Как найти собственные вектора матрицы онлайн

Нахождение собственных чисел и собственных векторов

Данный калькулятор поможет найти собственные числа и векторы, используя характеристическое уравнение.

Больше:

Выводить десятичную дробь

,

  • Оставляйте лишние ячейки пустыми для ввода неквадратных матриц.
  • Элементы матриц – десятичные (конечные и периодические) дроби: 1/3, 3,14, -1,3(56) или 1,2e-4; либо арифметические выражения: 2/3+3*(10-4), (1+x)/y^2, 2^0,5 (=2), 2^(1/3), 2^n, sin(phi), cos(3,142rad), a_1 или (root of x^5-x-1 near 1,2).

    • decimal (finite and periodic) fractions:

      1/3, 3,14, -1,3(56) или 1,2e-4

    • 2/3+3*(10-4), (1+x)/y^2, 2^0,5 (=2), 2^(1/3), 2^n, sin(phi), cos(3,142rad), a_1 или (root of x^5-x-1 near 1,2)

    • matrix literals:

      {{1,3},{4,5}}

    • operators:

      +, -, *, /, , !, ^, ^{*}, ,, ;, , =, , , > и <

    • functions:

      sqrt, cbrt, exp, log, abs, conjugate, min, max, gcd, rank, adjugate, inverse, determinant, transpose, pseudoinverse, cos, sin, tan, cot, cosh, sinh, tanh, coth, arccos, arcsin, arctan, arccot, arcosh, arsinh, artanh и arcoth

    • units:

      rad, deg

    • special symbols:

      • pi, e, i — mathematical constants
      • k, n — integers
      • I or E — identity matrix
      • X, Y — matrix symbols
  • Используйте ↵ Ввод, Пробел, , и Delete для перемещения по ячейкам, Ctrl⌘ Cmd+C/Ctrl⌘ Cmd+V – для копирования матриц.
  • Перетаскивайте матрицы из результата (drag-and-drop), или даже из текстового редактора.
  • За теорией о матрицах и операциях над ними обращайтесь к страничке на Википедии.

Примеры

  • Найти собственные векторы ({{-26,-33,-25},{31,42,23},{-11,-15,-4}})

Онлайн калькулятор нахождение собственных чисел и собственных векторов – Собственный вектор — понятие в линейной алгебре, определяемое для квадратной матрицы или произвольного линейного преобразования как вектор, умножение матрицы на который или применение к которому преобразования даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение, называемое собственным числом матрицы или линейного преобразования.

Данный калькулятор поможет найти собственные числа и векторы, используя характеристическое уравнение.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Собственные числа и вектора матрицы онлайн

Число
λ
называется
собственным числом матрицы
A,
если найдется ненулевой вектор
x
такой, что:

A x = λ x

Данный онлайн калькулятор находит собственные числа и собственные вектора матрицы с описанием подробного хода решения на русском языке. Для поиска решения, калькулятор использует численный алгоритм для начала работы которого необходимо задать требуемую точность нахождения решения и количество итераций, которые при этом необходимо затратить.

Калькулятор собственных чисел и векторов матрицы

Способ ввода выражения::

Размерность матрицы:

Требуемая точность:

Максимальное число итераций:

Найти собственные числа и вектора матрицы c точностью до 1010Максимально допустимое кол-во итераций равно 10034423

Установить калькулятор на свой сайт

Оставить свой комментарий:


bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • собственные:векторы:begin{pmatrix}6&-1\2&3end{pmatrix}

  • собственные:векторы:begin{pmatrix}1&2&1\6&-1&0\-1&-2&-1end{pmatrix}

  • собственные:векторы:begin{pmatrix}3&2&4\2&0&2\4&2&3end{pmatrix}

  • собственные:векторы:begin{pmatrix}4&4&2&3&-2\0&1&-2&-2&2\6&12&11&2&-4\9&20&10&10&-6\15&28&14&5&-3end{pmatrix}

  • Показать больше

Описание

Пошаговый расчет собственных векторов матрицы

matrix-eigenvectors-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • The Matrix, Inverse

    For matrices there is no such thing as division, you can multiply but can’t divide. Multiplying by the inverse…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Eigen vector, Eigen value 3×3 Matrix Calculator

    In linear algebra, the Eigenvector does not change its direction under the associated linear transformation. It is also known as characteristic vector. For Example, if x is a vector that is not zero, then it is an eigenvector of a square matrix A, if Ax is a scalar multiple of x. This calculator helps you to find the eigen value and eigen vector of a 3×3 matrices.

    3×3 Eigenvalues and Eigenvectors Calculation

    In linear algebra, the Eigenvector does not change its direction under the associated linear transformation. It is also known as characteristic vector. For Example, if x is a vector that is not zero, then it is an eigenvector of a square matrix A, if Ax is a scalar multiple of x. This calculator helps you to find the eigen value and eigen vector of a 3×3 matrices.

    Code to add this calci to your website Expand embed code Minimize embed code

    EigenValues is a special set of scalar values, associated with a linear system of matrix equations. It can also be termed as characteristic roots, characteristic values, proper values, or latent roots.The eigen value and eigen vector of a given matrix A, satisfies the equation Ax = λx ,
    where,
    λ is a number, also called a scalar.

    Related Calculators:

    • Determinant Calculator
    • Product Of Determinants Calculator
    • Sum Of Determinants Calculator
    • Square Matrix Calculator
    • Eigen Value Eigen Vector Calculator
    • Matrix Algebra Calculator
    • Inverse Matrix Calculator

    Добавить комментарий