Как найти смещение луча в плоскопараллельной пластине

Принцип Гюйгенса:

Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту  фронта действительно распространяющейся волны.

Закон отражения:

  • отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;
  • угол падения  α  равен углу отражения  γ:   

α = γ

otr

Вывод на основе принципа Гюйгенса: 

Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.

Для прохождения волной расстояния ВС требуется время Δt BC/υЗа это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен:  υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DCа направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отраженияугол падения  α  равен углу отражения  γ.

Otragenie

img DiK818

Закон преломления (закон Снелиуса):

  • луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

0009 013 Zakony geometricheskoj optiki pl par    Prel

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью  с, падает на границу раздела со средой, в которой скорость ее распространения равна v.

Prel1

      Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔtЗа это же время фронт волны, возбуждаемой точкой А в среде со скоростью uдостигнет точек полусферы, радиус которой AD = tПоложение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DCа направление ее распространения – лучом IIIИз рис. видно, что

        ,       т.е.        .

      Отсюда следует закон Снелиуса:

Prel2

Принцип Ферма: свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела

Ferma

 В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:

 .

      Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

 ,

      отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса:    .

 Следствия из принципа Ферма:

1. Обратимость световых лучейесли обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

2. Если свет распространяется из среды с большим показателем преломления n1  (оптически более плотной) в среду с меньшим показателем преломления n2  (оптически менее плотной) ( n1  > n2 )например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:

Prel3

3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным  π/2.

Полное отражение

Угол αпр  называется предельным углом полного отражения. При углах падения α > αпр  весь падающий свет полностью отражается.

По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

Если α = αпр , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего.

Таким образом, при углах падения в пределах от αпр  до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы.  Это явление называется полным отражением.

Poln otr

В случае, если вторая среда – воздух

Poln otr1

polnoe otragenie

Преломление света в плоскопараллельной пластине

Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.

Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величинуδL относительно исходного луча

image062

Величина смещения в плоскопараллельной пластине

Величина сдвига луча света δL зависит:

  • от угла падения света α,
  • от толщины пластины d,
  • от показателя преломления вещества, из которого изготовлена плоскопараллельная пластина n.

C увеличением любого из этих параметров смещение луча света увеличивается.

Smesch

Смещение луча можно выразить через угол падения

 Smesch1

Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:

  1. угол падения равен нулю: α = 0,
  2. относительный показатель преломления равен единице (преломления не происходит): n = 1 ,
  3. толщина пластины равна нулю: d = 0 

Ход луча через треугольную призму

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.

prisma1

На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом. 

Если световой луч падает на преломляющую грань призмы под произвольным углом, то угол отклонения луча призмой определяется формулой

Delta

Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярнопреломляющей грани призмы), то угол отклонения луча призмой определяется формулой

 Delta1

Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.

Light dispersion conceptual waves

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.

   arrow left                                     arrow right

В курсе школьной физики изучаются две преломляющие системы:

  • плоскопараллельная пластинка
  • призма

Плоскопараллельной пластинкой называется оптически прозрачная система (параллелепипед с двумя параллельными гранями). Расстояние между этими двумя плоскостями достаточно мало (рис. 1).

Плоскопараллельная пластинка

Рис. 1. Плоскопараллельная пластинка

Пусть дана плоскопараллельная пластинка шириной displaystyle S и точечный источник displaystyle {{n}_{2}}, из материала с показателем преломления displaystyle {{n}_{1}}. Данная плоскопараллельная пластинка помещена в среду с показателем преломления displaystyle {{alpha }_{1}}. От источника под углом displaystyle {{alpha }_{1}} к вертикали падает луч света (на границу раздела сред 1/2). В точке А происходит преломление луча. Далее луч, распространяющийся внутри пластины, падает на вторую границу раздела (в данном случае, 2/1). В точке В также происходит преломление, и луч выходит из системы. Проанализируем ход луча:

  • преломление в точке А можно описать законом Снеллиуса:

displaystyle {{n}_{1}}sin {{alpha }_{1}}={{n}_{2}}sin {{alpha }_{2}} (1)

  • за счёт параллельных граней пластинки, в точку В луч падает под тем же углом displaystyle {{alpha }_{2}} (накрест лежащие углы)
  • преломление в точке В также можно описать законом Снеллиуса:

displaystyle {{n}_{2}}sin {{alpha }_{2}}={{n}_{1}}sin {{alpha }_{3}} (2)

Т.е. анализ прохождения луча основывается на законах преломления. Избавимся в соотношениях (1) и (2) от параметров второй среды (пластинки), тогда:

displaystyle {{n}_{1}}sin {{alpha }_{1}}={{n}_{1}}sin {{alpha }_{3}} (3)

Или, сократив:

displaystyle sin {{alpha }_{1}}=sin {{alpha }_{3}} (4)

Из соотношения (4) можно сделать вывод, что displaystyle {{alpha }_{1}}={{alpha }_{3}}, что говорит о том, что луч, проходя плоскопараллельную пластинку, выходит из неё под тем же углом (угол падения на пластинку равен углу выхода из пластинки). Таким образом, плоскопараллельная пластинка не меняет направления распространения луча, а смещает его. Для характеристики смещения луча относительно первоначального направления — displaystyle x (рис. 2).

Призмой называется оптически прозрачная система в форме геометрического тела — призмы, которая имеет плоские полированные грани, через которые входит и выходит свет.

Призма

Рис. 2. Призма

Одним из параметров призмы являются преломляющий угол призмы (displaystyle alpha ) — угол между гранями на призмы, на одну из которых луч света падает, с другой грани уходит. В основном, задачи на призму касаются угла отклонения луча (displaystyle alpha ), т.е. угла между падающим лучом (его продолжением) и лучом, выходящим из призмы (его продолжением). Тогда для призмы выведено соотношение:

displaystyle alpha =i+r-varphi (5)

Вывод: для оптических систем достаточно прорисовать ход лучей через систему (исходя из законов преломления). А далее, с помощью рисунка, найти необходимые в задаче элементы чаще всего с помощью закона Снеллиуса и геометрических соотношений.

2017-04-30   comment

Определить смещение луча после прохождения через плоскопараллельную стеклянную пластинку толщиной $d = 6 см$, имеющую показатель преломления $n = 1,6$. Угол падения луча на пластинку $alpha = 60^{ circ}$.


Решение:

АВ – падающий на пластинку луч, ВN – перпендикуляр в точке падения, $alpha$ – угол падения, ВС – преломленный луч, $beta$ – угол преломления. СМ – перпендикуляр в точке падения луча на нижнюю грань пластинки. Так как $CM parallel BN$, то луч падает на нижнюю грань пластинки под углом $beta$. На основании обратимости хода световых лучей можно утверждать, что он выходит из пластинки под углом $alpha$. Итак, $AB parallel CD$, однако происходит смещение луча на расстояние $CF ( CF perp AB)$. Запишем закон преломления в точке В:

$frac{ sin alpha}{ sin beta} = n Rightarrow sin beta = frac{ sin alpha }{n} Rightarrow sin beta = 0,54 Rightarrow beta = 32,8^{ circ}$.

$angle KBF = angle ABN = alpha$ (вертикальные углы), поэтому $angle CBF = alpha – beta$. Из $Delta CBK: BC = frac{BK}{ cos beta} = frac{d}{ cos beta}$. Из $Delta CBF$ смещение луча $CF = BC sin angle CBF = frac{d sin ( alpha – beta)}{ cos beta} = 3,3 см$.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,660
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,971
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Содержание:

Прохождение света через плоскопараллельные пластинки и призмы:

Законы отражения и преломления света широко используются для управления ходом световых пучков. Для отражения света в приборах применяются зеркала и призмы, для преломления — призмы, плоскопараллельные пластинки, линзы.

Зеркала, призмы, пластинки и линзы являются элементами, комбинируя которые, создают различные оптические приборы. Рассмотрим отдельные элементы оптических приборов.

Плоскопараллельная пластинка

Рассмотрим ход луча в плоскопараллельной пластинке. На рисунке 77 показан ход светового луча в плоскопараллельной пластинке толщиной Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Согласно закону преломления на первой и второй границах раздела для луча, падающего под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами на первую границу, имеем:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Здесь Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол преломления на первой границе, Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол падения луча на вторую границу, Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол преломления на второй границе, Прохождение света через плоскопараллельные пластинки и призмы с примерами — абсолютный показатель преломления вещества пластинки.

Накрест лежащие углы Прохождение света через плоскопараллельные пластинки и призмы с примерами при параллельных прямых Прохождение света через плоскопараллельные пластинки и призмы с примерами (перпендикулярах к первой и второй параллельным границам) равны, т. е. Прохождение света через плоскопараллельные пластинки и призмы с примерами Следовательно, Прохождение света через плоскопараллельные пластинки и призмы с примерами Откуда следует, что

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Таким образом, луч света, проходя через плоскопараллельную пластинку, с обеих сторон которой находится одна и та же среда, смещается параллельно своему начальному направлению на некоторое расстояние Прохождение света через плоскопараллельные пластинки и призмы с примерами

Соответственно, все предметы, если смотреть на них сквозь прозрачную плоскопараллельную пластинку под углом, не равным нулю, будут также казаться смещенными.

Найдем, от каких параметров пластинки зависит смещение Прохождение света через плоскопараллельные пластинки и призмы с примерами луча. Из Прохождение света через плоскопараллельные пластинки и призмы с примерами следует, что

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из Прохождение света через плоскопараллельные пластинки и призмы с примерами имеем:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Отсюда:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

С учетом закона преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами и тригонометрического тождества Прохождение света через плоскопараллельные пластинки и призмы с примерами находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Расстояние Прохождение света через плоскопараллельные пластинки и призмы с примерами между направлениями входящего и выходящего лучей можно определить из соотношения
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Как видно из соотношения (2), смещение Прохождение света через плоскопараллельные пластинки и призмы с примерами луча при данном угле падения Прохождение света через плоскопараллельные пластинки и призмы с примерами зависит от толщины Прохождение света через плоскопараллельные пластинки и призмы с примерами пластинки и ее показателя преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами

Трехгранная призма

Рассмотрим ход луча в трехгранной призме. Пусть световой луч Прохождение света через плоскопараллельные пластинки и призмы с примерами падает под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами на боковую грань трехгранной призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами сечение которой показано на рисунке 78. Призма, изготовленная из вещества с абсолютным показателем преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами находится в среде с абсолютным показателем преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами Угол Прохождение света через плоскопараллельные пластинки и призмы с примерами при вершине Прохождение света через плоскопараллельные пластинки и призмы с примерами называется преломляющим углом призмы. Грани призмы, образующие преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами называются преломляющими. Грань, лежащая напротив преломляющего угла, называется основанием призмы.

Пусть луч Прохождение света через плоскопараллельные пластинки и призмы с примерами лежат в одной плоскости — плоскости листа книги. Из закона преломления света находим угол преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Если показатель призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами то преломленный луч Прохождение света через плоскопараллельные пластинки и призмы с примерами падает на вторую боковую грань призмы под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами Полного отражения на второй преломляющей грани не происходит при условии Прохождение света через плоскопараллельные пластинки и призмы с примерами и луч выходит из призмы под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами Его находим из закона преломления:
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Отклонение от начального направления луча Прохождение света через плоскопараллельные пластинки и призмы с примерами вследствие преломлений на гранях призмы определяется углом Прохождение света через плоскопараллельные пластинки и призмы с примерами (см. рис. 78). Угол Прохождение света через плоскопараллельные пластинки и призмы с примерами между направлениями входящего и выходящего лучей называется углом отклонения.

Рассмотрим Прохождение света через плоскопараллельные пластинки и призмы с примерами С учетом того, что Прохождение света через плоскопараллельные пластинки и призмы с примерами по теореме о внешнем угле треугольника находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Применим эту же теорему к Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из формул (5) и (6) определим связь угла падения Прохождение света через плоскопараллельные пластинки и призмы с примерами угла преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами с преломляющим углом Прохождение света через плоскопараллельные пластинки и призмы с примерами призмы и углом отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами выходящего луча от начального направления:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

В результате получим систему уравнений (3), (4), (5), (7):

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Система уравнений (8) позволяет решить задачу на прохождение луча света через трехгранную призму без полного отражения на ее гранях.

  • Заказать решение задач по физике

Если угол падения Прохождение света через плоскопараллельные пластинки и призмы с примерами на грань призмы и преломляющий угол призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами малы, то малыми будут и углы Прохождение света через плоскопараллельные пластинки и призмы с примерами Поэтому в законах преломления (3) и (4) отношение синусов можно заменить отношением углов, выраженных в радианах, т. е.:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Подставляя полученные выражения для Прохождение света через плоскопараллельные пластинки и призмы с примерами в соотношение (7), находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из соотношения (9) следует, что, во-первых: чем больше преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами тем больше угол отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами лучей призмой; во-вторых, угол отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами лучей увеличивается с ростом абсолютного показателя преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами вещества призмы. Как видно из рисунка 78, луч света, проходя через трехгранную призму, отклоняется к ее утолщенной части, если абсолютный показатель преломления вещества призмы больше абсолютного показателя преломления окружающей среды Прохождение света через плоскопараллельные пластинки и призмы с примерами

Пример решения задачи

Определите наименьший преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами стеклянной призмы, находящейся в воздухе, при котором луч, падающий нормально на грань призмы, не выйдет через ее вторую боковую грань (рис. 79). Показатель преломления стекла призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Дано: 

Прохождение света через плоскопараллельные пластинки и призмы с примерами
Прохождение света через плоскопараллельные пластинки и призмы с примерами

Решение:

Запишем условие полного отражения на боковой грани Прохождение света через плоскопараллельные пластинки и призмы с примерами
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Вследствие того, что Прохождение света через плоскопараллельные пластинки и призмы с примерами как углы с взаимно перпендикулярными сторонами:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Ответ: Прохождение света через плоскопараллельные пластинки и призмы с примерами

  • Поляризация света
  • Линзы в физике
  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Электромагнитная природа света
  • Интерференция света
  • Дифракция света
  • Принцип Гюйгенса — Френеля

Добавить комментарий