Как найти смежные углы если они неизвестны

Как найти смежный угол

Плоским углом называют фигуру, образованную двумя лучами, исходящими из одной точки. Эта точка называется вершиной угла, а лучи – его сторонами. Если один из лучей продолжить за его начальную точку, то есть сделать прямой линией, то его продолжение образует со вторым лучом еще один угол – он называется смежным. Так как стороны угла равнозначны и продолжить можно любую из них, у каждого угла есть по два смежных.

Как найти смежный угол

Инструкция

Если вам известна величина основного угла (α) в градусах, рассчитать градусную меру любого из пары смежных (α₁ и α₂) будет очень просто. Каждый из них дополняет основной угол до развернутого, то есть равного 180°, поэтому для их нахождения вычтите из этого числа известную величину основного угла α₁ = α₂ = 180°-α.

Величина исходного угла может быть приведена в радианах. Если и результат нужно получить в этих единицах, исходите из того, что развернутому углу соответствует количество радиан, равное числу Пи. Значит, формулу вычисления можно записать в таком виде: α₁ = α₂ = π-α.

Вместо градусной или радианной меры основного угла в условиях может быть дано соотношение величин основного и смежного углов. В этом случае составьте уравнение пропорции. Например, обозначьте через Y величину доли пропорции, относящуюся к основному углу, через X – относящуюся к смежному, а количество градусов, приходящееся на каждую единицу пропорции, обозначьте через k. Тогда общую формулу можно будет записать так: k*X+k*Y=180° или k*(X+Y)=180°. Выразите из нее общий множитель: k=180°/(X+Y). Затем рассчитайте величину смежного угла, умножив полученный коэффициент на долю этого угла в заданной пропорции: k*X = 180°/(X+Y)*X. Например, если это соотношение равно 5/13, величина смежного угла должна составлять 180°/(5+13)*13 = 10°*13 = 130°.

Если в исходных условиях ничего не сказано об основном угле, но дана величина вертикального угла, для вычисления смежных углов используйте формулы двух предыдущих шагов. Согласно определению вертикальный угол образуется двумя лучами, исходящими из той же точки, что и лучи основного угла, но направленными в строго противоположные стороны. Это значит, что градусная или радианная мера основного и вертикального угла равны, а значит, равны и величины смежных им углов.

Видео по теме

Источники:

  • как найти смежный угол в треугольнике если

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Смежные углы в геометрии

15 июня 2022

Два угла называются смежными, если у них общая вершина, общая сторона, а две других стороны образуют прямую.

В этом уроке:

  1. Что такое смежные углы
  2. Основное свойство смежных углов
  3. Биссектрисы смежных углов
  4. Тренировочные задачи

Это довольно простая, но очень важная тема.

1. Что такое смежные углы

Возьмём прямую $AB$ и отметим на ней точку $M$. Получим развёрнутый угол $AMB:$

Развёрнутый угол

Проведём из точки $M$ луч $MN$, не совпадающий с лучами $MA$ и $MB$.

Смежный угол

Получим два новых угла: $angle AMN$ и $angle BMN$. Эти углы и называются смежными.

Определение. Два угла называются смежными, если у них одна общая сторона, а две других образуют прямую (или, что то же самое, являются дополнительными лучами).

Обратите внимание: чтобы углы стали смежными, им недостаточно просто иметь общую сторону. Вот эти углы — не смежные, хотя они и имеют общую сторону:

Углы с общей стороной

А вот дальше — смежные, хотя и расположены немного непривычно:

Нестандартные смежные углы

Часто смежные углы возникают в точке пересечения прямых. Например, при пересечении двух прямых

Пересечение двух прямых

образуется четыре пары смежных углов: $angle ASM$ и $angle ASN$; $angle BSM$ и $angle MSN$; $angle ASN$ и $angle BSN$; наконец, $angle ASM$ и $angle BSM$.

2. Основное свойство внешних углов

У смежных углов есть замечательное свойство, которое будет преследовать нас на протяжении всей геометрии, до конца 11 класса.

Теорема. Сумма смежных углов равна 180°.

Доказательство. Рассмотрим смежные углы $AMN$ и $BMN$ с общей стороной $MN$:

Смежный угол

Поскольку луч $MN$ делит угол $AMB$ на смежные углы $AMN$ и $BMN$, по основному свойству углов

[angle AMB=angle AMN+angle BMN]

Но угол $AMB$ — развёрнутый, поэтому

[angle AMN+angle BMN={180}^circ ]

Другими словами, если один угол равен $alpha $, то смежный с ним равен ${180}^circ -alpha $. Или если известно, что углы $alpha $ и $beta $ — смежные, то $alpha +beta ={180}^circ $.

Казалось бы, элементарные рассуждения, но их вполне достаточно, чтобы решать большой класс задач.

Задача 1. Найдите угол, смежный с углом $ABC$, если:

  1. $angle ABC={36}^circ $.
  2. $angle ABC={121}^circ $.

Решение

1) Обозначим смежный угол $DBC=x$. Он будет тупым:

Смежный угол 36 градусов

Тогда $x=180-36=144$.

2) Обозначим смежный угол $DBC=x$. Он будет острым:

Смежный угол 121 градус

Тогда $x=180-121=59$.

Немного усложним задачу.

Задача 2. Найдите смежные углы, если:

  1. один из них на 68° больше другого.
  2. один из них в 5 раз больше другого.
  3. их градусные меры относятся как 5 : 4.

Решение.

1) Пусть один из углов равен $x$. Тогда другой (очевидно, больший) будет равен $x+68$.

Один смежный угол на 68 больше другого

Поскольку углы смежные, их сумма равна 180 градусов:

[begin{align}2x+68&=180 \ 2x&=112 \ x&=56 end{align}]

Итак, один угол равен 56 градусов. Тогда другой равен $x+68=124$ градуса.

2) Пусть меньший угол равен $x$. Тогда смежный с ним равен $5x$.

Один смежный угол в 5 раз больше другого

Сумма смежных углов равна 180 градусов, поэтому

[begin{align}5x+x&=180 \ 6x&=180 \ x&=30 end{align}]

Мы нашли меньший угол — он равен 30 градусов. Тогда второй угол равен $5x=150$ градусов.

3) В задачах с отношениями величинам удобно обозначать их кратными некоторой переменной. Например, если углы относятся как 5 к 4, то пусть величина одного угла будет $5x$, а другого — $4x$.

Смежные углы относятся как 5 к 4

Сумма смежных углов вновь равна 180 градусов:

[begin{align}5x+4x&=180 \ 9x&=180 \ x&=20 end{align}]

Поэтому сами углы равны $4x=80$ и $5x=100$ градусов.

3. Биссектрисы смежных углов

Вновь рассмотрим смежные углы $AMN$ и $BMN$:

Смежный угол

Построим биссектрису $MC$ угла $AMN$ и биссектрису $MD$ угла $BMN$:

Биссектрисы смежных углов

Если $angle AMC=x$ и $angle BMD=y$, то $angle AMN=2x$ и $angle BMN=2y$. Это смежные углы, поэтому

[begin{align}2x+2y&={180}^circ \ x+y&={90}^circ end{align}]

Получается, что биссектрисы смежных углов всегда пересекаются под углом 90°. Этот факт известен далеко не всем ученикам. Хотя он вполне может встретиться, например, на ЕГЭ.

Задача 3. Углы $ABC$ и $MBC$ смежные, $angle ABC={70}^circ $. Луч $BD$ принадлежит углу $ABC$, причём $angle ABD={40}^circ $. Найдите угол между биссектрисами углов $CBD$ и $MBC$.

Решение. Изобразим все углы на рисунке:

Смежный угол 40 и биссектрисы

Видим, что углы $ABD$ и $MBD$ — смежные. Следовательно

[begin{align}angle MBD&={180}^circ -angle ABD= \ &={180}^circ -{40}^circ ={140}^circ end{align}]

Синим цветом отмечены биссектрисы углов $CBD$ и $MBC$. Обозначим величину углов переменными: $angle CBD=2x$, $angle MBD=2y$. Но $angle MBD=angle MBC+angle CBD$, поэтому

[begin{align}2x+2y&=140 \ x+y&=70 end{align}]

Это и есть искомый угол между биссектрисами. Он равен 70 градусов.

Задача 4. Дан треугольник $ABC$. Лучи $AM$ и $CN$ лежат на одной прямой со стороной $AB$ (см. рисунок). Известно, что $angle MAC+angle ABC={180}^circ $. Докажите, что $angle MAC=angle NBC$.

Треугольник ABC и смежные углы

Пусть $angle ABC=x$. Тогда из условия следует, что $angle MAC={180}^circ -x$.

С другой стороны, углы $ABC$ и $NBC$ смежные, поэтому $angle NBC={180}^circ -x$.

Получается, что углы $MAC$ и $NBC$ равны одному и тому же выражению. Следовательно, $angle MAC=angle NBC$, что и требовалось доказать.

Смотрите также:

  1. Что такое вертикальные углы
  2. Перпендикулярные прямые — определение и свойства
  3. Правила комбинаторики в задаче B6
  4. Метод координат в пространстве
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Задача B4 про три дороги — стандартная задача на движение

Шаг за шагом: разбираемся, как найти неизвестный угол при заданном отношении смежных углов

В геометрии существует множество методов для нахождения неизвестных углов в треугольниках и многоугольниках. Один из таких методов — использование отношения смежных углов.

Отношение смежных углов возникает в треугольниках, когда два угла имеют общую сторону. В этом случае можно использовать следующее правило: отношение смежных углов равно отношению соответствующих сторон.

Шаг 1: определяем смежные углы

Первым шагом необходимо определить смежные углы в треугольнике. Например, если в треугольнике ABC известны углы A и B, которые имеют общую сторону AB, то они являются смежными углами.

Шаг 2: находим отношение соответствующих сторон

Вторым шагом необходимо найти отношение соответствующих сторон. Так, если в треугольнике ABC известны углы A и B, то отношение соответствующих сторон AB и BC можно выразить следующей формулой:

AB / BC = sin A / sin B

Шаг 3: вычисляем неизвестный угол

Третьим и последним шагом является вычисление неизвестного угла. Для этого необходимо подставить значения уже известных величин (отношение соответствующих сторон и смежных углов) в формулу для нахождения этого угла.

Например, если в треугольнике ABC известны угол A и отношение соответствующих сторон AB и BC, то угол B можно выразить следующей формулой:

sin B = (AB / BC) * sin A

Далее, используя тригонометрические таблицы или калькулятор, можно вычислить значение угла B.

Применение метода

Метод нахождения неизвестного угла через отношение смежных углов может быть полезен в различных сферах, например, в строительстве, геодезии, архитектуре и других областях, где необходимо работать с треугольниками и многоугольниками.

Выводы

Отношение смежных углов является важным инструментом при нахождении неизвестных углов в треугольниках и многоугольниках. Шаги, описанные выше, позволяют использовать этот метод для решения разнообразных задач.

Что такое смежные углы? Какие у них свойства?

Определение.

Смежные углы — это углы, у которых одна сторона — общая, а другие стороны лежат на одной прямой.

smezhnyie uglyi

∠1 и ∠2 — смежные углы

Сколько смежных углов образуется при пересечении двух прямых?

При пересечении двух прямых образуется четыре пары смежных углов:

skolko smezhnyih uglov pri peresechenii pryamyih

∠1 и ∠2, ∠3 и ∠4,

∠1 и ∠3,  ∠2 и ∠4

Но, так как ∠1 =∠4,  ∠2=∠3 (как вертикальные), то достаточно рассмотреть только одну из этих пар.

Свойство смежных углов.

Сумма смежных углов равна 180º.

Задачи.

1) Даны два смежных угла. Один на 42 градуса больше другого. Найти эти углы.

dva smezhnyih ugla

Дано:

∠AOC и ∠BOC — смежные,

∠AOC на 42º  больше, чем ∠BOC

Найти: ∠AOC и ∠BOC.

Решение:

Пусть ∠BOC=хº, тогда ∠AOC= х+42º. Так как сумма смежных углов равна 180º, то ∠BOC+∠AOC=180º.

Имеем уравнение:

х+х+42=180

2х=180-42

2x=138

x=69

Значит, ∠BOC= 69º, ∠AOC=69+42=111º.

Ответ: 69º и 111º.

2) Найти смежные углы, если их градусные меры относятся как 4:5.

danyi smezhnyie uglyi

Дано:

∠1 и ∠2 — смежные,

∠1 : ∠2= 4:5

Найти:∠1 и ∠2

Решение:

Пусть k — коэффициент пропорциональности. Тогда ∠2 =4kº , ∠1=5kº. Так как сумма смежных углов равна 180º, ∠1 +∠2=180º.

Имеем уравнение:

4k+5k=180

9k=180

k=20

Значит, смежные углы равны 4∙20=80º и 5∙20=100º.

Ответ: 80º и 100º.

3) Один из углов, образованных при пересечении двух прямых, в 5 раз больше другого. Найти эти углы.

ugol peresecheniya dvuh pryamyih

Дано: AB и CD — прямые, O — точка их пересечения,

∠AOD  в 5 раз больше, чем ∠BOD

Найти: ∠AOD, ∠BOD

Решение:

При пересечении двух прямых образуются смежные и вертикальные углы. Так как вертикальные углы равны между собой, то углы∠AOD и ∠BOD —  смежные. Пусть ∠BOD=xº, тогда ∠AOD=5xº. Так как сумма смежных углов равна 180º, ∠AOD +∠BOD=180º.

Имеем уравнение:

x+5x=180

6x=180

x=30

Значит, ∠BOD=30º, ∠AOD=5∙30=150º.

Ответ: 30º и 150º.

Могут ли смежные углы быть равными?

Да. Если смежные углы равны между собой, то, так как сумма смежных углов равна 180º, каждый из них равен половине суммы, то есть 90º.

Вывод:

угол, смежный с прямым, есть прямой угол.

Могут ли два смежных угла быть тупыми? Острыми?

Нет. Так как градусная мера тупого угла больше 90º, то сумма двух тупых углов больше 180º. А сумма смежных углов равна 180º.

Градусная мера острого угла меньше 90º. Значит, сумма двух острых углов меньше 180º.

Таким образом, в паре смежных углов один — тупой, другой — острый (или оба прямые).

Смежные углы

Определение

Смежные углы — это два угла, у которых есть общая вершина и одна сторона, а две другие стороны являются продолжением друг друга и лежат на одной прямой.

Развёрнутый угл

 

Свойства и виды смежных углов в геометрии

  1. Так как две стороны смежных углов образуют прямую линию, то вместе они составляют развернутый угол. Его градусная мера составляет 180^circ. Следовательно — сумма смежных углов тоже равна (180^circ.)
  2. Если две прямые пересекаются, то они образуют две пары смежных углов: (angle1) и (angle2)(angle3) и (angle4), а также (angle1) и (angle3)( angle2) и (angle4). При этом объединение пар, которые обозначены обозначениями 1 и 4, 2 и 3, представляют из себя вертикальные углы, а значит — они равны. Поэтому рассматривать можно только одну из пар смежных углов, другая окажется идентична по всем показателям.Виды смежных углов
  3. У смежных углов одинаковые синусы.
  4. Для косинусов и тангенсов тоже распространяется равенство, но их значения противоположны по знаку.
  5. Чтобы построить смежный угол уже заданному, требуется продлить одну из сторон существующего угла дальше вершины.

Примечание

В паре, если один угол тупой, то по правилу другой обязательно острый.

Если один из углов является прямым, то второй тоже прямой.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как найти, чему равна сумма

Сумма смежных углов всегда составляет 180 градусов.

Отсюда следует формула:

(anglealpha+anglebeta=180^circ)

(anglealpha=180^circ-anglebeta)

(anglebeta=180^circ-anglealpha)

Смежных углы

Примеры решения задач

Задача №1

Дано: (anglealpha) и (anglebeta) — смежные, (anglebeta=60^circ).

Найти: чему равен (anglealpha).

Решение

Так как углы смежные, значит:

(anglealpha+anglebeta=180^circ.)

(anglealpha=180^circ-anglebeta.)

(anglealpha=180^circ-60^circ=120^circ.)

Ответ: (;anglealpha=120^circ).

Задача №2

Дано: ( anglealpha) и (anglebeta) — смежные, (anglealpha) на (30^circ) больше, чем (anglebeta.)

Найти: чему равны (anglealpha) и (anglebeta.)

Решение

Допустим,( anglebeta=x), тогда (anglealpha=x+30^circ.) 

Так как сумма смежных углов равна 180 градусов, то получаем уравнение, которое выглядит, как:

(x+x+30^circ=180^circ)

(2x=180^circ-30^circ)

(2x=150^circ)

(x=75^circ)

Значит, величина (anglebeta=75^circ.)

Чтобы найти (anglealpha), нужно выполнить стандартные вычисления согласно теореме о сумме:

(anglealpha=180^circ-anglebeta=180^circ-75^circ=105^circ.)

Ответ: (anglealpha=105^circ.)

Насколько полезной была для вас статья?

У этой статьи пока нет оценок.

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Добавить комментарий