  3. ^ “The Speed of Sound”. mathpages.com. Retrieved 3 May 2015.
  4. ^ Bannon, Mike; Kaputa, Frank (12 December 2014). “The Newton–Laplace Equation and Speed of Sound”. Thermal Jackets. Retrieved 3 May 2015.
  5. ^ a b Murdin, Paul (25 December 2008). Full Meridian of Glory: Perilous Adventures in the Competition to Measure the Earth. Springer Science & Business Media. pp. 35–36. ISBN 9780387755342.
  6. ^ Fox, Tony (2003). Essex Journal. Essex Arch & Hist Soc. pp. 12–16.
  7. ^ “17.2 Speed of Sound | University Physics Volume 1”. courses.lumenlearning.com. Retrieved 24 January 2020.
  8. ^ Dean, E. A. (August 1979). Atmospheric Effects on the Speed of Sound, Technical report of Defense Technical Information Center
  9. ^ a b Everest, F. (2001). The Master Handbook of Acoustics. New York: McGraw-Hill. pp. 262–263. ISBN 978-0-07-136097-5.
  10. ^ a b U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976.
  11. ^ a b c d Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. (2000). Fundamentals of Acoustics (4th ed.). New York: John Wiley & Sons. ISBN 0-471-84789-5.
  12. ^ Uman, Martin (1984). Lightning. New York: Dover Publications. ISBN 978-0-486-64575-9.
  13. ^ Volland, Hans (1995). Handbook of Atmospheric Electrodynamics. Boca Raton: CRC Press. p. 22. ISBN 978-0-8493-8647-3.
  14. ^ Singal, S. (2005). Noise Pollution and Control Strategy. Oxford: Alpha Science International. p. 7. ISBN 978-1-84265-237-4. It may be seen that refraction effects occur only because there is a wind gradient and it is not due to the result of sound being convected along by the wind.
  15. ^ Bies, David (2009). Engineering Noise Control, Theory and Practice. London: CRC Press. p. 249. ISBN 978-0-415-26713-7. As wind speed generally increases with altitude, wind blowing towards the listener from the source will refract sound waves downwards, resulting in increased noise levels.
  16. ^ Cornwall, Sir (1996). Grant as Military Commander. New York: Barnes & Noble. p. 92. ISBN 978-1-56619-913-1.
  17. ^ Cozens, Peter (2006). The Darkest Days of the War: the Battles of Iuka and Corinth. Chapel Hill: The University of North Carolina Press. ISBN 978-0-8078-5783-0.
  18. ^ A B Wood, A Textbook of Sound (Bell, London, 1946)
  19. ^ “Speed of Sound in Air”. Phy.mtu.edu. Retrieved 13 June 2014.
  20. ^ Zuckerwar, Handbook of the speed of sound in real gases, p. 52
  21. ^ J. Krautkrämer and H. Krautkrämer (1990), Ultrasonic testing of materials, 4th fully revised edition, Springer-Verlag, Berlin, Germany, p. 497
  22. ^ Slade, Tyler; Anand, Shashwat; Wood, Max; Male, James; Imasato, Kazuki; Cheikh, Dean; Al Malki, Muath; Agne, Matthias; Griffith, Kent; Bux, Sabah; Wolverton, Chris; Kanatzidis, Mercouri; Snyder, Jeff (2021). “Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors”. Joule. 5 (5): 1168-1182. doi:10.1016/j.joule.2021.03.009. S2CID 233598665.
  23. ^ “Speed of Sound in Water at Temperatures between 32–212 oF (0–100 oC) — imperial and SI units”. The Engineering Toolbox.
  24. ^ Wong, George S. K.; Zhu, Shi-ming (1995). “Speed of sound in seawater as a function of salinity, temperature, and pressure”. The Journal of the Acoustical Society of America. 97 (3): 1732. Bibcode:1995ASAJ…97.1732W. doi:10.1121/1.413048.
  25. ^ APL-UW TR 9407 High-Frequency Ocean Environmental Acoustic Models Handbook, pp. I1-I2.
  26. ^ Robinson, Stephen (22 September 2005). “Technical Guides – Speed of Sound in Sea-Water”. National Physical Laboratory. Archived from the original on 29 April 2017. Retrieved 7 December 2016.
  27. ^ “How Fast Does Sound Travel?”. Discovery of Sound in the Sea. University of Rhode Island. Archived from the original on 20 May 2017. Retrieved 30 November 2010.
  28. ^ a b Dushaw, Brian D.; Worcester, P. F.; Cornuelle, B. D.; Howe, B. M. (1993). “On Equations for the Speed of Sound in Seawater”. Journal of the Acoustical Society of America. 93 (1): 255–275. Bibcode:1993ASAJ…93..255D. doi:10.1121/1.405660.
  29. ^ Kenneth V., Mackenzie (1981). “Discussion of sea-water sound-speed determinations”. Journal of the Acoustical Society of America. 70 (3): 801–806. Bibcode:1981ASAJ…70..801M. doi:10.1121/1.386919.
  30. ^ Del Grosso, V. A. (1974). “New equation for speed of sound in natural waters (with comparisons to other equations)”. Journal of the Acoustical Society of America. 56 (4): 1084–1091. Bibcode:1974ASAJ…56.1084D. doi:10.1121/1.1903388.
  31. ^ Meinen, Christopher S.; Watts, D. Randolph (1997). “Further Evidence that the Sound-Speed Algorithm of Del Grosso Is More Accurate Than that of Chen and Millero”. Journal of the Acoustical Society of America. 102 (4): 2058–2062. Bibcode:1997ASAJ..102.2058M. doi:10.1121/1.419655.
  32. ^ “There are two speeds of sound on Mars. Here’s what this means”. ZME Science. 4 April 2022. Retrieved 4 April 2022.

External links[edit]

  • Speed of Sound Calculator
  • Calculation: Speed of Sound in Air and the Temperature
  • Speed of sound: Temperature Matters, Not Air Pressure
  • Properties of the U.S. Standard Atmosphere 1976
  • The Speed of Sound
  • How to Measure the Speed of Sound in a Laboratory
  • Did Sound Once Travel at Light Speed?
  • Acoustic Properties of Various Materials Including the Speed of Sound Archived 16 February 2014 at the Wayback Machine
  • Discovery of Sound in the Sea (uses of sound by humans and other animals)

Наверняка, многие еще с детства замечали удивительный факт: во время грозы молния появляется на некоторое время раньше грома. А все потому, что скорость света во много раз больше скорости звука.

источник: Яндекс
источник: Яндекс

Чему же равна скорость звука? На этот вопрос нельзя ответить однозначно. Звук исходит от вибрирующих предметов (например, наших голосовых связок). Он появляется за счет распространения звуковой волны. Звуковой волной мы называем колебание атомов той среды, в которой она распространяется. Обычно, мы не сможем увидеть звук просто в воздухе, но попробуйте включить музыку погромче и увидите, как трясутся стекла. Или шлёпнете рукой по воде и заметите расходящиеся круги. Это и будет звуковая волна. Скоростью звука называется скорость распространение этих волн в некой среде. И от того, в какой именно среде распространяется звук, зависит его скорость. Здесь речь идет об упругости и плотности материала.

Среда может быть различной: воздух, вода, твердые тела. Например, индейцы прикладывали ухо к земле, чтобы услышать звуки вдали от них. Для того чтобы звук распространялся, необходимо наличие атомов в среде. Поэтому в космосе нет звука (атомов там крайне мало). Чем ближе атомы находятся друг к другу, тем быстрее по ним побежит звук, соответственно скорость звука будет больше. Так скорость звука в твердых телах больше, чем, например, в воздухе.

Реклама
Реклама

Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽. Но круто, что есть гранты на учебу. Грант-на-вуз.рф это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ грант-на-вуз.рф

Скорость звука в воздухе будет составлять примерно 335 м/с при температуре 0°. Чем выше будет подниматься температура, тем быстрее будет распространяться звук. В воде скорость звука будет примерно 1435 м/с, в металле – 5000м/с. Различие в скорости звука в разных средах легко проверить: сначала стукнув два камня друг о друга на воздухе, а потом под водой. В воде звук будет распространяться лучше.

Для вычисления скорости звука в газе или жидкости существует следующая формула:

источник: Яндекс
источник: Яндекс

Где p – плотность среды, k– модуль объемной сжатия среды.

В твёрдых телах могут быть два типа объёмных волн, с разной поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой всегда выше, чем скорость второй:

источник: Яндекс
источник: Яндекс

где K — модуль объемной сжатия среды, G — модуль сдвига, E — модуль Юнга, v (ню)— коэффициент Пуассона.

Реклама
Реклама

Напоминаем про сервис грант-на-вуз.рф . Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишь от 300 ₽ до 100 000 ₽, перейдя по ссылке грант-на-

Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:

https://zen.yandex.ru/fgbnuac — последние научные достижения и лучшие образовательные практики.

https://zen.yandex.ru/id/5e164c941febd400ae3b4705 — ЕВРОПЕЙСКОЕ ВЫСШЕЕ ОБРАЗОВАНИЕ. Международная компания, оказывающая консультационные, сопроводительные и информационные услуги в сфере высшего образования в Европе. Официальный сайт – https://eurounis.com.

Хорошего дня и не болейте.

1.25.
3ВУКОВЫЕ ВОЛНЫ

Понятие
звуковой волны. Скорость звука в различных
средах. Физические характеристики
звука: интенсивность, спектр,
высота
тона, громкость, затухание. Ультразвук
и его применение. Эффект Доплера. Ударные
волны.

Звуковые волны.

Важным
видом продольных волн являются звуковые
волны
.
Так называются волны с частотами 17 –
20000 Гц. Учение о звуке называется
акустикой. В акустике изучаются волны,
которые распространяются не только в
воздухе, но и в любой другой среде.
Упругие волны с частотой ниже 17 Гц
называются инфразвуком, а с частотой
выше 20000 Гц – ультразвуком.

Звуковые
волны – упругие колебания, распространяющиеся
в виде волнового процесса в газах,
жидкостях, твердых телах
.

Избыточное
звуковое давление. Уравнение звуковой
волны.

Уравнение упругой
волны позволяет вычислить смещение
любой точки пространства, по которому
проходит волна, в любой момент времени.
Но как говорить о смещении частиц воздуха
или жидкости от положения равновесия?
Звук, распространяясь в жидкости или
газе, создает области сжатия и разряжение
среды, в которых давление соответственно
повышается или понижается по сравнению
с давлением невозмущенной среды.

Если

давление и плотность невозмущенной
среды (среды, по которой не проходит
волна), а

давление и плотность среды при
распространении в ней волнового процесса,
то величина
называется
избыточным
давлением
.
Величина
есть
максимальное значение избыточное
давление (амплитуда
избыточного давления
).

Изменение избыточного
давления для плоской звуковой волны
(т.е. уравнение плоской звуковой волны)
имеет вид:

, (30.1)

где y
– расстояние от источника колебаний
точки, избыточное давление в которой
мы определяем в момент времени t.

Если
ввести величину избыточной плотности

и
ее амплитуды
так
же, как мы вводили величину избыточного
звукового давления, то уравнение плоской
звуковой волны можно было бы записать
так:

. (30.2)

Скорость
звука

— скорость распространения звуковых
волн в среде. Как правило, в газах
скорость звука меньше, чем в жидкостях,
а в жидкостях
скорость звука меньше, чем в твёрдых
телах. Чем больше плотность, тем больше
скорость звука. Скорость звука в любой
среде вычисляется по формуле:
где β —
адиабатическая
сжимаемость
среды; ρ —
плотность.

Объективные и
субъективные характеристики звука.

Само слово
“звук” отражает два различных, но
взаимосвязанных понятия: 1)звук как
физическое явление; 2)звук – то восприятие,
которое испытывает слуховой аппарат
(человеческое ухо) и ощущения, возникающие
у него при этом. Соответственно
характеристики звука делятся на
объективные,
которые могут быть измерены физической
аппаратурой, и субъективные,
определяемые восприятием данного звука
человеком.

К объективным
(физическим) характеристикам звука
относятся характеристики, которые
описывают любой волновой процесс:
частота, интенсивность и спектральный
состав. В таблицу1. включены сравнительные
данные объективных и субъективных
характеристик.

Таблица1.

Субъективные
характеристики

Объективные
характеристики

Высота
звука

Высота
звука определяется частотой волны

Тембр
(окраска звука)

Тембр
звука определяется его спектром

Громкость
(сила звука)

Сила
звука определяется нтенсивностью
волны (или квадратом ее амплитуды)

Частота
звука

измеряется числом колебаний частиц
среды, участвующих в волновом процессе,
в 1 секунду.

Интенсивность
волны
измеряется энергией, переносимой волной
в единицу времени через единичную
площадь (расположенную перпендикулярно
направлению распространению волны).

Спектральный
состав (спектр)

звука
указывает из каких колебаний состоит
данный звук и как распределены амплитуды
между отдельными его составляющими.

Различают
сплошные
и линейчатые спектры
.
Для субъективной оценки громкости
используются величины, называемые
уровнем
силы звука и уровнем громкости
.

Таблица
2 -Объективные характеристики механических
волновых процессов.

Величина
и ее обозначение

Уравнение
для определения единицы измерения

Единица
измерения

Сокращенное
обозначение

Частота

Гц

Звуковое
давление р

ньютон на квадратный
метр

(паскаль)

Плотность
звуковой энергии

джоуль
на кубический метр

Поток
звуковой энергии (звуковая мощность)

ватт

Вт

Интенсивность
звука I

Ватт
на квадратный метр

Для характеристики
величин, определяющих восприятие звука,
существенными являются не столько
абсолютные значения интенсивности
звука и звукового давления, сколько их
отношение к некоторым пороговым
значениям. Поэтому вводятся понятие
относительных уровней интенсивности
и звукового давления.

Для того,
чтобы звуковая волна воспринималась
на слух, необходимо, чтобы ее интенсивность
превышала бы минимальную величину,
называемую порогом
слышимости
.
Величина

различная
для разных частот. Для частоты
порог
слышимости составляет величину порядка.
Опытом установлено, что на каждой частоте
есть верхняя граница силы звука
,
при превышении которого у человека
возникают болевые ощущения. Величина

называется
порогом
болевого ощущения.

Уровень
интенсивности

(уровень силы звука) равен десятичному
логарифму отношения интенсивности
звука при данной частоте к интенсивности
звука при той же частоте на пороге
слышимости:

.

Громкость
звука

— субъективное восприятие силы звука
(абсолютная величина слухового ощущения).
Громкость главным образом зависит от
звукового
давления
и частоты
звуковых колебаний. Также на громкость
звука влияют его тембр, длительность
воздействия звуковых колебаний и другие
факторы. Уровень
громкости

равен
десятичному логарифму отношения
интенсивности звука при данной частоте
к интенсивности звука при частоте 1000
Гц на пороге слышимости:

.

Единицей
измерения уровня интенсивности является
бел (Б):
.
Одна десятая часть бела называется
децибел (дБ): 0,1Б = 1дБ. Формула для
определения уровня интенсивности в
децибелах примет вид:

.

Если
записать формулу для уровня громкости
в виде
,
то единицей измерения в СИ при таком
определении величины является, единица,
имеющая название фон. При частоте 1000 Гц
шкала фонов и децибел совпадают, для
других частот они различны.

Уровень
звукового давления

равен произведению 20 на логарифм
отношения звукового давления при данной
частоте к звуковому давлению на пороге
слышимости. Единицей измерения в данном
случае является децибел.

.

Ультразвук:
Механические
волны с частотой колебания, большей
20000Гц, не воспринимаются человеком как
звук.

Ультразвук
представляет собой волнообразно
распространяющееся колебательное
движение частиц среды и характеризуется
рядом отличительных особенностей по
сравнению с колебаниями слышимого
диапазона. В ультразвуковом диапазоне
частот сравнительно легко получить
направленное излучение; ультразвуковые
колебания хорошо поддаются фокусировке,
в результате чего повышается интенсивность
ультразвуковых колебаний в определенных
зонах воздействия. При распространении
в газах, жидкостях и твердых телах
ультразвук порождает уникальные явления,
многие из которых нашли практическое
применение в различных областях науки
и техники.
Прошло чуть более ста лет
с начала исследований в области применения
ультразвуковых колебаний. За это время
в активе человечества появились десятки
высокоэффективных, ресурсосберегающих
и экологически безопасных ультразвуковых
технологий. К их числу относятся:
технологии закалки, лужения и пайки
металлов, предотвращения образования
накипи на теплообменных поверхностях,
сверления хрупких и особо твердых
материалов, сушки термолабильных
веществ, экстрагирования животного и
растительного сырья, растворения,
стерилизации жидких веществ,
мелкодисперсного распыления лекарственных
препаратов, тяжелых топлив, получения
эмульсий и сверхтонких суспензий,
диспергирования красителей, сварки
металлов

и
полимеров, мойки, очистки деталей без
применения горючих и токсичных
растворителей.

В последние годы
ультразвук начинает играть все большую
роль в промышленности и научных
исследованиях. Успешно проведены
теоретические и экспериментальные
исследования в области ультразвуковой
кавитации и акустических течений,
позволившие разработать новые
технологические процессы, протекающие
при воздействии ультразвука в жидкой
фазе. В настоящее время формируется
новое направление химии – ультразвуковая
химия, позволяющая ускорить многие
химико-технологические процессы и
получить новые вещества. Научные
исследования способствовали зарождению
нового раздела акустики – молекулярной
акустики, изучающей молекулярное
взаимодействие звуковых волн с веществом.
Возникли новые области применения
ультразвука: интроскопия, голография,
квантовая акустика, ультразвуковая
фазомерия, акустоэлектроника.

Наряду с
теоретическими и экспериментальными
исследованиями в области ультразвука
выполнено много практических работ.
Разработаны универсальные и специальные
ультразвуковые станки, установки,
работающие под повышенным статическим
давлением, ультразвуковые механизированные
установки для очистки деталей, генераторы
с повышенной частотой и новой системой
охлаждения, преобразователи с равномерно
распределенным полем.

Эхолот-прибор для
определения глубины моря. Ультразвуковой
локатор используется для определения
расстояния до препятствия на пути. При
прохождении ультразвука через жидкость
частицы жидкости приобретают большие
ускорения и сильно воздействуют на
различные тела, помещенные в жидкость.
Это используют для ускорения самых
различных технологических процессов
(например, приготовления растворов.
Отмывки деталей, дубления кож и т.д.).
Ультразвук применяется для обнаружения
дефектов в металлических деталях.В
медицине проводится ультразвуковое
исследование внутренних органов.

Эффектом
Доплера

называется изменение частоты колебаний,
воспринимаемой приемником, при движении
источника этих колебаний и приемника
друг относительно друга.

Для
рассмотрения эффекта Доплера предположим,
что источник и приемник звука движутся
вдоль соединяющей их прямой; vист
и vпр
— соответственно скорости движения
источника и приемника, причем они
положительны, если источник (приемник)
приближается к приемнику (источнику),
и отрицательны, если удаляется. Частота
колебаний источника равна v0.

1.
Источник и приемник покоятся относительно
среды,
т. е. vист
=
vпр=0.
Если v
скорость распространения звуковой
волны в рассматриваемой среде, то длина
волны l=vT=v/v0.
Распространяясь в среде, волна достигнет
приемника и вызовет колебания его
звукочувствительного элемента с частотой

(30.3)

Следовательно,
частота v звука, которую
зарегистрирует приемник, равна частоте
v0,
с которой звуковая
волна излучается источником.

2.
Приемник приближается к источнику, а
источник покоится,
т.
е. vпр>0,
vист=0.
В данном случае скорость распространения
волны относительно приемника станет
равной v +
vпр.
Так как длина волны при этом не
меняется, то

(30.4)

т.
е. частота колебаний, воспринимаемых
приемником, в (v+vпр)/v
раз больше частоты колебаний источника.

3.
Источник приближается к преемнику, а
приемник покоится,
т.
е. vист
>0, vпр=0.

Скорость
распространения колебаний зависит лишь
от свойств среды, поэтому за время,
равное периоду колебаний источника,
излученная им волна пройдет в направле­нии
к приемнику расстояние vT
(равное длине волны l)
независимо от того, движется ли источник
или покоится. За это же время источник
пройдет в направлении волны расстояние
vистT
(рис. 224), т. е. длина волны в направлении
движения сократится и станет равной
l‘=lvистТ=(vvист)T,
тогда

(30.5)

т.
е. частота n колебаний,
воспринимаемых приемником, увеличится
в v/(v
vист)
раз. В случаях 2 и 3, если vист<0
и vпр<0,
знак будет обратным.

4. Источник и
приемник движутся относительно друг
друга.
Используя результаты, полученные
для случаев 2 и 3, можно записать выражение
для частоты колебаний, воспринимаемых
приемником:

(30.6)

причем верхний знак
берется, если при движении источника
или приемника происходит их сближение,
нижний знак — в случае их взаимного
удаления.

Из
приведенных формул следует, что эффект
Доплера различен в зависимости от того,
движется ли источник или приемник. Если
направления скоростей vпр
и vист
не совпадают с проходящей через источник
и приемник прямой, то вместо этих
скоростей в формуле (30.6) надо брать их
проекции на направление этой прямой.

Ударная
волна:
поверхность
разрыва,
которая движется относительно
газа/жидкости/твёрдых тел и при пересечении
которой давление,
плотность,

температура
и скорость испытывают скачок.

Ударные
волны возникают при взрывах, детонации,
при сверхзвуковых движениях тел, при
мощных электрич. разрядах и т. д. Например,
при взрыве ВВ образуются высоконагретые
продукты взрыва, обладающие большой
плотностью и находящиеся под высоким
давлением. В начальный момент они
окружены покоящимся воздухом при
нормальной плотности и атмосферном
давлении. Расширяющиеся продукты взрыва
сжимают окружающий воздух, причём в
каждый момент времени сжатым оказывается
лишь воздух, находящийся в определённом
объёме; вне этого объёма воздух остаётся
в невозмущённом состоянии. С течением
времени объём сжатого воздуха возрастает.
Поверхность, которая отделяет сжатый
воздух от невозмущённого, и представляет
собой фронт ударной волны. В ряде случаев
сверхзвукового движения тел в газе
(артиллерийские снаряды, спускаемые
космич. аппараты) направление движения
газа не совпадает с нормалью к поверхности
фронта ударной волны, и тогда возникают
косые ударные волны.

Примером
возникновения и распространения ударной
волны может служить сжатие газа в трубе
поршнем. Если поршень вдвигается в газ
медленно, то по газу со скоростью звука
а
бежит акустич. (упругая) волна сжатия.
Если же скорость поршня не мала по
сравнению со скоростью звука, возникает
ударная волна, скорость распространения
которой по невозмущённому газу больше,
чем скорость движения частиц газа (т.
н. массовая скорость), совпадающая со
скоростью поршня. Расстояния между
частицами в ударной волне меньше, чем
в невозмущённом газе, вследствие сжатия
газа. Если поршень сначала вдвигают в
газ с небольшой скоростью и постепенно
ускоряют, то ударная волна образуется
не сразу. Вначале возникает волна сжатия
с непрерывными распределениями плотности
r и давления р.
С течением времени крутизна передней
части волны сжатия нарастает, т. к.
возмущения от ускоренно движущегося
поршня догоняют её и усиливают, вследствие
чего возникает резкий скачок всех
гидродинамич. величин, т. е. ударная
волна

Ударная
волна в реальных газах. В реальном газе
при высоких температурах происходят
возбуждение молекулярных колебаний,
диссоциация молекул, химические реакции,
ионизация и т. д., что связано с затратами
энергии и изменением числа частиц. При
этом внутренняя энергия e сложным образом
зависит от p
и ρ
и параметры газа за фронтом.

Для
перераспределения энергии газа, сжатого
и нагретого в сильном скачке уплотнения,
по различным степеням свободы требуется
обычно очень много соударений молекул.
Поэтому ширина слоя Dx, в котором происходит
переход из начального в конечное
термодинамически равновесное состояние,
т. е. ширина фронта ударной волны, в
реальных газах обычно гораздо больше
ширины вязкого скачка и определяется
временем релаксации
наиболее медленного из процессов:
возбуждения колебаний, диссоциации,
ионизации и т. д. Распределения

Рис. 25.1
Распределение температуры (a) и плотности
(б) в ударной волне, распространяющейся
в реальном газе.

температуры
и плотности в ударной волне при этом
имеют вид, показанный на рис. 25.1
где вязкий скачок уплотнения изображён
в виде взрыва.

Ударная
волна в твёрдых телах.

Энергия и давление в твёрдых телах имеют
двоякую природу: они связаны с тепловым
движением и с взаимодействием частиц
(тепловые и упругие составляющие). Теория
междучастичных сил не может дать общей
зависимости упругих составляющих
давления и энергии от плотности в широком
диапазоне для разных веществ, и,
следовательно, теоретически нельзя
построить функцию, связывающие (p,ρ)
до и за фронтом ударной волны. Поэтому
расчеты для твёрдых (и жидких) тел
определяются из опыта или полуэмпирически.
Для значительного сжатия твёрдых тел
нужны давления в миллионы атмосфер,
которые сейчас достигаются при
экспериментальных исследованиях. На
практике большое значение имеют слабые
ударные волны с давлениями 104—105
атм. Это давления, которые развиваются
при детонации, взрывах в воде, ударах
продуктов взрыва о преграды и т. д.. В
ряде веществ — железе, висмуте и других
в ударной волне происходят фазовые
переходы — полиморфные превращения.
При небольших давлениях в твёрдых телах
возникают упругие
волны
,
распространение которых, как и
распространение слабых волн сжатия в
газах, можно рассматривать на основе
законов акустики.

8

Соседние файлы в папке физика лекцыи

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ЗВУК И АКУСТИКА. Звук – это колебания, т.е. периодическое механическое возмущение в упругих средах – газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение частиц), распространяется в ней в виде звуковой волны. Область физики, рассматривающая вопросы возникновения, распространения приема и обработки звуковых волн, называется акустикой. Звук может быть неслышимым, если его частота лежит за пределами чувствительности человеческого уха, или он распространяется в такой среде, как твердое тело, которая не может иметь прямого контакта с ухом, или же его энергия быстро рассеивается в среде. Таким образом, обычный для нас процесс восприятия звука – лишь одна сторона акустики.

ЗВУКОВЫЕ ВОЛНЫ

Рассмотрим длинную трубу, наполненную воздухом. С левого конца в нее вставлен плотно прилегающий к стенкам поршень (рис. 1). Если поршень резко двинуть вправо и остановить, то воздух, находящийся в непосредственной близости от него, на мгновение сожмется (рис. 1,а). Затем сжатый воздух расширится, толкнув воздух, прилегающий к нему справа, и область сжатия, первоначально возникшая вблизи поршня, будет перемещаться по трубе с постоянной скоростью (рис. 1,б). Эта волна сжатия и есть звуковая волна в газе.

Рис. 1. ЗВУКОВАЯ ВОЛНА. а – поршень, резко сдвинувшийся в трубе в направлении стрелки, смещает соседние частицы воздуха, создает волну сжатия, т.е. звуковую волну, которая начинает распространяться в сторону от поршня; б – звуковая волна движется в воздухе с постоянной скоростью, вызывая временное повышение давления.

Звуковая волна в газе характеризуется избыточным давлением, избыточной плотностью, смещением частиц и их скоростью. Для звуковых волн эти отклонения от равновесных значений всегда малы. Так, избыточное давление, связанное с волной, намного меньше статического давления газа. В противном случае мы имеем дело с другим явлением – ударной волной. В звуковой волне, соответствующей обычной речи, избыточное давление составляет лишь около одной миллионной атмосферного давления.

Важно то обстоятельство, что вещество не уносится звуковой волной. Волна представляет собой лишь проходящее по воздуху временное возмущение, по прохождении которого воздух возвращается в равновесное состояние.

Волновое движение, конечно, не является характерным только для звука: в форме волн распространяются свет и радиосигналы, и каждому знакомы волны на поверхности воды. Все типы волн математически описываются так называемым волновым уравнением.

Гармонические волны.

Волна в трубе на рис. 1 называется звуковым импульсом. Очень важный тип волны возбуждается, когда поршень колеблется туда-сюда подобно грузу, подвешенному на пружине. Такие колебания называются простыми гармоническими или синусоидальными, а возбуждаемая в этом случае волна – гармонической.

При простых гармонических колебаниях движение периодически повторяется. Промежуток времени между двумя одинаковыми состояниями движения называется периодом колебаний, а число полных периодов в секунду, – частотой колебаний. Обозначим период через Т, а частоту – через f; тогда можно написать, что f = 1/T. Если, например, частота равна 50 периодам в секунду (50 Гц), то период равен 1/50 секунды.

Математически простые гармонические колебания описываются простой функцией. Смещение поршня при простых гармонических колебаниях для любого момента времени t можно записать в виде

Здесь d – смещение поршня из положения равновесия, а D – постоянный множитель, который равен максимальному значению величины d и называется амплитудой смещения.

Предположим, что поршень колеблется в соответствии с формулой гармонических колебаний. Тогда при движении его вправо возникает, как и прежде, сжатие, а при движении влево давление и плотность будут уменьшаться относительно своих равновесных значений. Возникает не сжатие, а разрежение газа. В этом случае вправо будет распространяться, как показано на рис. 2, волна чередующихся сжатий и разрежений. В каждый момент времени кривая распределения давления по длине трубы будет иметь вид синусоиды, и эта синусоида будет двигаться вправо со скоростью звука v. Расстояние вдоль трубы между одинаковыми фазами волны (например, между соседними максимумами) называется длиной волны. Ее принято обозначать греческой буквой l (лямбда). Длина волны l есть расстояние, проходимое волной за время Т. Поэтому l = Tv, или v = lf.

Рис. 2. ПОРШЕНЬ, колеблющийся в трубе, создает стоячие волны с длиной волны l, равной расстоянию между областями наибольшего сжатия.

Продольные и поперечные волны.

Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной. Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной. Звуковые волны в газах и жидкостях – продольные. В твердых же телах существуют волны обоих типов. Поперечная волна в твердом теле возможна благодаря его жесткости (сопротивлению к изменению формы).

Самая существенная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет. В некоторых явлениях, таких, как отражение и прохождение звука через кристаллы, многое зависит от направления смещения частиц, так же как и в случае световых волн.

Скорость звуковых волн.

Скорость звука – это характеристика среды, в которой распространяется волна. Она определяется двумя факторами: упругостью и плотностью материала. Упругие свойства твердых тел зависят от типа деформации. Так, упругие свойства металлического стержня неодинаковы при кручении, сжатии и изгибе. И соответствующие волновые колебания распространяются с разной скоростью.

Упругой называется среда, в которой деформация, будь то кручение, сжатие или изгиб, пропорциональна силе, вызывающей деформацию. Такие материалы подчиняются закону Гука:

Напряжение = C ґ Относительная деформация,

где С – модуль упругости, зависящий от материала и типа деформации.

Скорость звука v для данного типа упругой деформации дается выражением

где r – плотность материала (масса единицы объема).

Скорость звука в твердом стержне.

Длинный стержень можно растянуть или сжать силой, приложенной к концу. Пусть длина стержня равна L, прикладываемая растягивающая сила – F, а увеличение длины – DL. Величину DL/L будем называть относительной деформацией, а силу, приходящуюся на единицу площади поперечного сечения стержня, – напряжением. Таким образом, напряжение равно F/A , где А – площадь сечения стержня. В применении к такому стержню закон Гука имеет вид

где Y – модуль Юнга, т.е. модуль упругости стержня для растяжения или сжатия, характеризующий материал стержня. Модуль Юнга мал для легко растяжимых материалов, таких, как резина, и велик для жестких материалов, например для стали.

Если теперь ударом молотка по торцу стержня возбудить в нем волну сжатия, то она будет распространяться со скоростью , где r, как и прежде, – плотность материала, из которого изготовлен стержень. Значения скоростей волн для некоторых типовых материалов приведены в табл. 1.

Таблица 1. СКОРОСТЬ ЗВУКА ДЛЯ РАЗНЫХ ТИПОВ ВОЛН В ТВЕРДЫХ МАТЕРИАЛАХ

Материал

Продольные волны в протяженных твердых образцах (м/с)

Волны сдвига и кручения (м/с)

Волны сжатия в стержнях (м/с)

Алюминий

6420

3040

5000

Латунь

4700

2110

3480

Свинец

5950

3240

5120

Железо

1960

690

1210

Серебро

3650

1610

2680

Нержавеющая сталь

5790

3100

5000

Флинтглас

3980

2380

3720

Кронглас

5100

2840

4540

Оргстекло

2680

1100

1840

Полиэтилен

1950

540

920

Полистирол

2350

1120

2240

Рассмотренная волна в стержне является волной сжатия. Но ее нельзя считать строго продольной, так как со сжатием связано движение боковой поверхности стержня (рис. 3,а).

Рис. 3. ТИПЫ ВОЛНОВОГО ДВИЖЕНИЯ В СТЕРЖНЕ. а – волна сжатия, сходная с продольной волной; б – волна изгиба, не являющаяся ни чисто продольной, ни чисто поперечной; в – волна кручения вокруг центральной оси, чисто поперечная.

В стержне возможны и два других типа волн – волна изгиба (рис. 3,б) и волна кручения (рис. 3,в). Деформациям изгиба соответствует волна, не являющаяся ни чисто продольной, ни чисто поперечной. Деформации же кручения, т.е. вращения вокруг оси стержня, дают чисто поперечную волну.

Скорость волны изгиба в стержне зависит от длины волны. Такую волну называют «дисперсионной».

Волны кручения в стержне – чисто поперечные и недисперсионные. Их скорость дается формулой

где m – модуль сдвига, характеризующий упругие свойства материала по отношению к сдвигу. Некоторые типичные скорости волн сдвига приведены в табл. 1.

Скорость в протяженных твердых средах.

В твердых средах большого объема, где влиянием границ можно пренебречь, возможны упругие волны двух типов: продольные и поперечные.

Деформация в продольной волне – это плоская деформация, т.е. одномерное сжатие (или разрежение) в направлении распространения волны. Деформация, соответствующая поперечной волне, – это сдвиговое смещение, перпендикулярное направлению распространения волны.

Скорость продольных волн в твердых материалах дается выражением

где CLмодуль упругости для простой плоской деформации. Он связан с модулем объемной деформации В (определение которого дается ниже) и модулем сдвига m материала соотношением CL = B + 4/3m. В табл. 1 приводятся значения скоростей продольных волн для различных твердых материалов.

Скорость волн сдвига в протяженных твердых средах та же, что и скорость волн кручения в стержне из того же материала. Поэтому она дается выражением . Ее значения для обычных твердых материалов даны в табл. 1.

Скорость в газах.

В газах возможен только один тип деформации: сжатие – разрежение. Соответствующий модуль упругости В называется модулем объемной деформации. Он определяется соотношением

DP = B(DV/V).

Здесь DP – изменение давления, DV/V – относительное изменение объема. Знак «минус» показывает, что при увеличении давления объем уменьшается.

Величина В зависит от того, изменяется или нет температура газа при сжатии. В случае звуковой волны можно показать, что давление изменяется очень быстро и теплота, выделяющаяся при сжатии, не успевает уходить из системы. Таким образом, изменение давления в звуковой волне происходит без теплообмена с окружающими частицами. Такое изменение называется адиабатическим. Установлено, что скорость звука в газе зависит только от температуры. При данной температуре скорость звука примерно одинакова для всех газов. При температуре 21,1° С скорость звука в сухом воздухе составляет 344,4 м/с и возрастает с повышением температуры.

Скорость в жидкостях.

Звуковые волны в жидкостях являются волнами сжатия – разрежения, как и в газах. Скорость дается той же формулой . Однако жидкость гораздо менее сжимаема, чем газ, и поэтому для нее во много раз больше величина В, больше и плотность r. Скорость звука в жидкостях ближе к скорости в твердых материалах, чем в газах. Она гораздо меньше, чем в газах, зависит от температуры. Например, скорость в пресной воде равна 1460 м/с при 15,6° С. В морской воде нормальной солености она при той же температуре составляет 1504 м/с. Скорость звука возрастает с повышением температуры воды и концентрации соли.

Стоячие волны.

Когда гармоническая волна возбуждается в ограниченном пространстве, так что она отражается от границ, возникают так называемые стоячие волны. Стоячая волна – это результат наложения двух волн, бегущих одна в прямом, а другая – в обратном направлении. Возникает не движущаяся в пространстве картина колебаний с чередованием пучностей и узлов. В пучностях отклонения колеблющихся частиц от их равновесных положений максимальны, а в узлах равны нулю.

Стоячие волны в струне.

В натянутой струне возникают поперечные волны, причем происходит смещение струны относительно ее первоначального, прямолинейного положения. При фотографировании волн в струне отчетливо видны узлы и пучности основного тона и обертонов.

Картина стоячих волн существенно облегчает анализ колебательных движений струны данной длины. Пусть имеется струна длиной L , закрепленная на концах. Любой вид колебаний такой струны может быть представлен как комбинация стоячих волн. Поскольку концы струны неподвижно закреплены, возможны только такие стоячие волны, которые имеют узлы в граничных точках. Самая низкая частота колебаний струны соответствует максимально возможной длине волны. Поскольку расстояние между узлами равно l/2, частота минимальна, когда длина струны равна половине длины волны, т.е. при l = 2L . Это так называемая основная мода колебаний струны. Соответствующая ей частота, называемая основной частотой или основным тоном, дается выражением f = v/2L, где v – скорость распространения волны вдоль струны.

Существует целая последовательность колебаний более высоких частот, которые соответствуют стоячим волнам с бóльшим числом узлов. Следующая более высокая частота, которая называется второй гармоникой или первым обертоном, дается выражением

f = v/L.

Последовательность гармоник выражается формулой f = nv/2L, где n = 1, 2, 3, и т.д. Это т.н. собственные частоты колебаний струны. Они возрастают пропорционально числам натурального ряда: высшие гармоники в 2, 3, 4… и т.д. раз больше частоты основного колебания. Такой ряд звуков называется натуральным или гармоническим звукорядом.

Все это имеет важное значение в музыкальной акустике, о чем подробнее будет сказано ниже. Пока же отметим, что в звуке, производимом струной, присутствуют все собственные частоты. Относительный вклад каждой из них зависит от того, в какой точке возбуждены колебания струны. Если, например, ущипнуть струну посередине, то сильнее всего возбудится основная частота, поскольку эта точка соответствует пучности. Вторая же гармоника будет отсутствовать, так как в центре находится ее узел. То же можно сказать и о других гармониках (см. ниже Музыкальная акустика).

Скорость волн в струне равна

где Т – сила натяжения струны, а rLмасса единицы длины струны. Следовательно, спектр собственных частот струны дается выражением

Таким образом, увеличение натяжения струны приводит к повышению частот колебаний. Понизить же частоты колебаний при заданном T можно, взяв более тяжелую струну (большое rL) или увеличив ее длину.

Стоячие волны в органных трубах.

Теория, изложенная применительно к струне, может быть применена и к колебаниям воздуха в трубе типа органной. Органную трубу можно упрощенно рассматривать как прямую трубу, в которой возбуждаются стоячие волны. Труба может иметь как закрытые, так и открытые концы. У открытого конца возникает пучность стоячей волны, а у закрытого – узел. Следовательно, труба с двумя открытыми концами имеет такую основную частоту, при которой на длине трубы укладывается половина длины волны. Труба же, у которой один конец открыт, а другой – закрыт, имеет основную частоту, при которой на длине трубы укладывается четверть длины волны. Таким образом, основная частота для трубы, открытой с обоих концов, равна f = v/2L, а для трубы, открытой с одного конца, f = v/4L (где L – длина трубы). В первом случае результат такой же, как и для струны: обертоны равны удвоенному, утроенному и т.д. значению основной частоты. Однако для трубы, открытой с одного конца, обертоны будут больше основной частоты в 3, 5, 7 и т.д. раз.

На рис. 4 и 5 схематически показана картина стоячих волн основной частоты и первого обертона для труб двух рассмотренных типов. Смещения из соображений удобства здесь показаны как поперечные, но на самом деле они продольные.

Рис. 4. ТИПЫ КОЛЕБАНИЙ трубы, открытой с обоих концов. а – основной тон; б – первый обертон. Продольные смещения для наглядности показаны как поперечные.Рис. 5. ТИПЫ КОЛЕБАНИЙ трубы, открытой с одного конца: а – основной тон; б – первый обертон.

Резонансные колебания.

Стоячие волны тесно связаны с явлением резонанса. Собственные частоты, о которых говорилось выше, являются также резонансными частотами струны или органной трубы. Предположим, что вблизи открытого конца органной трубы помещен громкоговоритель, издающий сигнал одной определенной частоты, которую можно по желанию изменять. Тогда при совпадении частоты сигнала громкоговорителя с основной частотой трубы или с одним из ее обертонов труба будет звучать очень громко. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба со значительной амплитудой. Говорят, что труба в этих условиях резонирует.

Фурье-анализ и частотный спектр звука.

На практике звуковые волны одной-единственной частоты встречаются редко. Но сложные звуковые волны можно разлагать на гармоники. Такой метод называется фурье-анализом по имени французского математика Ж.Фурье (1768–1830), который первым применил его (в теории теплоты).

График зависимости относительной энергии звуковых колебаний от частоты называется частотным спектром звука. Существуют два основных типа таких спектров: дискретный и непрерывный. Дискретный спектр состоит из отдельных линий для частот, разделенных пустыми промежутками. В непрерывном спектре в пределах его полосы присутствуют все частоты.

Периодические звуковые колебания.

Звуковые колебания являются периодическими, если колебательный процесс, каким бы сложным он ни был, повторяется через определенный интервал времени. Его спектр всегда дискретный и состоит из гармоник определенной частоты. Отсюда и термин «гармонический анализ». Примером могут служить колебания прямоугольной формы (рис. 6,а) с изменением амплитуды от до А и периодом T = 1/f. Другой простой пример – треугольные пилообразные колебания, показанные на рис. 6,б. Пример периодических колебаний более сложной формы с соответствующими гармоническими составляющими представлен на рис. 7.

Рис. 6. ДВА ТИПА ПЕРИОДИЧЕСКИХ ВОЛН: а – прямоугольные колебания; б – пилообразные колебания. Амплитуда обеих волн равна А, а период колебаний Т – величина, обратная частоте f.Рис. 7. КОЛЕБАНИЯ СЛОЖНОЙ ФОРМЫ (верхняя кривая) и двенадцать его частотных составляющих. 1 – основная частота; 2–12 – обертоны.

Музыкальные звуки являются периодическими колебаниями и потому содержат гармоники (обертоны). Мы уже видели, что в струне наряду с колебаниями основной частоты в той или иной степени возбуждаются другие гармоники. Относительный вклад каждого обертона зависит от способа возбуждения струны. Набором обертонов в значительной степени определяется тембр музыкального звука. Эти вопросы подробнее рассматриваются ниже в разделе, посвященном музыкальной акустике.

Спектр звукового импульса.

Обычной разновидностью звука является звук малой длительности: хлопок в ладоши, стук в дверь, звук падающего на пол предмета, кукованье кукушки. Такие звуки не являются ни периодическими, ни музыкальными. Но их тоже можно разлагать в частотный спектр. В этом случае спектр будет непрерывным: для описания звука необходимы все частоты в пределах некоторой полосы, которая может быть весьма широкой. Знать такой частотный спектр необходимо для воспроизведения подобных звуков без искажений, поскольку соответствующая электронная система должна одинаково хорошо «пропускать» все эти частоты.

Основные особенности звукового импульса можно выяснить, рассмотрев импульс простой формы. Предположим, что звук представляет собой колебания длительностью Dt, при которых изменение давления таково, как показано на рис. 8,а. Примерный частотный спектр для этого случая представлен на рис. 8,б. Центральная частота соответствует колебаниям, которые мы имели бы при бесконечной протяженности того же сигнала.

Рис. 8. ЗВУКОВОЙ ИМПУЛЬС малой длительности, как, например, стук в дверь. а – форма волны; б – частотный спектр.

Протяженность частотного спектра назовем шириной полосы Df (рис. 8,б). Ширина полосы – это приблизительный диапазон частот, необходимый для воспроизведения исходного импульса без чрезмерных искажений. Существует очень простое фундаментальное соотношение между Df и Dt, а именно

DfDt » 1.

Такое соотношение справедливо для всех звуковых импульсов. Его смысл в том, что чем короче импульс, тем больше частот он содержит. Предположим, что для обнаружения подводной лодки используется гидролокатор, излучающий ультразвук в виде импульса длительностью 0,0005 с с частотой сигнала 30 кГц. Ширина полосы составляет 1/0,0005 = 2 кГц, а частоты, реально содержащиеся в спектре импульса локатора, лежат в диапазоне от 29 до 31 кГц.

Шум.

Под шумом понимается любой звук, создаваемый многочисленными, не согласованными между собой источниками. Примером может служить шум листвы деревьев, колеблемой ветром. Шум реактивного двигателя обусловлен турбулентностью высокоскоростного выхлопного потока. Шум как раздражающий звук рассматривается в ст. АКУСТИЧЕСКОЕ ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ.

Интенсивность звука.

Громкость звука может быть различной. Нетрудно сообразить, что это связано с энергией, переносимой звуковой волной. Для количественных сравнений громкости нужно ввести понятие интенсивности звука. Интенсивность звуковой волны определяется как средний поток энергии через единицу площади волнового фронта в единицу времени. Иначе говоря, если взять единичную площадку (например, 1 см2), которая полностью поглощала бы звук, и расположить ее перпендикулярно направлению распространения волны, то интенсивность звука равна акустической энергии, поглощаемой за одну секунду. Интенсивность обычно выражается в Вт/см2 (или в Вт/м2).

Приведем значение этой величины для некоторых привычных звуков. Амплитуда избыточного давления, возникающего при обычном разговоре, составляет примерно одну миллионную атмосферного давления, что соответствует акустической интенсивности звука порядка 10–9 Вт/см2. Полная же мощность звука, издаваемого при обычном разговоре, – порядка всего лишь 0,00001 Вт. Способность человеческого уха воспринимать столь малые энергии свидетельствует о его поразительной чувствительности.

Диапазон интенсивностей звука, воспринимаемых нашим ухом, очень широк. Интенсивность самого громкого звука, который может вынести ухо, примерно в 1014 раз больше минимальной, которую оно способно услышать. Полная мощность источников звука охватывает столь же широкий диапазон. Так, мощность, излучаемая при очень тихом шепоте, может быть порядка 10–9 Вт, тогда как мощность, излучаемая реактивным двигателем, достигает 105 Вт. Опять-таки интенсивности различаются в 1014 раз.

Децибел.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать ее как логарифмическую величину и измерять в децибелах. Логарифмическая величина интенсивности представляет собой логарифм отношения рассматриваемого значения величины к ее значению, принимаемому за исходное. Уровень интенсивности J по отношению к некоторой условно выбранной интенсивности J0 равен

Уровень интенсивности звука = 10 lg (J/J0) дБ.

Такием образом, один звук, превышающий другой по уровню интенсивности на 20 дБ, превышает его в 100 раз по интенсивности.

В практике акустических измерений принято выражать интенсивность звука через соответствующую амплитуду избыточного давления Ре. Когда давление измеряется в децибелах относительно некоторого условно выбранного давления Р0, получают так называемый уровень звукового давления. Поскольку интенсивность звука пропорциональна величине Pe2, а lg(Pe2) = 2lgPe, уровень звукового давления определяется следующим образом:

Уровень звукового давления = 20 lg (Pe/P0) дБ.

Условное давление Р0 = 2Ч10–5 Па соответствует стандартному порогу слышимости для звука с частотой 1 кГц. В табл. 2 приводятся уровни звукового давления для некоторых обычных источников звука. Это интегральные значения, полученные усреднением по всему слышимому диапазону частот.

Таблица 2. ТИПИЧНЫЕ УРОВНИ ЗВУКОВОГО ДАВЛЕНИЯ

Источник звука

Уровень звукового давления, дБ (отн. 2Ч10–5 Па)

Штамповочный цех

125

Машинное отделение на судне

115

Прядильно-ткацкий цех

105

В вагоне метро

95

В автомобиле при движении в потоке транспорта

85

Машинописное бюро

78

Бухгалтерия

63

Офис

50

Жилое помещение

43

Территория жилого района ночью

35

Студия радиовещания

25

Громкость.

Уровень звукового давления не связан простой зависимостью с психологическим восприятием громкости. Первый из этих факторов объективный, а второй – субъективный. Эксперименты показывают, что восприятие громкости зависит не только от интенсивности звука, но и от его частоты и условий эксперимента.

Громкости звуков, не привязанных к условиям сравнения, сравнивать невозможно. И все же сравнение чистых тонов представляет интерес. Для этого определяют уровень звукового давления, при котором данный тон воспринимается как равногромкий стандартному тону частотой 1000 Гц. На рис. 9 представлены кривые равной громкости, полученные в экспериментах Флетчера и Мэнсона. Для каждой кривой указан соответствующий уровень звукового давления стандартного тона 1000 Гц. Например, при частоте тона 200 Гц необходим уровень звука в 60 дБ, чтобы он воспринимался как равногромкий тону 1000 Гц с уровнем звукового давления 50 дБ.

Рис. 9. СВЯЗЬ между уровнем звукового давления в децибелах и уровнем громкости в фонах (кривые Флетчера – Мэнсона). Кривые получены путем измерения уровня звукового давления, при котором звук той или иной частоты воспринимается как равногромкий с эталонным тоном частотой 1000 Гц.

Эти кривые используются для определения фона – единицы уровня громкости, которая тоже измеряется в децибелах. Фон – это уровень громкости звука, для которого уровень звукового давления равногромкого стандартного чистого тона (1000 Гц) равен 1 дБ. Так, звук частотой 200 Гц при уровне 60 дБ имеет уровень громкости в 50 фонов.

Нижняя кривая на рис. 9 – это кривая порога слышимости хорошего уха. Диапазон слышимых частот простирается примерно от 20 до 20 000 Гц (см. также СЛУХ).

Распространение звуковых волн.

Как и волны от камешка, брошенного в спокойную воду, звуковые волны распространяются во всех направлениях. Такой процесс распространения удобно характеризовать волновым фронтом. Волновой фронт – это поверхность в пространстве, во всех точках которой колебания происходят в одной фазе. Волновые фронты от камешка, упавшего в воду, представляют собой окружности.

Плоские волны.

Волновой фронт простейшего вида – плоский. Плоская волна распространяется только в одном направлении и представляет собой идеализацию, которая лишь приблизительно реализуется на практике. Звуковую волну в трубе можно считать приблизительно плоской, как и сферическую волну на большом расстоянии от источника.

Сферические волны.

К простым типам волн можно отнести и волну со сферическим фронтом, исходящую из точки и распространяющуюся во всех направлениях. Такую волну можно возбудить с помощью малой пульсирующей сферы. Источник, возбуждающий сферическую волну, называется точечным. Интенсивность такой волны убывает по мере ее распространения, поскольку энергия распределяется по сфере все большего радиуса.

Если точечный источник, создающий сферическую волну, излучает мощность 4pQ, то, поскольку площадь поверхности сферы радиусом r равна 4pr2, интенсивность звука в сферической волне равна

J = Q/r2,

где r – расстояние от источника. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.

Интенсивность любой звуковой волны в процессе ее распространения уменьшается вследствие поглощения звука. Это явление будет рассмотрено ниже.

Принцип Гюйгенса.

Для распространения волнового фронта справедлив принцип Гюйгенса. Для выяснения его рассмотрим известную нам форму волнового фронта в какой-либо момент времени. Ее можно найти и спустя время Dt, если каждую точку начального волнового фронта рассматривать как источник элементарной сферической волны, распространившейся за этот промежуток на расстояние vDt. Огибающая всех этих элементарных сферических волновых фронтов и будет новым волновым фронтом. Принцип Гюйгенса позволяет определять форму волнового фронта на протяжении всего процесса распространения. Из него следует также, что волны, как плоские, так и сферические, сохраняют свою геометрию в процессе распространения при условии, что среда однородна.

Дифракция звука.

Дифракцией называется огибание волнами препятствия. Дифракция анализируется с помощью принципа Гюйгенса. Степень такого огибания зависит от соотношения между длиной волны и размером препятствия или отверстия. Поскольку длина звуковой волны во много раз больше, чем световой, дифракция звуковых волн менее удивляет нас, нежели дифракция света. Так, можно разговаривать с кем-то стоящим за углом здания, хотя он и не виден. Звуковая волна с легкостью огибает угол, тогда как свет из-за малости своей длины волны дает резкие тени.

Рассмотрим дифракцию плоской звуковой волны, падающей на твердый плоский экран с отверстием. Для определения формы волнового фронта по другую сторону экрана нужно знать соотношение между длиной волны l и диаметром отверстия D. Если эти величины примерно одинаковы или l намного больше D, то получается полная дифракция: волновой фронт выходящей волны будет сферическим, а волна достигнет всех точек за экраном. Если же l несколько меньше D, то выходящая волна будет распространяться преимущественно в прямом направлении. И наконец, если l намного меньше D, то вся ее энергия будет распространяться по прямой. Эти случаи показаны на рис. 10.

Рис. 10. ДИФРАКЦИЯ ЗВУКОВЫХ ВОЛН на отверстии. Слева – длина волны звука намного больше диаметра отверстия, волновой фронт за отверстием имеет вид полусферы; справа – длина волны звука значительно меньше диаметра отверстия, волна почти не расходится в стороны.

Дифракция наблюдается и тогда, когда на пути звука оказывается какое-либо препятствие. Если размеры препятствия намного больше длины волны, то звук отражается, а позади препятствия формируется зона акустической тени. Когда размеры препятствия сравнимы с длиной волны или меньше ее, звук дифрагирует в какой-то мере во всех направлениях. Это учитывается в архитектурной акустике. Так, например, иногда стены здания покрывают выступами с размерами порядка длины волны звука. (На частоте 100 Гц длина волны в воздухе около 3,5 м.) При этом звук, падая на стены, рассеивается во всех направлениях. В архитектурной акустике это явление называется диффузией звука.

Отражение и прохождение звука.

Когда звуковая волна, движущаяся в одной среде, падает на границу раздела с другой средой, одновременно могут происходить три процесса. Волна может отражаться от поверхности раздела, она может проходить в другую среду без изменения направления или изменять направление на границе, т.е. преломляться. На рис. 11 показан простейший случай, когда плоская волна падает под прямым углом к плоской поверхности, разделяющей два различных вещества. Если коэффициент отражения по интенсивности, который определяет долю отраженной энергии, равен R, то коэффициент прохождения будет равен T = 1 – R.

Рис. 11. ОТРАЖЕНИЕ И ПРОХОЖДЕНИЕ ЗВУКА. На границе двух сред падающая волна может отражаться или проходить из одной среды в другую.

Для звуковой волны отношение избыточного давления к колебательной объемной скорости называется акустическим сопротивлением. Коэффициенты отражения и прохождения зависят от соотношения волновых сопротивлений двух сред, волновые сопротивления, в свою очередь, пропорциональны акустическим сопротивлениям. Волновое сопротивление газов гораздо меньше, чем жидкостей и твердых тел. Поэтому если волна в воздухе падает на толстый твердый объект или на поверхность глубокой воды, то звук почти полностью отражается. Например, для границы воздуха и воды отношение волновых сопротивлений составляет 0,0003. Соответственно этому энергия звука, проходящего из воздуха в воду, равна лишь 0,12% падающей энергии. Коэффициенты отражения и прохождения обратимы: коэффициент отражения есть коэффициент прохождения в обратном направлении. Таким образом, звук практически не проникает ни из воздуха в водный бассейн, ни из-под воды наружу, что хорошо знакомо всем, кто плавал под водой.

В рассмотренном выше случае отражения предполагалось, что толщина второй среды в направлении распространения волны велика. Но коэффициент прохождения будет значительно больше, если вторая среда представляет собой стенку, разделяющую две одинаковые среды, такую, как твердая перегородка между комнатами. Дело в том, что толщина стенки обычно меньше длины волны звука или сравнима с ней. Если толщина стенки кратна половине длины волны звука в стенке, то коэффициент прохождения волны при перпендикулярном падении очень велик. Перегородка была бы абсолютно прозрачной для звука этой частоты, если бы не поглощение, которым мы здесь пренебрегаем. Если толщина стенки намного меньше длины волны звука в ней, то отражение всегда мало, а прохождение велико, за исключением случая, когда приняты специальные меры по увеличению поглощения звука.

Рефракция звука.

Когда плоская звуковая волна падает под углом на границу раздела сред, угол ее отражения равен углу падения. Прошедшая же волна отклоняется от направления падающей волны, если угол падения отличен от 90°. Такое изменение направления движения волны называется рефракцией. Геометрия рефракции на плоской границе показана на рис. 12. Углы между направлением волн и нормалью к поверхности обозначены q1 для падающей волны и q2 – для преломленной прошедшей. В соотношение между этими двумя углами входит только отношение скоростей звука для двух сред. Как и в случае световых волн, эти углы связаны между собой законом Снеллиуса (Снелля):
 

Рис. 12. РЕФРАКЦИЯ ЗВУКА. Изменение направления звуковой волны, падающей на границу раздела (под углом q1) с переходом в другую среду, называется рефракцией. Чем больше скорость звуковой волны во второй среде, тем больше угол преломления q2.

Таким образом, если скорость звука во второй среде меньше, чем в первой, то угол преломления будет меньше угла падения, если же скорость во второй среде больше, то угол преломления будет больше угла падения.

Рефракция, обусловленная градиентом температуры.

Если скорость звука в неоднородной среде непрерывно меняется от точки к точке, то рефракция также меняется. Поскольку скорость звука и в воздухе, и в воде зависит от температуры, при наличии градиента температуры звуковые волны могут изменять направление своего движения. В атмосфере и океане из-за горизонтальной стратификации обычно наблюдаются вертикальные градиенты температуры. Поэтому вследствие изменений скорости звука по вертикали, обусловленных температурными градиентами, звуковая волна может отклоняться либо вверх, либо вниз.

Рассмотрим случай, когда в каком-то месте вблизи поверхности Земли воздух теплее, чем в более высоких слоях. Тогда с увеличением высоты температура воздуха здесь понижается, а вместе с ней уменьшается и скорость звука. Звук, излучаемый источником вблизи поверхности Земли, вследствие рефракции будет уходить вверх. Это показано на рис. 13, где изображены звуковые «лучи».

Рис. 13. ЗОНА МОЛЧАНИЯ может возникать, когда температура воздуха понижается с увеличением высоты. Звуковые волны, идущие от источника звука, отклоняются вверх вследствие рефракции. В зону молчания под преломленными звуковыми лучами звук не проникает.

Отклонение лучей звука, показанное на рис. 13, в общей форме описывается законом Снеллиуса. Если через q, как и раньше, обозначить угол между вертикалью и направлением излучения, то обобщенный закон Снеллиуса имеет вид равенства sinq/v = const, относящегося к любой точке луча. Таким образом, если луч переходит в область, где скорость v уменьшается, то угол q тоже должен уменьшаться. Поэтому звуковые лучи всегда отклоняются в направлении уменьшения скорости звука.

Из рис. 13 видно, что существует область, расположенная на некотором удалении от источника, куда звуковые лучи вообще не проникают. Это так называемая зона молчания.

Вполне возможно, что где-то на высоте, большей, чем показано на рис. 13, из-за градиента температуры скорость звука увеличивается с высотой. В таком случае первоначально отклонившаяся вверх звуковая волна здесь отклонится к поверхности Земли на большом удалении. Так бывает, когда в атмосфере образуется слой температурной инверсии, в результате чего оказывается возможным прием сверхдальних звуковых сигналов. При этом качество приема в удаленных точках бывает даже лучше, чем вблизи. В истории было много примеров сверхдальнего приема. Например, во время Первой мировой войны, когда атмосферные условия благоприятствовали соответствующей рефракции звука, канонаду на французском фронте можно было слышать в Англии.

Рефракция звука под водой.

Рефракция звука, обусловленная изменением температуры по вертикали, наблюдается и в океане. Если температура, а стало быть, и скорость звука, уменьшается с глубиной, звуковые лучи отклоняются вниз, в результате чего образуется зона молчания, подобная тому, как это показано на рис. 13 для атмосферы. Для океана соответствующая картина получится, если этот рисунок просто перевернуть (см. также ГИДРОЛОКАТОР).

Наличием зон молчания затрудняется обнаружение подводных лодок с гидролокатором, а рефракция, отклоняющая звуковые волны вниз, существенно ограничивает дальность их распространения вблизи поверхности. Тем не менее наблюдается также и рефракция с отклонением вверх. Она может создать более благоприятные условия для гидролокации.

Интерференция звуковых волн.

Наложение двух или большего числа волн называется интерференцией волн.

Стоячие волны как результат интерференции.

Рассмотренные выше стоячие волны – частный случай интерференции. Стоячие волны образуются в результате наложения двух волн одинаковой амплитуды, фазы и частоты, распространяющихся в противоположных направлениях.

Амплитуда в пучностях стоячей волны равна удвоенной амплитуде каждой из волн. Поскольку интенсивность волны пропорциональна квадрату ее амплитуды, это означает, что интенсивность в пучностях в 4 раза больше интенсивности каждой из волн или же в 2 раза больше суммарной интенсивности двух волн. Здесь нет нарушения закона сохранения энергии, поскольку в узлах интенсивность равна нулю.

Биения.

Возможна также интерференция гармонических волн разных частот. Когда две частоты мало различаются, возникают так называемые биения. Биения – это изменения амплитуды звука, происходящие с частотой, равной разности исходных частот. На рис. 14 представлена осциллограмма биений.

Рис. 14. ОСЦИЛЛОГРАММА БИЕНИЙ в звуке гонга. Амплитудные расширения и сужения обусловлены периодическим взаимным усилением и ослаблением двух волн близких частот. Из-за периодического нарастания и спадания громкости звука данное явление называется биениями.

Следует иметь в виду, что частота биений – это частота амплитудной модуляции звука. Не следует также путать биения с разностной частотой, возникающей в результате искажений гармонического сигнала.

Биения часто используют при настройке двух тонов в унисон. Настройка частоты производится до тех пор, пока биения не перестанут прослушиваться. Даже если частота биений очень мала, человеческое ухо способно уловить периодическое нарастание и убывание громкости звука. Поэтому биения являются весьма чувствительным методом настройки в звуковом диапазоне. Если настройка не точна, то разность частот можно определить на слух, подсчитав число биений за одну секунду. В музыке на слух воспринимаются и биения высших гармонических составляющих, что применяется при настройке фортепиано (см. также ДОПЛЕРА ЭФФЕКТ).

Поглощение звуковых волн.

Интенсивность звуковых волн в процессе их распространения всегда уменьшается вследствие того, что определенная часть акустической энергии рассеивается. В силу процессов теплообмена, межмолекулярного взаимодействия и внутреннего трения звуковые волны поглощаются в любой среде. Интенсивность поглощения зависит от частоты звуковой волны и от других факторов, таких, как давление и температура среды.

Поглощение волны в среде количественно характеризуется коэффициентом поглощения a. Он показывает, насколько быстро уменьшается избыточное давление в зависимости от расстояния, проходимого распространяющейся волной. Убывание амплитуды избыточного давления –DРе при прохождении расстояния Dх пропорционально амплитуде начального избыточного давления Ре и расстоянию Dх. Таким образом,

DPe = aPeDx.

Например, когда говорят, что потери на поглощение составляют 1 дБ/м, это означает, что на расстоянии 50 м уровень звукового давления уменьшается на 50 дБ.

Поглощение вследствие внутреннего трения и теплопроводности.

При движении частиц, связанном с распространением звуковой волны, неизбежно трение между разными частицами среды. В жидкостях и газах такое трение называется вязкостью. Вязкость, которой обусловлено необратимое превращение акустической энергии волны в теплоту, является главной причиной поглощения звука в газах и жидкостях.

Кроме того, поглощение в газах и жидкостях обусловлено потерями теплоты при сжатии в волне. Мы уже говорили, что при прохождении волны газ в фазе сжатия нагревается. В этом быстропротекающем процессе тепло обычно не успевает передаваться другим областям газа или стенкам сосуда. Но в действительности данный процесс неидеален, и часть выделяющейся тепловой энергии уходит из системы. С этим связано поглощение звука вследствие теплопроводности. Такое поглощение происходит в волнах сжатия в газах, жидкостях и твердых телах.

Поглощение звука, обусловленное как вязкостью, так и теплопроводностью, обычно увеличивается пропорционально квадрату частоты. Таким образом, звуки высоких частот поглощаются гораздо сильнее, чем низкочастотные. Например, при нормальных давлении и температуре коэффициент поглощения (обусловленного обоими механизмами) на частоте 5 кГц в воздухе составляет около 3 дБ/км. Поскольку поглощение пропорционально квадрату частоты, коэффициент поглощения на частоте 50 кГц составит 300 дБ/км.

Поглощение в твердых телах.

Механизм поглощения звука вследствие теплопроводности и вязкости, имеющий место в газах и жидкостях, сохраняется и в твердых телах. Однако здесь к нему добавляются новые механизмы поглощения. Они связаны с дефектами структуры твердых тел. Дело в том, что поликристаллические твердые материалы состоят из мелких кристаллитов; при прохождении звука в них возникают деформации, приводящие к поглощению звуковой энергии. Звук рассеивается и на границах кристаллитов. Кроме того, даже в монокристаллах имеются дефекты типа дислокаций, вносящие свой вклад в поглощение звука. Дислокации – это нарушения согласования атомных плоскостей. Когда звуковая волна вызывает колебания атомов, дислокации смещаются, а затем возвращаются в исходное положение, рассеивая энергию вследствие внутреннего трения.

Поглощением за счет дислокаций объясняется, в частности, почему не звенит колокольчик из свинца. Свинец – это мягкий металл, в котором очень много дислокаций, в связи с чем звуковые колебания в нем чрезвычайно быстро затухают. Но он хорошо зазвенит, если его охладить жидким воздухом. При низких температурах дислокации «замораживаются» в фиксированном положении, а потому не смещаются и не преобразуют звуковую энергию в теплоту.

МУЗЫКАЛЬНАЯ АКУСТИКА

Музыкальные звуки.

Музыкальная акустика изучает особенности музыкальных звуков, их характеристики, связанные с тем, как мы их воспринимаем, и механизмы звучания музыкальных инструментов.

Музыкальный звук, или тон, – это периодический звук, т.е. колебания, которые снова и снова повторяются через определенный период. Выше говорилось, что периодический звук можно представить в виде суммы колебаний с частотами, кратными основной частоте f: 2f, 3f, 4f и т.д. Отмечалось также, что колеблющиеся струны и воздушные столбы издают музыкальные звуки.

Музыкальные звуки различаются по трем признакам: громкости, высоте и тембру. Все эти показатели субъективные, но их можно связать с измеряемыми величинами. Громкость связана в основном с интенсивностью звука; высота звука, характеризующая его положение в музыкальном строе, определяется частотой тона; тембр, которым один инструмент или голос отличается от другого, характеризуется распределением энергии по гармоникам и изменением этого распределения во времени.

Высота звука.

Высота музыкального звука тесно связана с частотой, но не тождественна ей, поскольку оценка высоты звука носит субъективный характер.

Так, например, установлено, что оценка высоты одночастотного звука несколько зависит от уровня его громкости. При значительном повышении уровня громкости, скажем на 40 дБ, кажущаяся частота может уменьшиться на 10%. На практике эта зависимость от громкости не имеет значения, поскольку музыкальные звуки гораздо сложнее одночастотного звука.

В вопросе о взаимосвязи между высотой тона и частотой более существенно другое: если музыкальные звуки состоят из гармоник, то с какой частотой ассоциируется воспринимаемая высота звука? Оказывается, что это может быть и не та частота, которая соответствует максимальной энергии, и не самая низкая частота в спектре. Так, например, музыкальный звук, состоящий из набора частот 200, 300, 400 и 500 Гц, воспринимается как звук высотой 100 Гц. То есть высота звука ассоциируется с основной частотой гармонического ряда, даже если ее нет в спектре звука. Правда, чаще всего основная частота в той или иной мере в спектре присутствует.

Говоря о соотношении между высотой звука и его частотой, не следует забывать об особенностях человеческого органа слуха. Это особый акустический приемник, который вносит свои искажения (не говоря уже о том, что существуют психологические и субъективные аспекты слуха). Ухо способно выделять некоторые частоты, кроме того, звуковая волна претерпевает в нем нелинейные искажения. Частотная избирательность обусловлена различием между громкостью звука и его интенсивностью (рис. 9). Труднее объяснить нелинейные искажения, которые выражаются в появлении частот, отсутствующих в исходном сигнале. Нелинейность реакции уха обусловлена асимметрией движения различных его элементов.

Одной из характерных особенностей нелинейной приемной системы является то, что при возбуждении ее звуком с частотой f1 в ней возбуждаются гармонические обертоны 2f1, 3f1,…, а в некоторых случаях и субгармоники типа 1/2 f1. Кроме того, при возбуждении нелинейной системы двумя частотами f1 и f2 в ней возбуждаются суммарная и разностная частоты f1 + f2 и f1 f2. Чем больше амплитуда исходных колебаний, тем больше вклад «лишних» частот.

Таким образом, в силу нелинейности акустических характеристик уха могут появиться частоты, отсутствующие в звуке. Такие частоты называются субъективными тонами. Предположим, что звук состоит из чистых тонов частот 200 и 250 Гц. Из-за нелинейности отклика дополнительно появятся частоты 250 – 200 = 50, 250 + 200 = 450, 2ґ200 = 400, 2ґ250 = 500 Гц и т.д. Слушающему будет казаться, что в звуке присутствует целый набор комбинационных частот, появление же их на самом деле обусловлено нелинейной реакцией уха. Когда музыкальный звук состоит из основной частоты и ее гармоник, очевидно, что основная частота эффективно усиливается разностными частотами.

Правда, как показали исследования, субъективные частоты возникают лишь при достаточно большой амплитуде исходного сигнала. Поэтому не исключено, что в прошлом роль субъективных частот в музыке сильно преувеличивалась.

Музыкальные стандарты и измерение высоты музыкального звука.

За основной тон, определяющий весь музыкальный строй, в истории музыки принимались звуки разной частоты. Сейчас общепринятая частота для ноты «ля» первой октавы составляет 440 Гц. Но в прошлом она менялась от 400 до 462 Гц.

Традиционный способ определения высоты звука – сравнение его с тоном стандартного камертона. Об отклонении частоты заданного звука от стандарта судят по наличию биений. Камертонами пользуются до сих пор, хотя теперь существуют и более удобные приборы для определения высоты звука, такие, как эталонный генератор стабильной частоты (с кварцевым резонатором), который можно плавно перестраивать в пределах всего звукового диапазона. Правда, точная калибровка такого прибора довольно сложна.

Широко распространен стробоскопический метод измерения высоты звука, при котором звук музыкального инструмента задает частоту вспышек стробоскопической лампы. Лампа освещает рисунок на диске, вращающемся с известной частотой, и по кажущейся частоте движения рисунка на диске при стробоскопическом освещении определяют основную частоту тона.

Ухо очень чувствительно к изменению высоты звука, но его чувствительность зависит от частоты. Она максимальна вблизи нижнего порога слышимости. Даже нетренированное ухо способно обнаружить разницу в частотах, равную всего лишь 0,3%, в диапазоне от 500 до 5000 Гц. Чувствительность можно повысить тренировкой. Музыканты обладают очень развитым чувством высоты звука, но оно не всегда помогает при определении частоты чистого тона, создаваемого эталонным генератором. Это говорит о том, что при определении на слух частоты звука важную роль играет его тембр.

Тембр.

Под тембром понимаются те особенности музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую специфику, даже если сравнивать звуки одинаковой высоты и громкости. Это, так сказать, качество звука.

Тембр зависит от частотного спектра звука и его изменения во времени. Он определяется несколькими факторами: распределением энергии по обертонам, частотами, возникающими в момент появления или прекращения звука (так называемыми переходными тонами) и их затуханием, а также медленной амплитудной и частотной модуляцией звука («вибрато»).

Интенсивность обертонов.

Рассмотрим натянутую струну, которая возбуждается щипком в ее средней части (рис. 15,а). Поскольку все четные гармоники имеют узлы посередине, они будут отсутствовать, и колебания будут состоять из нечетных гармоник основной частоты, равной f1 = v/2l, где v – скорость волны в струне, а l – ее длина. Таким образом, будут присутствовать только частоты f1, 3f1, 5f1 и т.д. Относительные амплитуды этих гармоник показаны на рис. 15,б.

Рис. 15. АМПЛИТУДЫ ОБЕРТОНОВ. а – струна, возбуждаемая щипком посередине; б – частотный спектр соответствующего звука, состоящий из основной частоты f1 и обертонов – нечетных гармоник с частотами 3f1, 5f1 и 7f1.

Данный пример позволяет сделать следующий важный общий вывод. Набор гармоник резонансной системы определяется ее конфигурацией, а распределение энергии по гармоникам зависит от способа возбуждения. При возбуждении струны в ее середине доминирует основная частота и полностью подавляются четные гармоники. Если же струну закрепить в ее средней части и ущипнуть в каком-нибудь другом месте, то будут подавлены основная частота и нечетные гармоники.

Все это применимо и к другим известным музыкальным инструментам, хотя в деталях ситуация может сильно отличаться. В инструментах обычно имеется воздушная полость, дека или рупор для излучения звука. Все это и обусловливает структуру обертонов и возникновение формант.

На рис. 16 показаны формы колебаний для различных инструментов и голосов, а на рис. 17 представлены некоторые частотные спектры для устойчивых тонов различных распространенных инструментов.

Рис. 16. ОСЦИЛЛОГРАММЫ КОЛЕБАНИЙ, соответствующие ноте «ля», взятой на разных инструментах и разными голосами.Рис. 17. ЧАСТОТНЫЕ СПЕКТРЫ устойчивых тонов некоторых музыкальных инструментов. В спектре флейты, корнета и трубы некоторые обертоны столь же сильны, как и основная частота, или даже сильнее.

Форманты.

Как сказано выше, качество звука музыкальных инструментов зависит от распределения энергии по гармоникам. При изменении высоты звука многих инструментов и особенно человеческого голоса распределение по гармоникам изменяется так, что основные обертоны всегда располагаются примерно в одном и том же частотном диапазоне, который называется диапазоном формант. Одной из причин существования формант является применение резонансных элементов для усиления звука, таких, как дека и воздушный резонатор. Ширина естественных резонансов обычно велика, благодаря чему эффективность излучения на соответствующих частотах выше. У медных духовых инструментов форманты определяются раструбом, из которого выходит звук. Обертоны, приходящиеся на диапазон формант, всегда сильно подчеркиваются, так как излучаются с максимальной энергией. Формантами в значительной мере определяются характерные качественные особенности звуков музыкального инструмента или голоса.

Изменение тонов во времени.

Тон звучания любого инструмента редко остается постоянным во времени, и с этим существенно связан тембр. Даже когда инструмент выдерживает долгую ноту, наблюдается небольшая периодическая модуляция частоты и амплитуды, обогащающая звук, – «вибрато». Это особенно характерно для струнных инструментов типа скрипки и для человеческого голоса.

У многих инструментов, например у фортепиано, длительность звука такова, что постоянный тон не успевает сформироваться – возбуждаемый звук быстро нарастает, а затем следует его быстрое затухание. Поскольку затухание обертонов обычно обусловлено зависящими от частоты эффектами (такими, как акустическое излучение), очевидно, что распределение по обертонам меняется на протяжении звучания тона.

Характер изменения тона во времени (быстрота нарастания и спада звука) для некоторых инструментов схематически показан на рис. 18. Как нетрудно видеть, у струнных инструментов (щипковых и клавишных) постоянный тон практически отсутствует. В таких случаях говорить о спектре обертонов можно лишь условно, поскольку звук быстро меняется во времени. Характеристики нарастания и спада – тоже важная составляющая тембра таких инструментов.

Рис. 18. ИЗМЕНЕНИЕ ВО ВРЕМЕНИ, а именно нарастание и спад звука, издаваемого некоторыми инструментами. В случае струн, возбуждаемых щипком или ударом, и барабана звук начинает замирать сразу же после его возбуждения.

Переходные тона.

Гармонический состав тона обычно быстро изменяется за короткое время после возбуждения звука. В тех инструментах, в которых звук возбуждается ударом по струнам или щипком, энергия, приходящаяся на высшие гармоники (а также на многочисленные негармонические составляющие), максимальна сразу же после начала звучания, а через доли секунды эти частоты замирают. Такие звуки, называемые переходными, придают специфическую окраску звуку инструмента. В фортепиано они обусловлены действием молоточка, ударяющего по струне. Иногда музыкальные инструменты с одинаковой структурой обертонов можно различить только по переходным тонам.

ЗВУЧАНИЕ МУЗЫКАЛЬНЫХ ИНСТРУМЕНТОВ

Музыкальные звуки можно возбуждать и изменять разными способами, в связи с чем музыкальные инструменты отличаются разнообразием форм. Инструменты большей частью создавались и совершенствовались самими музыкантами и искусными мастерами, не прибегавшими к научной теории. Поэтому акустическая наука не может объяснить, например, почему скрипка имеет такую форму. Однако вполне возможно описать свойства звука скрипки, исходя из общих принципов игры на ней и ее конструкции.

Под частотным диапазоном инструмента обычно понимают диапазон частот его основных тонов. Человеческий голос перекрывает примерно две октавы, а музыкальный инструмент – не менее трех (большой орган – десять). В большинстве случаев обертоны простираются до самой границы диапазона слышимого звука.

У музыкальных инструментов имеются три основные части: колеблющийся элемент, механизм для его возбуждения и вспомогательный резонатор (рупор или дека) для акустической связи между колеблющимися элементом и окружающим воздухом.

Музыкальный звук периодичен во времени, а периодические звуки состоят из ряда гармоник. Поскольку собственные частоты колебаний струн и воздушных столбов фиксированной длины гармонически связаны между собой, во многих инструментах основными колеблющимися элементами служат струны и воздушные столбы. За небольшим исключением (флейта – одно из них) на инструментах нельзя взять одночастотного звука. При возбуждении основного вибратора возникает звук, содержащий обертоны. У некоторых вибраторов резонансные частоты не являются гармоническими составляющими. Инструменты такого рода (например, барабаны и тарелки) используются в оркестровой музыке для особой выразительности и подчеркивания ритма, но не для мелодического развития.

Струнные инструменты.

Сама по себе колеблющаяся струна – плохой излучатель звука, а поэтому у струнного инструмента должен быть дополнительный резонатор для возбуждения звука заметной интенсивности. Это может быть замкнутый объем воздуха, дека или комбинация того и другого. Характер звучания инструмента определяется также способом возбуждения струн.

Ранее мы видели, что основная частота колебаний закрепленной струны длины L дается выражением

где Т – сила натяжения струны, а rLмасса единицы длины струны. Следовательно, мы можем изменять частоту тремя способами: изменяя длину, натяжение или массу. Во многих инструментах используется небольшое число струн одинаковой длины, основные частоты которых определяются надлежащим выбором натяжения и массы. Прочие частоты получаются путем укорачивания длины струны пальцами.

В других инструментах, в частности в фортепиано, для каждой ноты предусматривается одна из многих предварительно настроенных струн. Настроить фортепиано, где диапазон частот велик, – задача непростая, особенно в области низких частот. Сила натяжения всех струн фортепиано практически одинакова (примерно 2 кН), а разнообразие частот достигается изменением длины и толщины струн.

Возбуждение струнного инструмента может осуществляться щипком (например, на арфе или банджо), ударом (на фортепиано), либо при помощи смычка (в случае музыкальных инструментов семейства скрипок). Во всех случаях, как было показано выше, число гармоник и их амплитуда зависят от способа возбуждения струны.

Фортепиано.

Типичным примером инструмента, где возбуждение струны производится ударом, является фортепиано. Большая дека инструмента обеспечивает широкий диапазон формант, поэтому тембр его очень однороден для любой возбуждаемой ноты. Максимумы главных формант приходятся на частоты порядка 400–500 Гц, а на низших частотах тоны особенно богаты гармониками, причем амплитуда основной частоты меньше, чем некоторых обертонов. В фортепиано удар молоточком на всех, кроме самых коротких, струнах приходится на точку, расположенную на расстоянии в 1/7 длины струны от одного из ее концов. Это обычно объясняется тем, что в данном случае значительно подавляется седьмая гармоника, диссонансная по отношению к основной частоте. Но вследствие конечной ширины молоточка подавляются и другие гармоники, расположенные вблизи седьмой.

Скрипичное семейство.

В скрипичном семействе инструментов долгие звуки извлекаются смычком, с помощью которого к струне прикладывается переменная вынуждающая сила, поддерживающая колебания струны. Под действием движущегося смычка струна за счет трения отводится в сторону, пока из-за увеличения силы натяжения не срывается. Вернувшись в исходное положение, она снова увлекается смычком. Этот процесс повторяется, так что на струну действует периодическая внешняя сила.

В порядке увеличения размеров и понижения частотного диапазона основные смычковые струнные инструменты располагаются следующим образом: скрипка, альт, виолончель, контрабас. Частотные спектры этих инструментов особенно богаты обертонами, что, несомненно, придает особую теплоту и выразительность их звучанию. В скрипичном семействе колеблющаяся струна акустически связана с воздушной полостью и корпусом инструмента, которыми в основном и определяется структура формант, занимающих весьма широкий частотный диапазон. Крупные представители скрипичного семейства имеют набор формант, смещенный в область низких частот. Поэтому одна и та же нота, взятая на двух инструментах скрипичного семейства, приобретает разную тембровую окраску из-за различия в структуре обертонов.

Скрипка имеет резко выраженный резонанс вблизи 500 Гц, обусловленный формой ее корпуса. Когда берется нота, частота которой близка к этому значению, может возникнуть нежелательный вибрирующий звук, называемый «волчьим тоном». Воздушная полость внутри скрипичного корпуса тоже имеет свои резонансные частоты, главная из которых расположена вблизи 400 Гц. Из-за своей особой формы скрипка обладаеь многочисленными тесно расположенными резонансами. Все они, кроме волчьего тона, не очень выделяются в общем спектре извлекаемого звука.

Духовые инструменты.

Деревянные духовые инструменты.

О собственных колебаниях воздуха в цилиндрической трубе конечной длины говорилось ранее. Собственные частоты образуют ряд гармоник, основная частота которого обратно пропорциональна длине трубы. Музыкальные звуки в духовых инструментах возникают благодаря резонансному возбуждению столба воздуха.

Колебания воздуха возбуждаются либо колебаниями в воздушной струе, падающей на острый край стенки резонатора, либо колебаниями гибкой поверхности язычка в воздушном потоке. В обоих случаях в локализованной области ствола инструмента возникают периодические изменения давления.

Первый из этих способов возбуждения основан на возникновении «краевых тонов». Когда из щели выходит поток воздуха, разбиваемый клинообразным препятствием с острым краем, периодически возникают вихри – то по одну, то по другую сторону клина. Частота их образования тем больше, чем больше скорость воздушного потока. Если такое устройство акустически связано с резонирующим воздушным столбом, то частота краевого тона «захватывается» резонансной частотой воздушного столба, т.е. частота образования вихрей определяется воздушным столбом. В таких условиях основная частота воздушного столба возбуждается только тогда, когда скорость воздушного потока превысит некоторое минимальное значение. В определенном интервале скоростей, превышающих это значение, частота краевого тона равна этой основной частоте. При еще большей скорости воздушного потока (вблизи той, при которой краевая частота в отсутствие связи с резонатором равнялась бы второй гармонике резонатора) краевая частота скачком удваивается и высота тона, испускаемого всей системой, оказывается на октаву выше. Это называется передувом.

Краевыми тонами возбуждаются воздушные столбы в таких инструментах, как орган, флейта и флейта-пикколо. При игре на флейте исполнитель возбуждает краевые тона, дуя сбоку в боковое отверстие вблизи одного из концов. Ноты одной октавы, начиная с «ре» и выше, получают за счет изменения эффективной длины ствола, открывая боковые отверстия, при нормальном краевом тоне. Более высокие же октавы получают передувом.

Другой способ возбуждения звучания духового инструмента основан на периодическом прерывании воздушного потока колеблющимся язычком, который называется тростью, так как изготавливается из тростника. Такой способ применяется в различных деревянных и медных духовых инструментах. Возможны варианты с одиночной тростью (как, например, в кларнете, саксофоне и инструментах типа гармони) и с симметричной двойной тростью (как, например, в гобое и фаготе). В обоих случаях колебательный процесс одинаков: воздух продувается через узкую щель, в которой давление в соответствии с законом Бернулли понижается. Трость при этом втягивается в щель и перекрывает ее. В отсутствие потока упругая трость выпрямляется и процесс повторяется.

В духовых инструментах перебор нот звукоряда, как и на флейте, осуществляется открыванием боковых отверстий и передувом.

В отличие от трубы, открытой с обоих концов, имеющей полный набор обертонов, труба, открытая только с одного конца, имеет только нечетные гармоники (см. выше). Такова конфигурация кларнета, а потому четные гармоники у него слабо выражены. Передув в кларнете происходит при частоте, в 3 раза превышающей основную.

В гобое вторая гармоника весьма интенсивна. Он отличается от кларнета тем, что канал его ствола имеет коническую форму, тогда как в кларнете сечение канала на большей части его длины постоянно. Частоты колебаний в стволе конической формы труднее рассчитать, чем в цилиндрической трубе, но все же там имеется полный набор обертонов. При этом частоты колебаний конической трубы с закрытым узким концом такие же, как и у цилиндрической трубы, открытой с обоих концов.

Медные духовые инструменты.

Медные, в том числе валторна, труба, корнет-а-пистон, тромбон, горн и туба, возбуждаются губами, действие которых в сочетании с мундштуком особой формы аналогично действию двойной трости. Давление воздуха при возбуждении звука здесь значительно выше, чем в деревянных духовых. Медные духовые, как правило, представляют собой металлический ствол с цилиндрической и конической секциями, заканчивающийся раструбом. Секции подобраны так, что обеспечивается полный спектр гармоник. Полная длина ствола лежит в пределах от 1,8 м для трубы до 5,5 м для тубы. Туба закручена в виде улитки для удобства в обращении, а не из акустических соображений.

При фиксированной длине ствола в распоряжении исполнителя имеются только ноты, определяемые собственными частотами ствола (причем основная частота обычно «неберущаяся»), а высшие гармоники возбуждаются повышением давления воздуха в мундштуке. Так, на горне фиксированной длины можно взять лишь несколько нот (вторую, третью, четвертую, пятую и шестую гармоники). На других медных инструментах частоты, лежащие между гармониками, берутся с изменением длины ствола. Уникален в этом смысле тромбон, длина ствола которого регулируется плавным перемещением выдвижной U-образной кулисы. Перебор нот всего звукоряда обеспечивается семью разными позициями кулисы с изменением возбуждаемого обертона ствола. В других медных инструментах это достигается путем эффективного увеличения полной длины ствола при помощи трех боковых каналов разной длины и в разных комбинациях. Это дает семь разных длин ствола. Как и на тромбоне, ноты всего звукоряда берутся возбуждением разных серий обертонов, соответствующих этим семи длинам ствола.

Тоны всех медных инструментов богаты гармониками. Это объясняется в основном наличием раструба, повышающего эффективность излучения звука на высоких частотах. Труба и валторна предназначены для игры в гораздо более широком диапазоне гармоник, чем у горна. Партия солирующей трубы в произведениях И.Баха содержит много пассажей в четвертой октаве ряда, доходящих до 21-й гармоники этого инструмента.

Ударные инструменты.

Ударные инструменты заставляют звучать, ударяя по телу инструмента и тем самым возбуждая его свободные колебания. От фортепиано, в котором колебания возбуждаются тоже ударом, такие инструменты отличаются в двух отношениях: колеблющееся тело не дает гармонических обертонов и оно само может излучать звук без дополнительного резонатора. К ударным инструментам относятся барабаны, тарелки, ксилофон и треугольник.

Колебания твердых тел гораздо сложнее, чем воздушного резонатора той же формы, поскольку в твердых телах больше типов колебаний. Так, вдоль металлического стержня могут распространяться волны сжатия, изгиба и кручения. Поэтому у цилиндрического стержня гораздо больше мод колебаний и, следовательно, резонансных частот, чем у цилиндрического воздушного столба. Кроме того, эти резонансные частоты не образуют гармонический ряд. В ксилофоне используются изгибные колебания твердых брусков. Отношения обертонов колеблющегося бруска ксилофона к основной частоте таковы: 2,76, 5,4, 8,9 и 13,3.

Камертон представляет собой колеблющийся изогнутый стержень, причем основной его вид колебаний возникает, когда оба плеча одновременно сближаются друг с другом или удаляются друг от друга. У камертона нет гармонического ряда обертонов, и используется только его основная частота. Частота его первого обертона более чем в 6 раз превышает основную частоту.

Еще один пример колеблющегося твердого тела, издающего музыкальные звуки, – колокол. Размеры колоколов могут быть разными – от маленького колокольчика до многотонных церковных колоколов. Чем больше колокол, тем ниже звуки, которые он издает. Форма и другие особенности колоколов претерпели много изменений в ходе их многовековой эволюции. Их изготовлением, требующим большого мастерства, занимаются очень немногие предприятия.

Первоначальный обертонный ряд колокола не является гармоническим, причем отношения обертонов неодинаковы для разных колоколов. Так, например, для одного большого колокола измеренные отношения частот обертонов к основной частоте составили 1,65, 2,10, 3,00, 3,54, 4,97 и 5,33. Но распределение энергии по обертонам быстро изменяется сразу после удара по колоколу, и, по-видимому, форма колокола подбирается таким образом, чтобы доминирующие частоты были связаны между собой приблизительно гармонически. Высота тона колокола определяется не основной частотой, а нотой, доминирующей сразу же после удара. Она соответствует примерно пятому обертону колокола. Спустя некоторое время в звуке колокола начинают преобладать низшие обертоны.

В барабане колеблющимся элементом служит кожаная мембрана, обычно круглая, которую можно рассматривать как двумерный аналог натянутой струны. В музыке барабан не имеет столь важного значения, как струна, поскольку естественный набор его собственных частот не является гармоническим. Исключение составляет литавра, мембрана которой натянута над воздушным резонатором. Последовательность обертонов барабана можно сделать гармонической за счет изменения толщины мембраны в радиальном направлении. Примером такого барабана может служить табла, используемая в классической индийской музыке.
ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ; УЛЬТРАЗВУК; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ.

Добавить комментарий