Как найти собственную скорость
Согласно учебной программе по математике дети должны научиться решать задачи на движение еще в начальной школе. Однако задачи такого вида часто вызывают у учащихся затруднение. Важно,чтоб ребенок понял, что такое собственная скорость, скорость течения, скорость по течению и скорость против течения. Только при этом условии школьник сможет легко решать задачи на движение.
Вам понадобится
- Калькулятор, ручка
Инструкция
Собственная скорость – это скорость катера или другого средства передвижения в неподвижной воде. Обозначьте ее – V собств.
Вода в реке находится в движении. Значит она имеет свою скорость, которая называется скоростью течения (V теч.)
Скорость катера по течению реки обозначьте – V по теч., а скорость против течения – V пр. теч.
Теперь запомните формулы, необходимые для решения задач на движение:
V пр. теч.= V собств. – V теч.
V по теч.= V собств. + V теч.
Итак, исходя из этих формул, можно сделать следующие выводы.
Если катер движется против течения реки, то V собств. = V пр. теч. + V теч.
Если катер движется по течению, то V собств. = V по теч. – V теч.
Решим несколько задач на движение по реке.
Задача 1. Скорость катера против течения реки 12,1 км/ч. Найдите собственную скорость катера, зная , что скорость течения реки 2 км/ч.
Решение: 12,1 + 2 = 14, 1 (км/ч) – собственная скорость катера.
Задача 2. Скорость катера по течению реки 16,3 км/ч, скорость течения реки 1,9 км/ч. Сколько метров прошел бы это катер за 1 мин., если находился в стоячей воде?
Решение: 16,3 – 1,9 = 14,4 (км/ч) – собственная скорость катера. Переведем км/ч в м/мин: 14,4 / 0,06 = 240 (м/мин.). Значит, за 1 минуту катер прошел бы 240 м.
Задача 3. Два катера отправились одновременно навстречу друг другу из двух пунктов. Первый катер двигался по течению реки, а второй – против течения. Встретились они через три часа. За это время первый катер прошел 42 км, а второй – 39 км.Найдите собственную скорость каждого катера, если известно, что скорость течения реки 2 км/ч.
Решение: 1) 42 / 3 = 14 (км/ч) – скорость движения по течению реки первого катера.
2) 39 / 3 = 13 (км/ч) – скорость движения против течения реки второго катера.
3) 14 – 2 = 12 (км/ч) – собственная скорость первого катера.
4) 13 + 2 = 15 (км/ч) – собственная скорость второго катера.
Обратите внимание
Не забудьте о том, в каких единицах вы измеряете скорость.
Чтобы перевести км/ч в м/с нужно разделить на 3,6.
Чтобы перевести м/с в км/ч нужно умножить на 3,6.
Чтобы перевести км/ч в м/мин. нужно разделить на 0,06.
Чтобы перевести м/мин. в км/ч надо умножить на 0,06.
Полезный совет
Решить задачу на движение помогает рисунок.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Совет 1: Как обнаружить собственную скорость
Согласно учебной программе по математике дети обязаны обучиться решать задачи на движение еще в исходной школе. Впрочем задачи такого вида зачастую вызывают у учащихся затруднение. Значимо,чтоб ребенок осознал, что такое собственная скорость , скорость течения, скорость по течению и скорость вопреки течения. Только при этом условии школьник сумеет легко решать задачи на движение.
Вам понадобится
- Калькулятор, ручка
Инструкция
1. Собственная скорость – это скорость катера либо иного средства передвижения в статичной воде. Обозначьте ее – V собств.Вода в реке находится в движении. Значит она имеет свою скорость , которая именуется скорость ю течения (V теч.)Скорость катера по течению реки обозначьте – V по теч., а скорость супротив течения – V пр. теч.
2. Сейчас запомните формулы, нужные для решения задач на движение:V пр. теч.= V собств. – V теч.V по теч.= V собств. + V теч.
3. Выходит, исходя из этих формул, дозволено сделать следующие итоги.Если катер движется вопреки течения реки, то V собств. = V пр. теч. + V теч.Если катер движется по течению, то V собств. = V по теч. – V теч.
4. Решим несколько задач на движение по реке.Задача 1. Скорость катера вопреки течения реки 12,1 км/ч. Обнаружьте собственную скорость катера, зная , что скорость течения реки 2 км/ч.Решение: 12,1 + 2 = 14, 1 (км/ч) – собственная скорость катера.Задача 2. Скорость катера по течению реки 16,3 км/ч, скорость течения реки 1,9 км/ч. Сколько метров прошел бы это катер за 1 мин., если находился в стоячей воде?Решение: 16,3 – 1,9 = 14,4 (км/ч) – собственная скорость катера. Переведем км/ч в м/мин: 14,4 / 0,06 = 240 (м/мин.). Значит, за 1 минуту катер прошел бы 240 м.Задача 3. Два катера отправились единовременно насупротив друг другу из 2-х пунктов. 1-й катер двигался по течению реки, а 2-й – вопреки течения. Встретились они через три часа. За это время 1-й катер прошел 42 км, а 2-й – 39 км.Обнаружьте собственную скорость всякого катера, если вестимо, что скорость течения реки 2 км/ч.Решение: 1) 42 / 3 = 14 (км/ч) – скорость движения по течению реки первого катера. 2) 39 / 3 = 13 (км/ч) – скорость движения вопреки течения реки второго катера. 3) 14 – 2 = 12 (км/ч) – собственная скорость первого катера. 4) 13 + 2 = 15 (км/ч) – собственная скорость второго катера.
Совет 2: Как обнаружить скорость супротив течения
Задачи на движение кажутся трудными только на 1-й взор. Дабы обнаружить, скажем, скорость движения судна вопреки течения , довольно представить высказанную в задаче обстановку. Возьмите ребёнка в малое путешествие по реке, и школьник обучится “щелкать такие задачки, как орешки”.
Вам понадобится
- Калькулятор, ручка.
Инструкция
1. Согласно нынешней энциклопедии (dic.academic.ru), скорость – это колляция поступательного движения точки (тела), численно равная при равномерном движении отношению пройденного пути S к промежуточному времени t, т.е. V = S / t.
2. Для того дабы обнаружить скорость движения какого-нибудь судна супротив течения, надобно знать собственную скорость судна и скорость течения.Собственная скорость – это скорость движения судна в стоячей воде, скажем, в озере. Обозначим ее – V собств.Скорость течения определяется по тому, на какое расстояние река относит предмет за единицу времени. Обозначим ее – V теч.
3. Дабы обнаружить скорость движения судна супротив течения (V пр. теч.), надобно из собственной скорости судна вычесть скорость течения.Выходит, получили формулу: V пр. теч.= V собств. – V теч.
4. Обнаружим скорость движения судна вопреки течения реки, если знаменито, что собственная скорость судна равна 15,4 км/ч, а скорость течения реки – 3,2 км/ч.15,4 – 3,2 = 12,2 (км/ч) – скорость движения судна супротив течения реки.
5. В задачах на движение зачастую требуется перевести км/ч в м/с. Дабы это сделать, необходимо припомнить, что 1 км = 1000 м, 1 ч = 3600 с. Следственно, х км/ч = х * 1000 м / 3600 с = х / 3,6 м/с. Выходит, дабы перевести км/ч в м/с необходимо поделить на 3,6.Скажем, 72 км/ч = 72:3,6 = 20 м/с.Дабы перевести м/с в км/ч необходимо умножить на 3,6.Скажем, 30 м/с = 30 * 3,6 = 108 км/ч.
6. Переведем х км/ч в м/мин. Для этого припомним, что 1 км = 1000 м , 1 ч = 60 мин. Значит, х км/ч = 1000 м / 60 мин. = х / 0,06 м/мин. Следственно, дабы перевести км/ч в м/мин. необходимо поделить на 0,06.Скажем, 12 км/ч = 200 м/мин.Дабы перевести м/мин. в км/ч нужно умножить на 0,06.Скажем, 250 м/мин. = 15 км/ч
Полезный совет
Не забывайте о том, в каких единицах вы измеряете скорость.
Обратите внимание!
Не позабудьте о том, в каких единицах вы измеряете скорость.Дабы перевести км/ч в м/с необходимо поделить на 3,6.Дабы перевести м/с в км/ч надобно умножить на 3,6.Дабы перевести км/ч в м/мин. необходимо поделить на 0,06.Дабы перевести м/мин. в км/ч нужно умножить на 0,06.
Полезный совет
Решить задачу на движение помогает рисунок.
Для решения задач на движение по прямой используется одна основная формула:
где:
- Скорость (V) — расстояние, пройденное за единицу времени.
- Время (t) — время в пути.
- Расстояние (S) — пройденный путь, или расстояние.
Зная эту формулу (для расстояния), вы можете легко вывести из неё формулу для скорости, или времени.
Если вы запомните эту формулу, то сможете решить любую задачу на движение, так как все задачи на движение по прямой — это применение данной формулы к одному или нескольким взаимосвязанным объектам.
Рассмотрим, как решать разные задачи на движение в зависимости от условий и уровня сложности.
Все задачи на движение делятся на следующие типы:
- простые задачи на скорость, время и расстояние;
- задачи на движение в разных направлениях: сближение и удаление;
- задачи на движение в одном направлении: сближение и удаление;
- решение задач на движение по реке.
Решение простых задач на движение: скорость, время и расстояние
В простых задачах на движение, как правило, есть один движущийся объект, для которого нужно найти неизвестную величину: скорость, время или расстояние. В данном случае применяется формула в ее первоначальном виде:
Задача 1. Автомобиль ехал 2ч со скоростью 85 км/ч. Определите расстояние.
Решение: Вычислим путь по формуле: S=V × t= 2 ч * 85 км/ч = 170 км.
Задача 2. Велосипедист проехал 60 км за 5ч. Определите скорость.
Решение: Вычислим скорость велосипедиста по формуле: V = S:t = 60 км : 5 ч = 12 км/ч.
Задача 3. Мотоциклист проехал 30 км со скоростью 15км/ч. Сколько времени он затратил на этот путь?
Решение: Вычислим время движения мотоциклиста по формуле: t = S:V = 30 км : 15 км/ч = 2 ч.
В таких задачах нужно также следить, чтобы были одинаковыми единицы измерения. Например, если расстояние измеряется в километрах, а время — в часах, то скорость буде измеряться в км/час. Но если единицы измерения скорости — метр/час, а время дано в минутах, то в этом случае скорость и время нужно привести к одинаковым единица измерения, иначе ответ будет неверным.
Задача 4. Мотоциклист ехал 30 минут со скоростью 60 км/ч. Какое расстояние он проехал?
Решение: для того, чтобы вычислить расстояние, нужно время и скорость привести к одинаковым единицам измерения. При этом есть 2 способа:
1) Переведем время: 30 минут = 30/60 = 0,5 часа.
Найдем расстояние: 60 км/ч * 0,5 ч = 30 км.
2) Переведем скорость: 60 км/ч = 60км / 1час = 60км / 60 мин = 1км/мин.
Найдем расстояние: 1км/мин*30минут = 30 км.
Решение задач на движение в разных направлениях: сближение (встречное движение) и удаление (противоположное движение)
При встречном движении расстояние между объектами уменьшается. Объекты приближаются друг к другу со скоростью сближения.
Скорость сближения находится по формуле:
При движении в противоположных направлениях скорости объектов направлены в разные стороны. Объекты удаляются друг от друга со скоростью удаления.
Скорость удаления находится по формуле:
При решении подобных задач лучше нарисовать схему движения, чтобы было легче решать.
Задача 5. Два велосипедиста выехали одновременно навстречу друг другу из двух пунктов, расстояние между которыми 36 км. Скорость первого велосипедиста 10 км/ч, второго — 8 км/ч. Через сколько часов они встретятся?
Решение: 1) Найдем скорость сближения: V=10+8 = 18 км/ч.
2) Найдем время: t = S:V = 36 : 18 = 2 ч.
Задача 6. Два пешехода вышли одновременно из одного и того же пункта в противоположных направлениях. Скорость первого пешехода 3км/ч, второго — 4км/ч. Какое расстояние между ними будет через 30 минут?
Решение: 1) Найдем скорость удаления пешеходов: V = 3+4=7 км/час.
2) Переведем в соответствие единицы измерения: t=30 мин = 0,5 ч.
3) Найдем расстояние: S=V × t = 7 × 0,5 = 3,5 км.
Задача 7. Два автобуса выехали одновременно навстречу друг другу из двух пунктов, расстояние между которыми 300 км. Через 2 часа они встретились. Найдите второго второго автобуса, если первый ехал со скоростью 70 км/ч.
Решение. 1) Нам известно расстояние и скорость, поэтому найдем скорость по формуле: V = S:t = 300:2=150км/ч. Это скорость сближения.
2) Найдем скорость второго автобуса: 150-70 = 80км/ч.
Решение задач на движение в одном направлении: сближение и удаление
Если два объекта движутся в одном направлении и один объект “догоняет” второй, то расстояние между объектами уменьшается.
Скорость сближения при таком движении определяют по формуле:
Если два объекта движутся в одном направлении и один объект “отстает” от второго, то расстояние между объектами увеличивается.
Скорость удаления при таком движении определяют по формуле:
Если объект движется в стоячей воде (озере), то его скорость называют собственной скоростью объекта. То есть, скорость объекта равная собственной скорости объекта.
Заметим, что плот — это тело, у которого собственная скорость равна нулю (V=0). Значит, плот может плыть только по течению и со скоростью течения.
Задача 8. Расстояние между двумя автомобилями, движущимися в одном направлении, составляет 20 км. Первый автомобиль едет со скоростью 40км/ч, второй — со скоростью 30км/ч. Через сколько часов первый автомобиль догонит второй?
Решение. 1) Найдем скорость сближения автомобилей: V=40-30=10км/ч.
2) Зная расстояние (20км) и скорость сближения (10км/ч) найдем время: 20:10=2 часа.
Задача 9. Из одного населенного пункта выехали автомобиль и автобус. скорость автомобиля 70 км/ч, скорость автобуса — 50 км/ч. Какое расстояние будет между ними через 3 часа?
Решение. 1) Найдем скорость удаления : V=70-50=20км/ч.
2) Зная скорость удаления и время, найдем расстояние: S = 20*3 =60 км.
Решение задач на движение по реке
Особенностью задач на движение реке является то, что у объекта появляется дополнительная скорость — скорость течения реки. При этом возможно два варианта:
- по течению реки → скорость увеличивается;
- против течения реки → скорость уменьшается.
Таким образом, в задачах рассматривают 2 скорости:
- Скорость собственная — Vs;
- Скорость течения реки — Vt.
Задача 9. Собственная скорость лодки составляет 12 км/ч. Скорость течения реки равна 3 км/ч. Какое расстояние проплывёт лодка через 3 часа, если она плывёт по течению реки?
Решение. 1) Найдем скорость лодки. Так как она плывет по течению реки, ее скорость увеличивается.
V = Vs+ Vt = 12+3 =15км/ч.
2) Найдем расстояние: S=V×t = 15×3=45км.
Задача 10. Собственная скорость катера составляет 30 км/ч. Скорость течения реки равна 4 км/ч. Какое расстояние преодолеет катер через 4 часа, если он плывёт против течения реки?
Решение. 1) Найдем скорость. Так как катер плывет против течения реки, его скорость уменьшится.
V = Vs- Vt = 30-4 =26 км/ч.
2) Найдем расстояние: S=V×t = 26 * 4 = 104 км.
Задача 10. Скорость лодки равна 10 км/ч. При этом надо успеть проплыть 25 км за 2 часа по течению реки. Какой должна быть скорость течения реки, чтобы успеть в срок?
Решение. 1) Найдем нужную скорость: V=S:t = 25:2=12,5 км/ч.
2) Найдем скорость, которую нужно прибавить до нужно (скорость течения реки): 12,5-10=2,5км/ч.
Задача 11. Уровень ЕГЭ.
Катер прошёл по течению реки 120 км и вернулся обратно. Известно, что обратный путь занял на 1 час больше времени, а скорость катера в неподвижной воде равна 27 км/ч. Найдите скорость течения.
Решение: Пусть Vt — cкорость течения реки, тогда:
1) В одну сторону: 27+Vt – скорость перемещения катера по течению, S=120км.
2) В обратную сторону: 27-Vt – скорость перемещения катера против течения, S=120км.
Выразим время:
1) В одну сторону: t=S:V = 120:(27+Vt) – время, затраченное катером на перемещение по течению,
2) В обратную сторону: t=S:V = 120:(27-Vt) – время, затраченное катером на перемещение против течения.
Так как время перемещения против течения на час больше, чем время по течению, то:
120:(27+Vt) +1 = 120:(27-Vt).
Далее решаем уравнение и получаем ответ 3 км/ч.
Больше задач на движение Ваш ребёнок может решить, скачав программы:
Правильность решения задач вы можете проверить на сайте intmag24.ru с помощью калькулятора решения задач на движение.
Полезные советы для решения задач на движения
- В процессе решения задач на движение может быть составлена формула квадратного уравнения, которое будет иметь два корня. В этом случае нужно взять тот ответ, который будет логичен для задачи (положительный). Отрицательный корень не берется во внимание.
- Внимательно следите, чтобы в задаче все данные измерялись одними величинами. Если это не так, нужно се привести к единым единицам измерения.
- При решении задач на движение рисуйте картинки. Особенно, когда текст задачи большой и сразу в голове не укладывается. Чаще всего это нужно делать в задачах, где кто-то кого-то догоняет, встречается, или перемещается между пунктами А и В туда и обратно. На картинке сразу видно, какие отрезки пути можно просчитать. Картинка облегчает составление математической модели.
Для решения более сложных задач на движение посмотрите, как составлять схемы и таблицы данных для наглядного представления и структурирования данных.
Пример №1
Допустим, из точки ( displaystyle A) и из точки ( displaystyle B) навстречу друг другу выехали две машины. Скорость одной машины – ( displaystyle 60) км/ч, а скорость ( displaystyle 2) машины – ( displaystyle 40) км/ч. Они встретились через ( displaystyle 1,2) часа.
Какое расстояние между пунктами ( displaystyle A) и ( displaystyle B)?
1 вариант решения
Можно рассуждать так: машины встретились, значит расстояние между городами – это сумма расстояния, которая прошла первая машина, и расстояния, которое прошла вторая.
( displaystyle 60cdot 1,2text{ }=text{ }72) (км) – путь, который проехала первая машина
( displaystyle 40cdot 1,2text{ }=text{ }48) (км) – путь, который проехала вторая машина
( displaystyle 72 + 48 = 120) (км) – расстояние, которое проехали обе машины, то есть, расстояние между пунктами ( displaystyle A) и ( displaystyle B).
2 вариант решения (более рациональный)
А можно просто воспользоваться очень логичной формулой о сложении скоростей.
Проверим, работает ли она:
( displaystyle 60 + 40 = 100) (км/ч) – скорость сближения машин
( displaystyle 100cdot 1,2text{ }=text{ }120) (км) – расстояние, которые проехали машины, то есть, расстояние между пунктами ( displaystyle A) и ( displaystyle B).
Оба решения являются верными. Второе просто более рациональное.
Пример №3
Итак, задача:
Из пункта ( displaystyle A) и пункта ( displaystyle B) машины движутся навстречу друг другу со скоростями ( displaystyle 50) км/ч и ( displaystyle 80) км/ч. Расстояние между пунктами – ( displaystyle 195) км.
Через сколько времени машины встретятся?
1 вариант решения
Пусть ( displaystyle x) – время, которое едут машины, тогда путь первой машины – ( displaystyle 50x), а путь второй машины – ( displaystyle 80x).
Их сумма и будет равна расстоянию между пунктами ( A) и ( B) – ( displaystyle 50x+80x=195).
Решим уравнение:
( displaystyle 50x+80x=195)
( displaystyle 130x=195)
( displaystyle x=1,5) (ч) – время, через которое встретились машины.
2 вариант решения (более рациональный)
( displaystyle 50 + 80 = 130) (км/ч) – скорость сближения машин;
( displaystyle 195:130 = 1,5) (ч) – время, которое машины были в пути.
Задача решена.
Пример №4
Из пунктов A и B одновременно навстречу друг другу выехали два автомобиля со скоростями ( displaystyle 60) км/ч и ( displaystyle 40) км/ч. Через сколько минут они встретятся. Если расстояние между пунктами ( displaystyle 100) км?
2 способа решения:
I способ
Относительная скорость автомобилей ( displaystyle 60+40=100) км/ч. Это значит, что если мы сидим в первом автомобиле, то он нам кажется неподвижным, но второй автомобиль приближается к нам со скоростью ( displaystyle 100) км/ч. Так как между автомобилями изначально расстояние ( displaystyle 100) км, время, через которое второй автомобиль проедет мимо первого:
( displaystyle t=frac{100}{100}=1 час=60 минут).
II способ
Время от начала движения до встречи у автомобилей, очевидно, одинаковое. Обозначим его ( displaystyle t). Тогда первый автомобиль проехал путь ( displaystyle 60t), а второй – ( displaystyle 40t).
В сумме они проехали все ( displaystyle 100) км. Значит,
( displaystyle 60t+40t=100Rightarrow t=1 час=60 минут).
Из пункта ( displaystyle A) в пункт ( displaystyle B), расстояние между которыми ( displaystyle 30) км, одновременно выехал велосипедист и мотоциклист. Известно, что в час мотоциклист проезжает на ( displaystyle 65) км больше, чем велосипедист.
Определите скорость велосипедиста, если известно, что он прибыл в пункт ( displaystyle B) на ( displaystyle 156) минут позже, чем мотоциклист.
Вот такая вот задача. Соберись, и прочитай ее несколько раз. Прочитал? Начинай рисовать – прямая, пункт ( displaystyle A), пункт ( displaystyle B), две стрелочки…
В общем рисуй, и сейчас сравним, что у тебя получилось.
Пустовато как-то, правда? Рисуем таблицу.
Как ты помнишь, все задачи на движения состоят из ( displaystyle 3) компонентов: скорость, время и путь. Именно из этих граф и будет состоять любая таблица в подобных задачах.
Правда, мы добавим еще один столбец – имя, про кого мы пишем информацию – мотоциклист и велосипедист.
Так же в шапке укажи размерность, в какой ты будешь вписывать туда величины. Ты же помнишь, как это важно, правда?
У тебя получилась вот такая таблица?
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | |||
мотоциклист |
Теперь давай анализировать все, что у нас есть, и параллельно заносить данные в таблицу и на рисунок.
Первое, что мы имеем – это путь, который проделали велосипедист и мотоциклист. Он одинаков и равен ( displaystyle 30) км. Вносим!
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | ( displaystyle 30) | ||
мотоциклист | ( displaystyle 30) |
Рассуждаем дальше. Мы знаем, что мотоциклист проезжает на ( displaystyle 65) км/ч больше, чем велосипедист, да и в задаче нужно найти скорость велосипедиста…
Возьмем скорость велосипедиста за ( displaystyle x), тогда скорость мотоциклиста будет ( displaystyle x+65)…
Если с такой переменной решение задачи не пойдет – ничего страшного, возьмем другую, пока не дойдем до победного. Такое бывает, главное не нервничать!
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | ( displaystyle x) | ( displaystyle 30) | |
мотоциклист | ( displaystyle x+65) | ( displaystyle 30) |
Таблица преобразилась. У нас осталась не заполнена только одна графа – время. Как найти время, когда есть путь и скорость?
Правильно, разделить путь на скорость. Вноси это в таблицу.
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | ( displaystyle x) | ( displaystyle frac{30}{x}) | ( displaystyle 30) |
мотоциклист | ( displaystyle x+65) | ( displaystyle frac{30}{65+x}) | ( displaystyle 30) |
Вот и заполнилась наша таблица, теперь можно внести данные на рисунок.
Что мы можем на нем отразить?
Молодец. Скорость передвижения мотоциклиста и велосипедиста.
Еще раз перечитаем задачу, посмотрим на рисунок и заполненную таблицу.
Какие данные не отражены ни в таблице, ни на рисунке?
Верно. Время, на которое мотоциклист приехал раньше, чем велосипедист. Мы знаем, что разница во времени – ( displaystyle 156) минут.
Что мы должны сделать следующим шагом? Правильно, перевести данное нам время из минут в часы, ведь скорость дана нам в км/ч.
( displaystyle 156) минут / ( displaystyle 60) минут = ( displaystyle 2,6) часа.
И что дальше, спросишь ты? А дальше числовая магия!
Взгляни на свою таблицу, на последнее условие, которое в нее не вошло и подумай, зависимость между чем и чем мы можем вынести в уравнение?
Правильно. Мы можем составить уравнение, основываясь на разнице во времени!
( displaystyle frac{30}{x}-frac{30}{65+x}=2,6)
Логично? Велосипедист ехал больше, если мы из его времени вычтем время движения мотоциклиста, мы как раз получим данную нам разницу.
Это уравнение – рациональное. Если не знаешь, что это такое, прочти тему «Рациональные уравнения».
Приводим слагаемые к общему знаменателю:
( displaystyle frac{30cdot left( 65+x right)}{xcdot left( 65+x right)}-frac{30x}{xcdot left( 65+x right)}=2,6)
Раскроем скобки и приведем подобные слагаемые: Уф! Усвоил? Попробуй свои силы на следующей задаче.
( displaystyle frac{1950}{xcdot left( 65+x right)}=2,6)
Из этого уравнения мы получаем следующее:
( displaystyle 2,6cdot xcdot left( 65+x right)=1950)
( displaystyle xcdot left( 65+x right)=frac{1950}{2,6})
( displaystyle xcdot left( 65+x right)=750)
Раскроем скобки и перенесем все в левую часть уравнения:
( displaystyle {{x}^{2}}+65{x}-750=0)
Вуаля! У нас простое квадратное уравнение. Решаем!
( displaystyle {{x}^{2}}+65{x}-750=0)
( displaystyle D={{b}^{2}}-4ac)
( displaystyle D={{65}^{2}}-4cdot 1cdot left( -750 right)=4225+3000=7225)
( displaystyle sqrt{D}=sqrt{7225}=85)
( displaystyle {{x}_{1,2}}=frac{-bpm sqrt{D}}{2a})
( displaystyle {{x}_{1}}=frac{-65+85}{2}=10)
( displaystyle {{x}_{2}}=frac{-65-85}{2}=-75)
Мы получили два варианта ответа. Смотрим, что мы взяли за ( displaystyle x)? Правильно, скорость велосипедиста.
Вспоминаем правило «3Р», конкретнее «разумность». Понимаешь, о чем я? Именно! Скорость не может быть отрицательной, следовательно, наш ответ – ( displaystyle 10) км/ч.
Пример №9
Два велосипедиста одновременно отправились в ( displaystyle 165)-километровый пробег. Первый ехал со скоростью, на ( displaystyle 5) км/ч большей, чем скорость второго, и прибыл к финишу на ( displaystyle 5,5) часов раньше второго.
Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
Напоминаю:
- Прочитай задачу пару раз – усвой все-все детали. Усвоил?
- Начинай рисовать рисунок – в каком направлении они двигаются? какое расстояние они прошли? Нарисовал?
- Проверь, все ли величины у тебя одинаковой размерности, и начинай выписывать кратко условие задачи, составляя табличку (ты же помнишь, какие там графы?).
- Пока все это пишешь, думай, что взять за ( displaystyle x)? Выбрал? Записывай в таблицу!
- Ну а теперь просто: составляем уравнение и решаем. Да, и напоследок – помни о «3Р»!
Все сделал? Молодец! У меня получилось, что скорость велосипедиста – ( displaystyle 10) км/ч.
Пример №10
Из пункта ( displaystyle A) круговой трассы выехал велосипедист. Через ( displaystyle 40) минут он еще не вернулся в пункт ( displaystyle A) и из пункта ( displaystyle A) следом за ним отправился мотоциклист.
Через ( displaystyle 20) минут после отправления он догнал велосипедиста в первый раз, а еще через ( displaystyle 40) минут после этого догнал его во второй раз.
Найдите скорость велосипедиста, если длина трассы равна ( displaystyle 50) км. Ответ дайте в км/ч.
Попробуй нарисовать рисунок к этой задаче и заполнить для нее таблицу. Вот что получилось у меня:
Пусть скорость велосипедиста будет ( displaystyle x), а мотоциклиста – ( displaystyle y). До момента первой встречи велосипедист был в пути ( displaystyle 60) минут, а мотоциклист – ( displaystyle 20).
При этом они проехали равные расстояния:
( displaystyle 60x=20y (1))
Между встречами велосипедист проехал расстояние ( displaystyle 40x), а мотоциклист – ( displaystyle 40y).
Но при этом мотоциклист проехал ровно на один круг больше, это видно из рисунка:
(Надеюсь, ты понимаешь, что по спирали они на самом деле не ездили – спираль просто схематически показывает, что они ездят по кругу, несколько раз проезжая одни и те же точки трассы.)
Значит,
( displaystyle 40x+50=40y (2))
Полученные уравнения решаем в системе:
( displaystyle left{ begin{array}{l}60x=20y\40x+50=40yend{array} right.Leftrightarrow left{ begin{array}{l}y=3x\4x+5=4yend{array} right.Rightarrow text{4}x+5=12xRightarrow )
( displaystyle Rightarrow x=frac{5}{8}=0,625frac{text{км}}{мин}=0,625cdot 60frac{text{км}}{text{ч}}=37,5frac{text{км}}{text{ч}})
Ответ: ( displaystyle 37,5).
Разобрался? Попробуй решить самостоятельно следующие задачи:
Представь, что у тебя есть плот, и ты спустил его в озеро. Что с ним происходит? Правильно. Он стоит, потому что озеро, пруд, лужа, в конце концов, – это стоячая вода.
Скорость течения в озере равна ( displaystyle 0).
Плот поедет, только если ты сам начнешь грести. Та скорость, которую он приобретет, будет собственной скоростью плота. Неважно куда ты поплывешь – налево, направо, плот будет двигаться с той скоростью, с которой ты будешь грести.
Это понятно? Логично же.
А сейчас представь, что ты спускаешь плот на реку, отворачиваешься, чтобы взять веревку…, поворачиваешься, а он … уплыл…
Это происходит потому что у реки есть скорость течения, которая относит твой плот по направлению течения.
Его скорость при этом равна нулю (ты же стоишь в шоке на берегу и не гребешь) – он движется со скоростью течения.
Разобрался? Тогда ответь вот на какой вопрос – «С какой скоростью будет плыть плот по реке, если ты сидишь и гребешь?» Задумался?
Здесь возможно два случая:
1 случай – ты плывешь по течению, и тогда ты плывешь с собственной скоростью + скорость течения. Течение как бы помогает тебе двигаться вперед.
2 случай – ты плывешь против течения. Тяжело? Правильно, потому что течение пытается «откинуть» тебя назад. Ты прилагаешь все больше усилий, чтобы проплыть хотя бы ( displaystyle 100) метров, соответственно скорость, с которой ты передвигаешься, равна собственная скорость – скорость течения.
Классическим примером текстовой задачи, которая может встретиться вам на ЕГЭ, является задача на движение. Эти задачи довольно разнообразны и включают в себя: задачи на движение навстречу, задачи на движение вдогонку, задачи на движение по реке. И поэтому вопрос, как же решать задачи на движение, иногда ставят учеников в тупик.
Научиться решать такие задачи довольно легко, для этого нужно знать алгоритм, состоящий всего из 3 шагов.
- Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить
- Как решать задачи на движение: 3 простых шага
- Задачи на движение вдогонку: примеры с решением
- Задачи на движение навстречу: примеры с решением
- Задачи на движение по течению и против течения: примеры с решением
Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить
Для решения любой задачи на движение вам обязательно нужно знать всего одну формулу, которая вам уже давно известна:И уметь правильно выражать из этой формулы скорость и время:Многие ученики путаются при записи этих формул, допуская ошибки. Чтобы раз и навсегда запомнить формулы нахождения расстояния, скорости и времени, просто нарисуй треугольник. В верхнем углу треугольника напиши S, а внизу — V и t. Проведи горизонтальную черту между ними. Теперь мы можем закрыть рукой ту величину, которую нам нужно найти, и увидим формулу нахождения этой величины. Например, нам нужно найти расстояние. Закрываем рукой S, и на нашем рисунке останется V t – это и есть формула нахождения расстояния. Или нам нужно найти время. Закрываем рукой t, и на нашем рисунке остается – формула нахождения времени. Нужно найти скорость? Закрываем рукой V, получаем – формулу нахождения скорости. Главное запомнить, что S должна быть в верхнем углу. Это можно сделать, например, с помощью ассоциации, что S похожа на змею, а змея – хозяйка горы, поэтому она на вершине. Вот как выглядит такой магический треугольник:
Чтобы правильно решить задачу на движение нужно:
- Определить неизвестное и составить таблицу на основании условия задачи.
- Составить уравнение на основании таблицы.
- Вернуться к условиям задачи и записать правильный ответ.
Давайте подробнее разберем каждый шаг:
- Вначале нам нужно внимательно прочитать условие задачи и определить, что же взять за переменную Х. Чаще всего в задачах на движение удобнее всего за переменную Х обозначить скорость. Если же скорость нам прямо дана в условиях задачи, то за переменную Х обозначаем время. Если в условиях задачи прямо указаны значения и скорости, и времени, тогда за переменную Х берем расстояние. Затем из условий задачи определить все, что нам известно и занести в таблицу.
- На основании полученной таблицы составляем уравнение и решаем его. После решения уравнения не торопимся записывать ответ. Ведь нахождение Х – это не всегда ответ к исходной задаче. Такую ошибку совершают многие ученики: фактически правильно решив задачу, они записывают неправильный ответ.
- После решения уравнения возвращаемся к условиям задачи и смотрим, что же требовалось найти. Находим неизвестное и записываем ответ.
Задачи на движение бывают разными. В таких задачах участники движения могут двигаться навстречу друг другу, вдогонку, они могут двигаться по реке (против течения или по течению). Каждая из этих задач имеет особенности решения, о которых мы поговорим ниже и разберем на примерах.
Задачи на движение вдогонку: примеры с решением
При решении задачи, по условия которой оба участника движения двигаются в одном направлении, как правило, сравнивается время их движения. Необходимо запомнить правила:
- Если время движения сравнивается (то есть присутствуют слова больше/меньше), то мы приравниваем время и прибавляем слагаемое. То есть чтобы получить большее время, мы прибавляем к меньшему времени что-то еще (из условий задачи).
- Если условия задачи содержат общее время, то дроби, выражающее время, складываются.
Давайте разберем, как работают эти правила при решении задач.
Задача 1
Велосипедист и автомобилист одновременно выехали из пункта А в пункт Б, расстояние между которыми равно 50 км. Известно, что скорость автомобилиста на 40 км/ч больше, чем у велосипедиста, в результате чего автомобилист приехал в пункт Б на 4 часа раньше. Найдите скорость велосипедиста.
Решение:
1. Необходимо определить, что взять за переменную Х и составить таблицу. Вспоминаем, что удобнее всего за Х обозначить скорость в том случае, если она прямо не указано в условиях задачи.
В нашем случае скорость в условиях задачи не указана, поэтому скорость велосипедиста обозначаем за Х.
Составляем таблицу, данные для которой берем из условий задачи.
Итак, расстояние (S) нам известно – 50 км, скорость велосипедиста – х, скорость автомобилиста на 40 км/ч больше, значит она равна х + 40. Чтобы определить время вспоминаем формулу t = S / V и подставляем в нее наши значения. Время, затраченное велосипедистом, получится 50 / х, а время, затраченное автомобилистом — 50 / (х + 40).2. На основании таблицы и условий задачи необходимо составить уравнение.
Из условий задачи нам известно, что автомобилист приехал раньше велосипедиста на 4 часа (смотрим наше первое правило). Это значит, что велосипедист затратил на 4 часа больше времени, чем автомобилист. Следовательно,
50 / (х + 40) + 4 = 50 / х
Решаем полученное уравнение, для этого приводим наши дроби к одному знаменателю:
50х + 4х (х + 40) – 50 (х+40) / х (х + 40) = 0
(50х + 4х2 + 160х – 50х – 2000) / х (х+40) = 0
(4х2 + 160х – 2000) / (х2 + 40х) = 0
Умножим обе части уравнение на х2 + 40х:
4х2 + 160х – 2000 = 0
Разделим обе части уравнения на 4:
х2 + 40х – 500 = 0
Находим дискриминант:
D = 402 – 4 * 1 * (-500) = 3600
Далее находим корни уравнения:
х1 = 10
х2 = — 50
3. Возвращаемся к условиям задачи и вспоминаем, что же требовалось найти.
Нам нужно было определить скорость велосипедиста, которую мы обозначили за Х.
Скорость велосипедиста должна быть положительна, поэтому х2 не подходит по смыслу задачи. Следовательно, нас интересует только х1 и скорость велосипедиста равна 10 км/ч.
Ответ: 10 км/ч.
Задача 2
Велосипедист выехал с постоянной скоростью из города А в город Б, расстояние между которыми равно 80 км. На следующий день он поехал обратно, при этом его скорость была на 2 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 2 часа. В итоге на возвращение из города Б в город А у него ушло времени столько же, сколько на путь из города А в город Б. Найдите скорость велосипедиста на пути из города А в город Б.
Решение:
1. Обозначим скорость велосипедиста на пути из города А в город Б как переменную Х.
Составим таблицу.
Из условий задачи: расстояние — 80 км, скорость велосипедиста во второй день – х. Его скорость во второй день была на 2 км/ч больше, чем в первый день, т.е. в первый день она была ниже, следовательно, скорость велосипедиста в первый день равна х – 2. Определим затраченное велосипедистом время на путь по формуле t = S / V. Тогда время, затраченное в первый день на путь равно 80 / х, во второй день — 80 / (х + 2).2. На основании таблицы и условий задачи составим уравнение.
Из условий задачи нам известно, что во второй день велосипедист останавливался и отдыхал 2 часа, следовательно, в пути он провел на 2 часа меньше (смотрим наше первое правило). Также нам известно, что общее затраченное велосипедистом время в первый и во второй дни равно. Следовательно:
80 / (х + 2) + 2 = (80 / х)
Решаем полученное уравнение, для чего приводим дроби к общему знаменателю:
(80х + 160 – 80х – 2х (х+2)) / х (х + 2) = 0
Умножаем обе части уравнения на х (х + 2):
160 – 2х2 + 4х = 0
— 2х2 — 4х + 160 = 0
Делим обе части уравнения на -2:
х2 + 2х – 80 = 0
Находим дискриминант:
D = 22 – 4 * 1 * (-80) = 4 + 320 = 324
Тогда корни уравнения равны:
х1 = 8
х2 = — 10
3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость велосипедиста на пути из города А в город Б, которую мы обозначали за Х.
Скорость должна быть положительна, поэтому х2 = — 10 не подходит по смыслу задачи. Следовательно, скорость велосипедиста равна 8.
Ответ: 8 км/ч.
Задачи на движение навстречу: примеры с решением
Главное, что нужно помнить о движении навстречу: скорости участников движения складываются.
В тех случаях, когда нам неизвестно общее расстояние, то есть мы не можем его определить из условий задачи и из составленных уравнений, данное расстояние следует принимать за единицу.
Примеры решения задач на движение навстречу:
Задача 1
Из города А в город Б выехал автомобилист, через 3 часа навстречу ему выехал мотоциклист со скоростью 60 км/ч. Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Расстояние между городами А и Б равно 470 км. Найдите скорость автомобилиста.
Решение:
1. Обозначим скорость автомобилиста как Х.
Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Следовательно, автомобилист проехал 350 км, а мотоциклист 470 – 350 = 120 км.
Составим таблицу:2. Составим уравнении на основании таблицы и условий задачи.
Из условий задачи известно, что автомобилист ехал на 3 часа дольше, чем мотоциклист (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Следовательно:
350/х = 120/60 + 3
350/х = 5
Решаем полученное уравнение:
5х = 350
х = 70
3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость автомобилиста, которую мы обозначали за Х. Следовательно, скорость автомобилиста равна 70 км/ч.
Ответ: 70 км/ч.
Задача 2
Из городов А и Б одновременно навстречу друг другу выехали автомобилист и велосипедист. Автомобилист приехал в город А на 6 часов раньше, чем велосипедист приехал в город Б. Встретились они через 4 часа после начала движения. Сколько времени затратил автомобилист на путь из города Б в город А?
Решение:
1. Время автомобилиста обозначим как Х.
Примем расстояние между городами А и Б за единицу. Остальные данные берем из условий задачи.
Составим таблицу:2. Составим уравнение на основании таблицы и условий задачи.
Известно, что велосипедист и автомобилист встретились через 4 часа после начала движения и в сумме преодолели все расстояние от города А до города Б. То есть все расстояние от города А до города Б было преодолено за 4 часа.
Вспоминаем, что при движении навстречу скорости движения участников складываются. Подставим в формулу пути известные нам данные:
((1 / х) + (1 / (х — 6))) * 4 = 1
Решаем полученное уравнение:
(4 / х) + (4 / (х — 6)) = 1
Приводим дроби к одному знаменателю:
(4х — 24 + 4х — х2 + 6х) / (х (х — 6)) = 0
Делим обе части уравнения на х (х — 6), при условии, что х > 6:
-х2 + 14х — 24 = 0
Умножим обе части уравнение на -1:
х2 — 14х + 24 = 0
Находим дискриминант нашего квадратного уравнения:
D = 142 – 4 * 1 * 24 = 100
Находим корни уравнения:
х1 = 12
х2 = 2
х2 < 6, следовательно, корнем уравнения не является.
3. Возвращаемся к условиям задачи. Нам необходимо было определить, сколько времени затратил автомобилист на путь из города Б в город А. Это время мы обозначали за Х. Следовательно, автомобилист затратил на путь из города Б в город А 12 часов.
Ответ: 12 часов.
Задачи на движение по течению и против течения: примеры с решением
В условиях задач на движение по реке всегда дано две скорости: собственная скорость судна (скорость, с которой он может двигаться в неподвижной воде) и скорость течения.
При этом возможны две ситуации: когда судно движется по течению и когда судно движется против течения.
Когда судно движется по течению, то течение помогает судну двигаться, оно начинает двигаться быстрее, следовательно, собственная скорость судна и скорость течения складываются.
Когда же судно двигается против течения, то оно ощущает сопротивление, плыть ему становится тяжелее. В этом случае скорость течения будет вычитаться из собственной скорости судна.
Давайте рассмотрим примеры решения задач на движение по реке.
Задача 1
Катер прошел против течения реки 160 км/ч и вернулся в пункт отправления, затратив времени на обратный путь на 8 часов меньше. Найдите скорость катера в неподвижной воде, если известно, что скорость течения реки равна 5 км/ч.
Решение:
1. Обозначим собственную скорость катера – х.
Составим таблицу:2. На основании таблицы и условий задачи составим уравнение.
По условиям задачи известно, что время, затраченное на путь по течению реки, на 8 часов меньше, чем время, затраченное на путь против течения реки (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Соответственно:
160 / (х + 5) + 8 = 160 / (х — 5)
Решаем данное уравнение. Для этого приводим дроби к общему знаменателю:
(160 (х – 5) + 8 (х – 5) (х + 5) – 160 (х + 5)) / (х – 5) (х + 5) = 0
(160х – 800 + (8х – 40) (х + 5) – 160х — 800) / (х – 5) (х + 5) = 0
Умножаем обе части уравнения на (х – 5) (х + 5):
-1600 + 8х2 + 40х – 40х – 200 = 0
8х2 – 1800 = 0
8х2 = 1800
х2 = 225
х1,2 = ±15
3. Возвращаемся к условию задачи. Нам необходимо было найти собственную скорость катера, которую мы обозначили за Х. Так как скорость не может быть отрицательной, то х1 = -15 противоречит условию задачи. Следовательно, собственная скорость катера равна 15 км/ч.
Ответ: 15 км/ч.
Задача 2
Моторная лодка вышла в 9:00 из пункта А в пункт Б, расстояние между которыми 30 км. Пробыв в пункте Б 3 часа, моторная лодка повернула назад и вернулась в пункт А в 20:00. Найдите скорость течения реки, если известно, что собственная скорость моторной лодки 8 км/ч.
Решение:
1. Обозначим скорость течения реки за х. Остальные данные берем из условия задачи.
Составим таблицу:2. Составим уравнение.
Нам известно, что моторная лодка начала свое движение в 9:00, а закончила в 20:00, а также в течение этого времени пробыла без движения во время стоянки – 3 часа. Таким образом, общее время движения будет 20 – 9 – 3 = 8 часов. Когда речь идет об общем времени движения, то нам нужно сложить время движения по течению и время движения против течения (пользуемся вторым правилом, которое разбирали при решении задач на движение вдогонку). Получаем:
30 / (8+х) + 30 / (8-х) = 8
Решаем полученное уравнение. Для этого приводим дроби к общему знаменателю:
(30 (8+х) + 30 (8-х) – 8 (8-х) (8+х)) / (8-х) (8+х) = 0
Умножаем обе части уравнения на (8-х) (8+х):
240 + 30х + 240 – 30х – (64 – 8х) (8+х) = 0
480 – 512 – 64х + 64х – 8х2 = 0
8х2 = 32
х2 = 4
х1,2 = ±2
3. Возвращаемся к условию задачи. Нам необходимо было найти скорость течения, которую мы обозначили за х. Так как скорость не может быть отрицательной, то х1 = -2 противоречит условию задачи. Следовательно, скорость течения равна 2 км/ч.
Ответ: 2 км/ч.
Итак, мы разобрались, как решать задачи на движения. В ЕГЭ 2023 помимо задач на движение могут содержаться и другие текстовые задачи: на смеси и сплавы, на работу, на проценты. О том, как их решать, вы можете узнать на нашем сайте, а также .