Как найти соб скорость лодки

Как найти собственную скорость лодки

Решение задач на «движение по воде» многим дается с трудом. В них существует несколько видов скоростей, поэтому решающие начинаю путаться. Чтобы научиться решать задачи такого типа, надо знать определения и формулы. Умение составлять схемы очень облегчает понимание задачи, способствует правильному составлению уравнения. А правильно составленное уравнение – самое главное в решении любого типа задач.

Как найти собственную скорость лодки

Инструкция

В задачах «на движение по реке» присутствуют скорости: собственная скорость (Vс), скорость по течению (Vпо теч.), скорость против течения (Vпр. теч.), скорость течения (Vтеч.). Необходимо отметить, что собственная скорость водного суда – это скорость в стоячей воде. Чтобы найти скорость по течению, надо к скорости течения прибавить собственную. Для того чтобы найти скорость против течения, надо из собственной скорости вычесть скорость течения.

Первое, что необходимо выучить и знать “на зубок” – формулы. Запишите и запомните:

Vпо теч=Vс+Vтеч.

Vпр. теч.=Vс-Vтеч.

Vпр. теч=Vпо теч. – 2Vтеч.

Vпо теч.=Vпр. теч+2Vтеч.

Vтеч.=(Vпо теч. – Vпр. теч)/2

Vс=(Vпо теч.+Vпр теч.)/2 или Vс=Vпо теч.+Vтеч.

На примере разберем, как находить собственную скорость и решать задачи такого типа.

Пример 1.Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. – Vпр. теч)/2, найдем:

Vтеч = (21,8 – 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

Пример 2. Пароход прошел против течения 24 км и вернулся обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите его собственную скорость в неподвижной воде, если скорость течения равна 3 км/ч.

За Х примем собственную скорость парохода. Составим таблицу, куда занесем все данные.

Против теч. По течению

Расстояние 24 24

Скорость Х-3 Х+3

время 24/ (Х-3) 24/ (Х+3)

Зная, что на обратный путь пароход затратил на 20 минут времени меньше, чем на путь по течению, составим и решим уравнение.

20 мин=1/3 часа.

24/ (Х-3) – 24/ (Х+3) = 1/3

24*3(Х+3) – (24*3(Х-3)) – ((Х-3)(Х+3))=0

72Х+216-72Х+216-Х2+9=0

441-Х2=0

Х2=441

Х=21(км/ч) – собственная скорость парохода.

Ответ: 21 км/ч.

Обратите внимание

Скорость плота считается равной скорости водоема.

Источники:

  • решение задач на течение

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как рассчитать по формулам скорость лодки?

Собрали для Вас актуальные формулы, которые могут оказаться полезными каждому ??

8 июля 2020
4 291

✓ Формула 1

На примере разберем, как находить скорость лодки.

Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. — Vпр. теч)/2, найдем:

Vтеч = (21,8 — 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

✓ Формула 2

Самым простым методом самостоятельного расчета предельной скорости лодки считается использование формулы, учитывающей параметры двигателя.

Для этого используется формула вычисления двигателя V = NK/R, где искомый параметр V – скорость километров в час, R – сопротивление движению (его вы можете взять в технической документации своего катера), K – коэффициент полезной деятельности винта. Определяется он в зависимости от типа лодки. Так, для спортивного катера его значение — 160, для крупных винтов — 140, для средних и малых — 120 и 100 соответственно.

Параметр N – мощность работы двигателя катера. Эту информацию вы можете рассчитать самостоятельно или обратиться за помощью к технической документации. Для того, чтобы вычислить предел скорости катера, возьмите максимально допустимую мощность. Этот метод позволяет рассчитать предел максимальной скорости катера достаточно точно, однако не следует забывать про вероятную погрешность.

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние  112  км, если его собственная скорость  30  км/ч, а скорость течения реки  2  км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 – 2 = 28 (км/ч)  — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет  112  км, разделив расстояние на скорость:

112 : 28 = 4 (ч).

Решение задачи по действиям можно записать так:

1) 30 – 2 = 28 (км/ч)  — скорость движения катера против течения,

2) 112 : 28 = 4 (ч).

Ответ: За  4  часа катер преодолеет расстояние  112  км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта  A  до пункта  B  по реке равно  120  км. Сколько времени потратит моторная лодка на путь от пункта  A  до  B,  если её собственная скорость  27  км/ч, а скорость течения реки  3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

27 + 3 = 30 (км/ч).

Значит расстояние между пунктами лодка преодолеет за:

120 : 30 = 4 (ч).

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

27 – 3 = 24 (км/ч).

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта  A  до пункта  B,  надо расстояние разделить на скорость:

120 : 24 = 5 (ч).

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч)  — скорость лодки,

2) 120 : 30 = 4 (ч).

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 – 3 = 24 (км/ч)  — скорость лодки,

2) 120 : 24 = 5 (ч).

Ответ:

1) При движении по течению реки моторная лодка потратит  4  часа на путь от пункта  A  до пункта  B.

2) При движении против течения реки моторная лодка потратит  5  часов на путь от пункта  A  до пункта  B.

Через уравнение.

S – пройденный путь, растояние, которое прошла, например, лодка. (км)

t – время, за которое она прошла расстояние S. (часов, минут)

V – собственная её скорость (км/ч, м/ч)

Такие задачи решаются далее: если известны: (под формулы подставляем числа)

t и V, то перемножаем – t * V, получаем S.

t и S, то расстояние делим время – S : t, получаем V

S и V, также – S : V, получаем t

Также если в задаче указана V (её ищем)

по течению, то V собственная + V по течению

против течения, то V собств. – V прот. теч.

Тогда формулы звучат так: если известны:

t и V, то t * (V с. +/- V) = S

t и S, то S : t = V с. +/- V

V и S, то S : (V c. +/- V) = t

Теперь ещё раз:

V c. – собственная скорость

V c. + V – скорость + скорость по теч.

V c. – V – скорость + скорость прот. теч.

Ну так чтоли… Плохой из меня учитель(((

Добавить комментарий