Как найти содержание моль

Раствор – однородная система, состоящая из растворителя и растворенного в нем вещества (или нескольких). Количественная характеристика определяется концентрацией веществ, входящих в их состав.

Массовая доля

Массовая доля – это отношение массы растворённого вещества к массе всего раствора.

ω(%)=mxmX×100%omega left(% right)= frac{m_{x}}{m_{X}} times 100%

Пример

Сколько калия хлорида (в граммах) содержится в 100г 10% раствора?

Решение:
Масса калия хлорида (молярная масса MM для KClKCl 75г/моль):

mKCl=ω×M100%=10%×75100%=7,5m_{KCl}=frac{omega times M}{100%}=frac{10% times 75}{100%}=7,5г

Ответ: 7,5г.

Пример

Сколько необходимо добавить натрия гидроксида к 120г 3% раствора этой же соли, что бы концентрация увеличилась в три раза?

Решение:
Масса натрия гироксида исходная (MNaOH=40M_{NaOH}=40 г/моль:

m1NaOH=ω×M100%=3%×40100%=1,2m_{1NaOH}=frac{omega times M}{100%}=frac{3%times 40}{100%}=1,2г

Массовая доля натрия гидроксида в необходимом растворе:

ω2%=ω%×3=3%×3=9%omega _{2}%=omega%times3=3%times3=9%

Масса NaOH в необходимом растворе:

m2NaOH=9%×40100%=3,6m_{2NaOH}=frac{9%times 40}{100%}=3,6г

Необходимое количество рассчитываем как разность:

mNaOH=m2NaOH−m1NaOH=3,6−1,2=2,4m_{NaOH}=m_{2NaOH}-m_{1NaOH}=3,6-1,2=2,4г

Ответ: 2,4г.

Молярная концентрация

Молярная концентрация – количество вещества (в молях) в объеме раствора.
Количество растворенного вещества (в молях) выражается как масса вещества (в граммах), деленная на молярную массу (г/моль).

η=mxMeta =frac{m_{x}}{M}

Молярная концентрация выражается в формуле:

Cx=ηV=η=mxM×VC_{x} = frac{eta }{V} = eta =frac{m_{x}}{M}times V

Пример

Определите молярную концентрацию калия иодида. В 120мл воды содержится 15г KI.

Решение:
Выражаем молярную концентрацию (моль/л) KI по формуле ($M_(KI)=$166г/моль):

CKI=mKIMKI×VC_{KI} =frac{m_{KI}}{M_{KI}}times V=15166×0,12=0,01=frac{15}{166}times 0,12=0,01моль/л

Т.к. молярная концентрация выражается в моль/л миллилитры переводим в литры.

Ответ: 3,61 моль/л.

Пример

Какая масса лития хлорида содержится в 200мл 3М раствора?

Решение:
Находим количество растворенного лития хлорида (моль):

η=CLiCl×V=3×0,2=0,6eta =C_{LiCl}times V=3times 0,2=0,6г

Выражаем массу M(LiCl)=M_ (LiCl)= 42,3г/моль):

mLiCl=ηLiCl×MLiCl=0,6×42.3=25,4m_{LiCl}=eta_{LiCl} times M_{LiCl}=0,6times 42.3=25,4г

Ответ: 25,4г.

Молярная (мольная) доля

Молярная (мольная) доля – отношения количества вещества в растворе к количеству всех веществ, образующих раствор.

Nx%=nx∑n×100%N_{x}%=frac{n_{x}}{sum{n}}times 100%

Пример

Концентрация бария хлорида в 100мл водного раствора равна 20%. Определите его мольную долю.

MBaCl2=208M_{BaCl_{2}}=208моль/л, MH2O=18M_{H_{2}O}=18моль/л.

Решение:

Находим содержание воды:

ωH2O=100%−ωBaCl2=100%−20%=80%omega _{H_{2}O}=100%-omega BaCl_{2}=100%-20%=80%

Т.к. объем раствора равен 100мл, то массы каждого компонента равны значениям массовой доли. Следовательно:

mBaCl2=20m_{BaCl_{2}}=20г

mH2O=80m_{H_{2}O}=80г

Определим количество ηeta для бария хлорида и воды:

ηBaCl2=mBaCl2MBaCl2=20208=0,01eta_{BaCl_{2}}=frac{m_{BaCl_{2}}}{M_{BaCl_{2}}}=frac{20}{208}=0,01моль

ηH2O=mH2OMH2O=2018=1,1eta_{H_{2}O}=frac{m_{H_{2}O}}{M_{H_{2}O}}=frac{20}{18}=1,1моль

Определяем мольную долю NBaCl2N_{BaCl_{2}}:

NBaCl2=ηBaCl2ηBaCl2+ηH2O×100%=0,010,01+0,1×100%=9%N_{BaCl_{2}}=frac{eta BaCl_{2}}{eta BaCl_{2}+eta H_{2}O}times 100%=frac{0,01}{0,01+0,1}times 100%=9%

Ответ: 9%

Молярная концентрация эквивалента

Молярная концентрация эквивалента (нормальность) – число моль эквивалентов в объеме раствора.

C1/z=mxM1/z×VC_{1/z} = frac{m_{x}}{M_{1/z}times V}моль*экв/литр

Фактор эквивалентности f1/zf_{1/z} – показывает часть реальной частицы, составляющую эквивалент.
Молярная масса эквивалента M1/zM_{1/z} – произведение молярной массы и фактора эквивалентности:

M1/z=M×f1/zM_{1/z} = M times f_{1/z}г/моль

Пример

Определите молярную концентрацию эквивалента 4.6г серной кислоты, нейтрализованной раствором гидроксида натрия. В результате реакции общий объём составил 100мл.

Решение:
MH2SO4=98M_{H_{2}SO_{4}}=98г/моль, f1/z=1/2f_{1/z=1/2}.

Находим молярную массу эквивалента для серной кислоты:

M1/zH2SO4=MH2SO4×f1/zM_{1/z H_{2}SO_{4}} = M _{H_{2}SO_{4}}times f_{1/z} = 98times 1/2=49$г/моль

Находим нормальность:

C1/zH2SO4=mH2SO4M1/zH2SO4×V=4,649×0,1=0,94C_{1/z H_{2}SO_{4}} = frac{m_{H_{2}SO_{4}}}{M_{1/z H_{2}SO_{4}}times V}=frac{4,6}{49times
0,1}=0,94
моль*экв/л

Ответ: 0,94моль*экв/л.

Моляльность

Моляльность – количество вещества в килограмме растворителя.
Сm=ηxmС_{m}=frac{eta _{x}}{m}моль/кг

Пример

В 300г воды растворили 20г калия гидроксида. Определите моляльную концентрацию раствора.

Решение:
MKOH=98M_{KOH}=98г/моль.

Находим количество калия гидроксида:

ηKOH=mKOHM=2056=0,36eta _{KOH} = frac{m_{KOH}}{M}=frac{20}{56}=0,36моль

Находим моляльность (граммы переводим в килограммы):

CKOH=ηKOHm=0,360,3=1,2C_{KOH}=frac{eta _{KOH}}{m}=frac{0,36}{0,3}=1,2моль/кг

Ответ: 1,2 моль/кг.

При решении химических задач, при расчётах на работе, да и просто в жизни иногда приходится рассчитывать концентрации. Неважно, будет это школьная теоретическая задача, необходимость приготовить электролит для аккумулятора автомобиля, надобность узнать количество сахара для компота — все расчёты концентраций выполняются по известным формулам, которых не так много. Однако, с этим часто возникают трудности.

Прочитав эту статью, Вы научитесь легко рассчитывать концентрации веществ и при надобности играючи переводить одну концентрацию в другую. В статье приводятся примеры задач с решениями, а в конце приведём справочную табличку с формулами, которую можно распечатать и держать под рукой.

Массовая доля

Начнём с простого, но в то же время нужного способа выражения концентрации компонента в смеси — массовой доли.

Массовая доля есть отношение массы данного компонента к сумме масс всех компонентов. Обозначать её принято буквой w или ω (омега).

Рассчитывается массовая доля по формуле:

Large w_{i}=frac{m_{i}}{m}, ;;;;;(1)

где Large w_{i} — массовая доля компонента i в смеси,

Large m_{i} — масса этого компонента,

m — масса всей смеси.

И сразу разберём на примере:

Задача:

Зимой дороги посыпают песком с солью. Известно, что куча имеет массу 50 кг, и в неё всыпали 1 кг соли и перемешали. Найти массовую долю соли.

Решение:

Масса соли есть Large m_{i} по формуле выше. Масса всей смеси нам пока неизвестна, но найти её легко. Просуммируем массу песка и соли:

Large m = m_{п}+m_{с}= 50 кг + 1 кг = 51 кг

А теперь находим и массовую долю:

Large w_{с} = frac{m_{с}}{m} = 1 кг / 51 кг = 0.0196,

или умножаем на 100% и получаем 1.96%.

Ответ: 0.0196, или 1.96%.

Теперь решим что-то посложнее, и ближе к ЕГЭ.

Задача:

Смешали 200 г раствора глюкозы с массовой концентрацией 25% и 300 г раствора глюкозы с массовой концентрацией 10%. Найти массовую концентрацию полученного раствора, ответ округлить до целых.

Решение:

Обозначим первый и второй растворы соответственно Large m_{1} и Large m_{2}. Массу полученного после смешения раствора обозначим Large m и найдём:

Large m = m_{1} + m_{2} = 200 г + 300 г = 500 г

Массу самой глюкозы в первом и втором растворе обозначим Large m_{гл. 1} и Large m_{гл. 2}. По формуле (1) это будут наши массы компонентов. Массы растворов нам известны, их массовые концентрации тоже. Как найти массу компонента? Очень просто, находим неизвестное делимое умножением (и не забываем, что проценты — это сотые части):

Large m_{гл. 1} = w_{1}cdot m_{1} = 0.25 cdot 200 г = 50 г

Large m_{гл. 2} = w_{2}cdot m_{2} = 0.1 cdot 300 г = 30 г

Таким образом, общая масса глюкозы Large m_{гл}:

Large m_{гл} = m_{гл. 1} + m_{гл. 2} = 50 г + 30 г = 80 г.

Ответ: 80 г.

Задачи на смешение раствором с разными концентрациями одного вещества можно решать с помощью «конверта Пирсона».

Объёмная доля

Часто, когда мы имеем дело с жидкостями и газами, удобно оперировать их объёмами, а не массой. Поэтому, чтобы выражать долю какого-либо компонента в таких смесях (но и в твёрдых тоже вполне можно), пользуются понятием объёмной доли.

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах. Обычно обозначается греческой буквой φ (фи).

Рассчитывается объёмная доля по формуле:

Large phi_{B}=frac{V_{B}}{sum{V_{i}}}, ; ;;;; (2)

где Large phi_{B} — объёмная доля компонента B;

Large V_{B} — объём компонента B;

Large sum{V_{i}} — сумма объёмов всех компонентов.

Здесь важно понимать, что в формулу по возможности подставляем именно сумму объёмов всех компонентов, а не объём смеси, так как при смешивании некоторых жидкостей суммарный объём уменьшается. Так, если смешать литр воды и литр спирта, два литра аквавита мы не получим — будет примерно 1800 мл. В школьных задачах, как правило, это не так важно, но в уме держим и помним.

Задача:

Смешали 6 объёмов воды и 1 объём серной кислоты. Найти объёмную долю кислоты в полученном растворе.

Решение:

Так как объёмная доля — безразмерная величина, объёмы компонентов в условии задачи могут даваться в любых единицах — литрах, стаканах, баррелях, штофах, сексталях — главное, чтобы в одинаковых. Если не так — переводим одни в другие, если одинаковые — решаем. В нашем условии описаны просто некоторые «объёмы», их и подставляем.

Large phi_{H_{2}SO_{4}} = frac{V_{ H_{2}SO_{4} }} { V_{ H_{2}SO_{4}} + V_{H_{2}O}} = frac{1 : объём}{1 : объём + 6 : объёмов} = frac{1 : объём}{7 : объёмов} = 0.143, : или : 14.3%

Ответ: 14.3 %.

С газами всё обстоит немного интереснее — при не очень больших давлениях и температурах объёмная доля какого-либо газа в газовой смеси равна его мольной доле. (Ведь мы знаем, что молярный объём газов почти равен 22.4 л/моль).

Задача:

Мольная доля кислорода в сухом воздухе составляет 0.21. Найдите объёмную долю азота, если объёмная доля аргона составляет 1%.

Решение:

Внимательный читатель заметил, что мы написали о том, что объёмная и мольная доля для газов в смеси равны. Поэтому, объёмная доля кислорода равна также 0.21, или 21%. Найдём объёмную долю азота:

Large 100% – 21% – 1% = 78%.

Ответ: 78%.

Мольная доля

В тех случаях, когда нам известны количества веществ в смеси, мы можем выразить содержание того или иного компонента с помощью мольной доли.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y).

Находят мольную долю по формуле:

Large x_{B} = frac{n_{B}}{sum{n_{i}}}, ;;;;;(3)

где Large x_{B} — мольная доля компонента B;

Large n_{B} — количество компонента B, моль;

Large sum{n_{i}} — сумма количеств всех компонентов.

Разберём на примере.

Задача:

При неизвестных условиях смешали 3 кг азота, 1 кг кислорода и 0.5 кг гелия. Найти мольную долю каждого компонента полученной газовой смеси.

Решение:

Сначала находим количество каждого из газов (моль):

Large n_{N_{2}} = frac{ m_{N_{2}}}{M_{N_{2}}} = frac {3000 : г}{28 : ^г/_{моль}} = 107.14 : моль

Large n_{O_{2}} = frac{ m_{O_{2}}}{M_{O_{2}}} = frac {1000 : г}{32 : ^г/_{моль}} = 31.25 : моль

Large n_{He} = frac{ m_{He}}{M_{He}} = frac {500 : г}{4 : ^г/_{моль}} = 125 : моль

Затем считаем сумму количеств:

Large sum {n} = 107.14 : моль + 31.25 : моль + 125 : моль = 263.39 : моль

И находим мольную долю каждого компонента:

Large y_{N_{2}} = frac {107.14 : моль}{263.39 : моль} = 0.4068, : или : 40.68 %;

Large y_{O_{2}} = frac {31.25 : моль}{263.39 : моль} = 0.1186, : или : 11.86 %;

Large y_{He} = frac {125 : моль}{263.39 : моль} = 0.4746, : или : 47.46 %;

Проверяем:

Large 40.68 % + 11.86 % + 47.46 % = 100%.

И радуемся правильному решению.

Ответ: 40.68%, 11.86% , 47.46%.

Молярность (молярная объёмная концентрация)

А сейчас рассмотрим, вероятно, самый часто встречающийся способ выражения концентрации — молярную концентрацию.

Молярная концентрация (молярность, мольность) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л.

Также иногда говорят просто «молярность», и обозначают буквой М. Это значит, что, например, обозначение «0.5 М раствор соляной кислоты» следует понимать как «полумолярный раствор соляной кислоты», или 0.5 моль/л.

Обозначают молярную концентрацию буквой c (латинская «цэ»), или заключают в квадратные скобки вещество, концентрация которого указывается. Например, [Na+] — концентрация катионов натрия в моль/л. Кстати, слово «моль» в обозначениях не склоняют — 5 моль/л, 3 моль/л.

Рассчитывается молярная концентрация по формуле:

Large c_{B} = frac{n_{B}}{V} ; ; ;;; (4)

где Large n_{B} — количество вещества компонента B, моль;

Large V — общий объём смеси, л.

Разберём на примере.

Задача:

В пивную кружку зачем-то насыпали 24 г сахара и до краёв заполнили кипятком. А нам зачем-то нужно найти молярную концентрацию сахарозы в полученном сиропе. И кстати, дело происходило в Британии.

Решение:

Молекулярная масса сахарозы равна 342 (посчитайте, может мы ошиблись — C12H22O11). Найдём количество вещества:

Large n_{сахарозы} = frac{24 : г}{342 : г/моль} = 0.0702 моль

Британская пинта (мера объёма такая) равна 0.568 л. Поэтому молярная концентрация находится так:

Large c_{сахарозы} = frac{0.0702 : моль}{0.568 : л} = 0.1236 моль/л

Ответ: 0.1236 моль/л.

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов).

Обозначается нормальная концентрация как сн, сN, или даже c(feq B). Рассчитывается нормальная концентрация по формуле:

Large c_{N} = z cdot c_{B} = z cdot frac{n_{B}}{V}= frac{1}{f_{eq}} cdot frac {n_{B}}{V} ; ;;;; (5)

где Large n_{B} — количество вещества компонента В, моль;

V — общий объём смеси, л;

z — число эквивалентности (фактор эквивалентности Large f_{eq} = 1/z ).

Значение нормальной концентрации для растворов записывают как «н» или «N», а говорят «нормальность» или «нормальный». Например, раствор с концентрацией 0.25 н — четвертьнормальный раствор.

Разберём на примере.

Задача:

Рассчитать нормальность раствора объёмом 1 л, если в нём содержится 40 г перманганата калия. Раствор приготовили для последующего проведения реакции в нейтральной среде.

Решение:

В нейтральной среде перманганат калия восстанавливается до оксида марганца (IV). При этом в окислительно-восстановительной реакции 1 атом марганца принимает 3 электрона (проверьте на любой окислительно-восстановительной реакции перманганата калия с образованием оксида, расставив степени окисления), что означает, что число эквивалентности будет равно 3. Для расчёта концентрации по формуле (5) выше нам ещё не хватает количества вещества KMnO4. найдём его:

Large n_{KMnO_{4}}=frac{m _{KMnO_{4}}}{M _{KMnO_{4}} } = frac{40 : г}{158 г/моль}= 0.253 моль

Теперь считаем нормальную концентрацию:

Large c_{N_{KMnO_{4}}}= z cdot frac{n_{KMnO_{4}}}{V} = 3 cdot frac{0.253 : моль}{1 : л} = 0.759 моль-экв/л

Ответ: 0.759 моль-экв/л.

Таким образом, заметим важное на практике свойство — нормальная концентрация больше молярной в z раз.

Мы не будем рассматривать в данной статье особо экзотические способы выражения концентраций, о них вы можете почитать в литературе или интернете. Поэтому расскажем ещё об одном способе, и на нём остановимся — массовая концентрация.

Моляльная концентрация

Моляльная концентрация (моляльность, молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.

Измеряется моляльная концентрация в молях на кг. Как и с молярной концентрацией, иногда говорят «моляльность», то есть раствор с концентрацией 0.25 моль/кг можно назвать четвертьмоляльным.

Находится моляльная концентрация по формуле:

Large m_{B} = frac{n_{B}}{m_{A}}, ;;;;; (6)

где Large n_{B} — количество вещества компонента B, моль;

Large m_{A} — масса растворителя, кг.

Казалось бы, зачем нужна такая единица измерения для выражения концентрации? Так вот, у моляльной концентрации есть одно важное свойство — она не зависит от температуры, в отличие, например, от молярной. Подумайте, почему?

Массовая концентрация

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ или ρ.

Находится массовая концентрация по формуле:

Large rho_{B}=frac{m_{B}}{V}, ;;;;; (7)

где Large m_{B} — масса растворенного вещества, г;

Large V — общий объём смеси, л.

В системе СИ выражается в кг/м3.

Разберём на примере.

Задача:

Рассчитать массовую концентрацию перманганата калия по условиям предыдущей задачи.

Решение:

Решение будет совсем простым. Считаем:

Large rho_{ KMnO_{4} }=frac{m_{ KMnO_{4} }}{V} =frac{40 : г}{1 : л} = 40 г/л.

Ответ: 40 г/л.

Также в аналитической химии пользуются понятием титра по растворенному веществу. Титр по растворенному веществу находится так же, как и массовая концентрация, но выражается в г/мл. Легко догадаться, что в задаче выше титр будет равен 0.04 г/мл (для этого надо умножить наш ответ на 0.001 мл/л, проверьте). Кстати, обозначается титр буквой Т.

А теперь, как обещали, табличка с формулами перевода одной концентрации в другую.

Таблица перевода одной концентрации в другую.

В таблице слева — ВО ЧТО переводим, сверху — ЧТО. Если стоит знак «=», то, естественно, эти величины равны.

Массовая доля, large omega, % Мольная доля, large x , % Объёмная доля, large phi, % Молярная концентрация, large c, моль/л Нормальная концентрация, large c_{N} , моль-экв/л Моляльная концентрация, large m, моль/кг Массовая концентрация, large rho, г/л
Массовая доля, large omega, % = large omega_{B}=LARGE frac{x_{B} cdot M(B)}{sum x_{i} cdot M_{i}} Для газов:
omega = LARGE frac{phi_{A} cdot M(A)}{sum (M_{i} cdot phi_{i})}
large omega_{B}= LARGE frac{c_{B} cdot M(B)}{rho} large omega_{B}=LARGE frac{c_{N} cdot M(B)}{rho cdot z} large omega_{B}= LARGE frac{gamma_{B}}{rho}
Мольная доля, large x , % large x_{B}=LARGE frac{frac{omega_{B}}{M(B)}}{sum frac{omega_{i}}{M_{i}}} = large x_{B}=LARGE frac{m_{B}}{m_{B}+frac{1}{M(A)}}
Объёмная доля, large phi, % Для газов:
large phi_{A}=LARGE frac{frac{omega_{A}}{M(A)}}{sum frac{omega_{i}}{M_{i}}}
=
Молярная концентрация, large c, моль/л large c_{B}=LARGE frac{rho cdot omega_{B}}{M(B)} = large c_{B}=Large frac{c_{N}}{z}
Нормальная концентрация, large c_{N} , моль-экв/л large c_{N}=LARGE frac{rho cdot omega_{B} cdot z}{M(B)} large c_{N}=c_{B} cdot z =
Моляльная концентрация, large m, моль/кг large m_{B}=Large frac{x_{B}}{M(A)(1-x_{B})} =
Массовая концентрация, large gamma, г/л large gamma_{B}=rho cdot omega_{B} =

Таблица будет пополняться.

Молярная доля – величина, которая характеризует отношение количества молей искомого вещества к общему количеству молей всех веществ, находящихся, например в растворе или смеси газов.

Как-же ее вычислить?

Для вычисления потребуется таблица Менделеева и калькулятор.

Этап 1.

Следует выписать формулы всех веществ и расчитать их молярные массы, используя таблицу Менделеева.

Пример:

Молярная масса воды (H20) равна 18. Почему? Атомная масса водорода (H) равна 1, а атомная масса кислорода (O) равна 16, соответственно 16+1+1=18.

Также, к примеру молярная масса оксида аллюминия (Al2O3) равна 27+27+16+16+16=102 (Атомная масса аллюминия 27, и как сказанно выше, кислорода 16).

Этап 2.

Теперь нужно определить количество молей каждого вещества. Для этого, массу вещества следует разделить на молярную массу.

Этап 3.

Теперь у нас есть сумма молей всех веществ (запишем, как Z) и количество молей искомого вещества (запишем, как n)

Формула для определения молярной доли X=n/Z, где X – искомая молярная доля, Z – сумма всех молей, n – моли искомого вещества.

Существует множество способов измерить концентрацию раствора. Это так называемые способы выражения концентрации раствора.

Концентрация раствора — это количество вещества, находящегося в единице объема или массы раствора.

Что такое раствор

Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях.

Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными.

Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве.

Существуют растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.

Концентрацию раствора можно охарактеризовать как:

  • качественную
  • количественную.

Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.
С этой точки зрения растворы можно классифицировать на:

  • Насыщенные – растворы с максимально возможным количеством растворенного вещества. Количество растворяемого вещества, необходимое для получения насыщенного раствора определяет растворимость этого вещества.
  • Ненасыщенные – любые растворы, которые все еще могут растворять введенное вещество.
  • Пересыщенные – растворы, в которых растворено больше вещества, чем максимально возможное. Такие растворы очень нестабильны и в определенных условиях растворенное вещество будет выкристаллизовываться из него, до тех пор, пока не образуется насыщенный раствор.

Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.

Способы выражения концентрации растворов

Молярная концентрация растворов (молярность)

Наиболее распространенный способ выражения концентрации растворов –  молярная концентрация или молярность. Она определяется как количество молей n растворенного вещества в одном литре раствора V. Единица измерения молярной концентрации моль/л или моль ·л-1:

См = n/V

Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества,  децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.

Термин «молярная концентрация» распространяется на любой вид частиц.

Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.

Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).

Понятие эквивалентности мы уже вводили. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.

Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде равен 1/5 (KMnO4).

Еще одно необходимое понятие — фактор эквивалентности – это число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной  кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции.

Он может быть равен 1 или быть меньше 1. Фактор эквивалентности, например, для KMnO4 в окислительно – восстановительной реакции в кислой среде составляет  fэкв(KMnO4) = 1/5.

Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:

Мэ = fэкв· М(х)

Молярная концентрация эквивалента (нормальность) определяется числом молярных масс эквивалентов на 1 литр раствора.

Эквивалент определяется в соответствии с типом рассматриваемой реакции. Единица измерения нормальной концентрации такая же как и у молярной концентрации — моль/л или моль·л-1

Сн = nэ/V

Для обозначения нормальной концентрации допускается сокращение  «н» вместо «моль/л».

Процентная концентрация раствора или массовая доля

Массовая концентрация показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора.

Это отношение массы m(х) вещества x к общей массе m раствора или смеси веществ:

ω(х) = m(х)/m

Массовую долю выражают в долях от единицы или процентах.

Моляльная концентрация раствора

Моляльная концентрация раствора b(x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m. Единица измерения моляльной концентрации — моль/кг :

b(x) = n(x)/m

Титр раствора

Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора. Единица измерения титра — г/мл:

Т(х) = m(х)/V,

Мольная или молярная доля

Мольная или молярная доля α(х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:

α(х) = n(х)/Σn

Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации  найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети.  В разделе задач показано, как произвести такой пересчет, не зная формул.

Пример перевода процентной концентрации в молярную, нормальную концентрацию, моляльность, титр

Дан раствор объемом 2 л с массовой долей FeSO2% и плотностью 1029 кг/м3. Определить молярность, нормальность, моляльность и титр этого раствора раствора.

Решение.

1. Рассчитать молярную массу FeSO4:

M (FeSO4) =
56+32+16·4 = 152 г/моль

2. Рассчитать молярную массу эквивалента:

Мэ = fэкв·
М(FeSO4) = 1/2·152
= 76 г/моль

3. Найдем m раствора объемом 2 л

m = V·ρ = 2·10-3 ·1029
= 2,06 кг

4. Найдем массу 2 % раствора по формуле:

m(FeSO4) = ω(FeSO4) · mр-ра 

m(FeSO4) =
0,02·2,06 = 0,0412 кг = 41,2 г

5. Найдем молярность, которая определяется как количество молей растворенного вещества в одном литре раствора:

n = m/М

n = 41,2/152 = 0,27 моль

См = n/V

См  = 0,27/2 = 0,135 моль/л

6. Найдем нормальность:

nэ = m/Мэ

nэ = 41,2/76 = 0,54 моль

Сн = nэ/V

Сн = 0,54/2 = 0,27 моль/л

7. Найдем моляльность раствора. Моляльная концентрация равна:

b (x) = n(x)/m

Масса растворителя, т.е.
воды в растворе равна:

mH2O = 2,06-0,0412
=  2,02 кг

b
(FeSO4) = n(FeSO4)/m = 0,27/2,02 = 0,13 моль/кг

8. Найдем титр раствора, который показывает какая масса вещества содержится в 1 мл раствора:

Т(х) = m (х)/V

Т(FeSO4) = m (FeSO4)/V = 41,2/2000 = 0,0021 г/мл

Еще больше задач приведены в разделе Задачи: Концентрация растворов, Правило креста

Растворы - такие таинственные и загадочные
Растворы – такие таинственные и загадочные

В реальности, химики редко работают с чистыми веществами. В большинстве своем для работы, при проведении химических реакций, расчетов по ним используются различные растворы.

Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия

Подробнее о процессе растворения мы поговорим в следующих статьях.

При решении расчетных задач нам нудно уметь находить количество чистого вещества, находящегося в растворе. Это необходимо затем, что, как правило, в химическое взаимодействие вступает вещество, а не дополнительные продукты, которое оно содержит: примеси, если это не чистое вещество, компоненты растворителя, или инертные для данного химического процесса компоненты смеси (если это смесь веществ).

Если мы работаем с 500 граммами раствора, в котором всего 10 грамм чистого вещества, то в расчеты мы берем 10 грамм, а не 500! – пример, почему необходимо уметь вычислять количественные характеристики чистого вещества.

Способы выражения концентрации растворов

Существуют различные способы выражения концентраций растворов. В задачах могут встретиться любые из них. Рассмотрим основные из них более подробно.

I. Массовая доля вещества

Массовая доля – отношение массы чистого вещества к массе всего раствора. Данная величина безразмерная (говорят доля от единицы, всегда меньше 1, или равна единице для чистого вещества), или выражается в %.

Очень часто можно встретить запись запись, например NaOH, 15% – это значит, что из всей массы раствора на долю гидроксида натрия (NaOH) приходится только 15 %.

Формула расчета массовой доли вещества
Формула расчета массовой доли вещества

Следует не забывать, что масса раствора = масса растворителя + масса чистого вещества.

Зная массовую долю вещества, нетрудно выразить формулу для расчета массы чистого вещества:

Формулы для расчета массы вещества по известной массовой доле
Формулы для расчета массы вещества по известной массовой доле

В некоторых задачах масса раствора может быть не дана в условии. В этом случае мы сами можем её задать. Как правило в таких случаях, мы задаём массу раствора как 100 г. Дальнейший расчет ведется уже исходя из заданной массы (если требуется перевести одну концентрацию в другую).

Приведем примеры задач:

Решение задачи
Решение задачи

Мы специально делаем подробное решение, чтобы отследить ход мыслей.

Решим аналогичную задачу:

Способы представления концентраций раствора

Более часто встречаются задачи, в которых требуется приготовить раствор из другого раствора путем добавления чистого вещества (в этом случае концентрация увеличится), растворителя (концентрация уменьшится) или другого раствора (концентрация займёт промежуточное значение).

Рассчитайте массу соли, которую необходимо добавить к 150 г 10% -го раствора, чтобы концентрация полученного раствора стала 15%?

Данную задачу можно решать различными способами. В настоящий момент приведем только один (более длинный, но более понятный). Для решения таких задач другим способом мы подготовим видео.

Способы представления концентраций раствора

Задачи, в которых добавляется растворитель – решаются проще.

Какое количество воды необходимо добавить к 200 г 15%-го раствора, чтобы его концентрация стала 10%?

Способы представления концентраций раствора

Для решения задач, в которых смешиваются два раствора, имеющих различные концентрации, можно использовать следующий алгоритм:

1. Рассчитать количество чистого вещества в обоих растворах и сложить их.

2. Поделить полученное число на сумму масс растворов. Домножить на 100 %.

Решим для примера следующую задачу

Смешали 200 г 10%-го раствора серной кислоты и 100 г 20-% го. Какая массовая доля стала у получившегося раствора?

Способы представления концентраций раствора

II. Молярная концентрация вещества

Молярная концентрация вещества – отношение количества вещества к объему раствора. Данная величина показывает нам, сколько (моль) вещества растворено в 1 литре раствора. Единица измерения – моль/л.

Обозначается молярная концентрация заглавной буквой C

Способы представления концентраций раствора

В химической лаборатории очень часто для обозначения концентрации используется именно данная величина.

Очень часто, на химических склянках можно увидеть следующие обозначения:

Молярная концентрация растворов
Молярная концентрация растворов

Таким способом также обозначается молярная концентрация. Число перед буквой М обозначает концентрацию: 1 моль/л; 0,1 моль/л; 0,02 моль/л; 3 моль/л; 0,5 моль/л.

Можно также встретить в задачах такое обозначение, связанное с данной формой записи: молярный раствор (1 М) – раствор, концентрация которого составляет 1 моль/л. Децимолярный раствор (0,1 М) – 0,1 моль/л; сантимолярный раствор (0,01 М) – 0,01 моль/л.

Решим некоторые задачи, в которых используется молярная концентрация:

Для приготовления раствора сульфата натрия навеску, содержащую 14,2 г соли растворили в 500 мл воды и довели до метки.

Доведение до метки обозначает, что объем приготовленного раствора составляет (в данном случае) 500 мл.

Способы представления концентраций раствора

Часто требуется рассчитать количество вещества:

Способы представления концентраций раствора

Прежде чем проводить расчет по уравнению химических реакций, необходимо найти количество вещества.

III. Моляльная концентрация

Моляльная концентрация – отношение количества (моль) растворенного вещества к массе растворителя. Данная концентрация показывает нам, сколько моль вещества необходимо добавить к 1 кг растворителя (воды, например), чтобы получить нужную концентрации. Обозначается данная концентрация См, а измеряется в моль/кг(растворителя).

Способы представления концентраций раствора

IV. Мольная доля

Мольная доля – отношение количества вещества к сумме количеств всех компонентов раствора. Данная физическая величина не имеет размерности.

Способы представления концентраций раствора

Сумма всех мольных долей раствора равна “1”.

Данная физическая величина нашла широкое применение в химической химии для описания равновесных термодинамических процессов.

V. Титр

Титр – отношение массы вещества к единице объема (выраженного в миллилитрах). Титр показывает, сколько грамм вещества находится в каждом миллилитре раствора. обозначается как “Т” и измеряется в г/мл.

Способы представления концентраций раствора

Титр – очень маленькая величина, так как в в 1 миллилитре раствора может находиться незначительное количество вещества.

Титр нашел широкое применение в аналитической химии.

В заключении

По данной теме существует огромное количество расчетных задач. Многие из них мы рассмотрим в следующих статьях. О пока…

Проверьте, как Вы усвоили материал.

Задание №1. Перейдите к гугл-форме и ответьте на вопросы (базовый уровень):

https://forms.gle/7u32uLfxRk1Yug7a8

Задание №2. Решите расчетные задачи: https://vk.com/page-205267346_56951920 (повышенный уровень)

Задание №3. Решите следующую задачу:

Какова молярная концентрация 12%-ного раствора серной кислоты (H2S04) с плотностью р = 1,08 г/см3. Рассчитайте титр данного вещества, моляльную концентрацию, мольную долю.

Отчет о решении задач пришли в беседу “Учебный класс”:

https://vk.me/join/DKsyQe2p0hJ2Wdoch1XOTwi_qZEJow1udOM=

Добавить комментарий