Как найти соотношение углов в геометрии

Треугольник

О многоугольнике с тремя сторонами

Соотношение углов и сторон в треугольнике интуитивно можно понять, если хорошо представлять эту фигуру. Речь идет о плоском объекте, который состоит всего из трех отрезков. Они расположены таким образом, что начало первого совпадает с концом последнего, то есть они пересекаются. Каждый отрезок представляет собой независимую сторону фигуры. Точка пересечения является вершиной, а соответствующий ей угол является внутренним.

Таким образом, два ключевых элемента образуют рассматриваемую фигуру:

  • вершина;
  • сторона.

И вершин, и сторон в любом треугольнике по три, поэтому его принято обозначать большими латинскими буквами, например, ABC или MNK. Малые буквы резервируют для обозначения длин сторон, например, a, b, c.

Соотношения между сторонами и углами треугольника

На первый взгляд может показаться, что рассматриваемый объект является несложным, и в нем нечего изучать. Действительно, он является самым простым по построению многоугольником, однако, он обладает большим количеством свойств, количественное и качественное знание которых требуют понимания многих теорем.

Существование фигуры

Пусть имеется три отрезка, и необходимо понять, возможно ли из них построить треугольник. Это можно сделать с помощью одного простого правила, которое можно сформулировать следующим образом: любая сторона треугольника всегда меньше суммы длин двух других.

Математика

Знание этого правила является очень важным и эффективным инструментом при решении задач. Например, из отрезков с условными длинами 1, 2 и 4 построить треугольник невозможно, а из 2, 3, 4 это сделать можно.

Помимо соотношения длин сторон существует также еще одна теорема, которая гласит, что во всяком треугольнике сумма его внутренних углов всегда равна 180 °. Благодаря знанию этой теоремы можно все рассматриваемые фигуры разделить на три типа:

  1. Остроугольные. В них все три угловые меры меньше 90 °. При этом возможны случаи взаимного их равенства, то есть каждый будет составлять 60 °. Такие треугольники называются равносторонними или правильными. Равны могут быть между собой также два угла, это будет уже равнобедренный треугольник, у которого боковые стороны имеют одинаковую длину.
  2. Тупоугольные. Поскольку сумма составляет 180 °, то по определению в рассматриваемом многоугольнике не может быть больше одного тупого угла. Тупоугольные фигуры могут иметь либо произвольный тип, когда все их отрезки различаются, либо являться равнобедренными.
  3. Прямоугольные. Это специальный тип треугольников, о котором известно многое, и который разграничивает два предыдущих типа. В них один угол равен 90 °, а два других являются острыми.

Полноты ради следует сказать о вырожденных фигурах. К ним относятся такие многоугольники, у которых тупой стремится к 180 °. Несложно представить, что в этом случае два других будут обращаться в ноль, а сумма противолежащих им сторон окажется равной длине отрезка, расположенного напротив тупого угла. На плоскости вырожденный треугольник представляет отрезок, его площадь стремится к нулю.

Важные линии

Несмотря на всю простоту построения треугольника, при решении задач могут понадобиться дополнительные отрезки. Внутри фигуры существует целая гамма типов этих отрезков, наиболее важными из них являются следующие:

Урок геометрии

  1. Медиана — делящий на две равные по площади части исходный треугольник. Отрезок проводится из вершины к середине противоположной стороны.
  2. Биссектриса. Ею называют отрезок, который на две половины делит угол при произвольной вершине.
  3. Высота. Этот элемент проводится также из вершины, но по отношению к противоположной стороне он является перпендикуляром. Таким образом, высота делит исходную фигуру на два прямоугольных геометрических объекта, которые в общем случае между собой не равны.
  4. Медиатриса — это серединный перпендикуляр, то есть он сочетает свойства медианы и высоты, однако, через вершину треугольника он может не проходить. Медиатрисами пользуются при построении описанной окружности.
  5. Средняя линия — это отрезок, который посередине пересекает две стороны треугольника. Его длина всегда будет в два раза меньше стороны фигуры, которой он параллелен. Средняя линия приводит к созданию подобной исходной фигуры, которая в два раза меньше.

Для правильных, равнобедренных и прямоугольных треугольников некоторые из названных отрезков могут совпадать друг с другом, а также со сторонами фигуры. Например, в прямоугольном треугольнике две малые стороны (катеты) также являются высотами.

Соотношение отрезков и углов

Задачи на соотношение отрезков и угловых мер в рассматриваемой фигуре могут требовать либо качественный, либо количественный ответ. В первом случае следует провести определенное доказательство, опираясь на известные аксиомы и теоремы о сторонах треугольника и их следствия. Во втором же случае следует пользоваться формулами и выражениями, которые содержат тригонометрические функции. В действительности оба типа задач связаны между собой. Так, прежде чем использовать какую-либо формулу, следует доказать возможность ее применения в конкретной ситуации.

Большие и меньшие длины

Геометрия

Основная теорема о соотношении между элементами в рассматриваемом типе многоугольников гласит, что против большего угла лежит большая сторона. Ее доказательство провести несложно, если построить треугольник, например, тупоугольный. Из тупого провести отрезок к противоположной стороне таким образом, чтобы он образовывал новый равнобедренный треугольник внутри исходного. После этого следует воспользоваться тем свойством, что внешний угол треугольника всегда больше внутреннего.

Следуя условию равенства углов в построенном равнобедренном треугольнике, легко показать, что против тупого всегда находится самый длинный отрезок.

Обратно эта теорема также справедлива, то есть против большей стороны треугольника лежит больший угол. Ее справедливость понятна каждому школьнику на интуитивном уровне, а доказательство заключается в переборе возможных трех вариантов соотношения между отрезками (больше, меньше, равно) и в привлечении уже доказанной теоремы.

Рассмотренные теоремы приводят к двум важным следствиям:

  1. Против равных сторон лежат равные углы, и наоборот. Следствие актуально для равносторонних и равнобедренных фигур.
  2. Гипотенуза в треугольнике с прямым углом является самой длинной стороной, поскольку она лежит напротив самого большого угла.

Рассмотренные теоремы и их следствия активно используются при изучении подобных фигур. Поскольку напротив равных углов двух треугольников лежат соответствующие им длины отрезков, то последние будут попарно относиться друг к другу с определенным коэффициентом подобия.

Теоремы косинусов и синусов

Количественной характеристикой соотношения сторон и углов являются знаменитые формулы, содержащие зависимость длин отрезков и угловых мер. Первая из них называется теоремой косинусов. Соответствующая формула имеет вид:

c 2 = a 2 + b 2 — 2*a*b*cos©.

Здесь величины a, b, c — это длины, C — угол напротив стороны c. Формула позволяет вычислить третью сторону по известным двум другим и углу между ними. Однако, возможности выражения шире, с его помощью можно посчитать всякий внутренний угол фигуры, если известны три ее стороны.

Соотношения между сторонами и углами треугольника математика

Следующая по счету, но не по важности теорема синусов. Ее математическое выражение записывается так:

a/sin (A) = b/sin (B) = c/sin©.

Эти равенства говорят о том, что отношение стороны к синусу противоположного ей угла является постоянной характеристикой конкретного треугольника. Зная связь двух углов и стороны или двух отрезков и одного угла можно рассчитать все остальные характеристики фигуры. Следует запомнить, что для любого рассматриваемого типа многоугольников однозначное вычисление всех его свойств требует знания минимум трех элементов (кроме трех углов).

Прямоугольный треугольник

Урок математики

Этот особый случай следует рассмотреть подробнее. Каждый школьник знает знаменитую теорему, позволяющую сравнить соответствие отрезков друг другу в этом типе фигуры. Она гласит, что сумма квадратов катетов соответствует квадрату гипотенузы, и называется пифагоровой теоремой, то есть можно записать:

c 2 = a 2 + b 2 .

Работать с прямоугольными треугольниками удобно по одной простой причине: через их геометрические параметры вводятся в математику тригонометрические функции. Последние легко использовать при вычислении сторон и углов фигуры. Например, если фигура является не только прямоугольной, но и равнобедренной, то ее катеты равны, а углы напротив них составляют по 45 °. При этом любой из катетов всегда в 2 0,5 раза меньше гипотенузы:

sin (45 °) = a/c = ½ 0,5.

Это соотношение можно получить также из теоремы Пифагора.

Другая ситуация, когда один из острых углов равен 30 °. Для лежащего напротив него катета a можно записать следующее выражение:

sin (30 °) = ½ = a/c.

Иными словами, лежащий против 30 ° катет составляет ровно половину длины гипотенузы.

Таким образом, в любом треугольнике существует прямая пропорциональность между длиной стороны и противолежащим ей углом. Для количественного решения задач по геометрии с этой фигурой следует пользоваться выражениями синусов, косинусов и теоремой Пифагора.

В треугольнике против большей стороны лежит больший угол.

Lenki_malas1.png
 

Доказательство

Пусть дан треугольник (ABC), в котором (AB>AC). Необходимо доказать, что

 (C >)

 (B).

На стороне (AB) отметим точку (D) такую, что (AD=AC). Это возможно, ведь по условию (AC < AB).

Обозначим

(ACD=)

(1),

(ADC=)

(2). Точка (D) лежит между (A) и (B), поэтому 

(1<)

(C).

Треугольник (ADC) — равнобедренный, углы при основании равны,

 (1 =)

 (2). Значит,  

(2<)

(C).

Угол

(2=)

(BCD +)

(B) как внешний угол треугольника (BCD), значит

 (2 >)

 (B). Но 

(2<)

(C), поэтому

 (C >)

 (B).

Справедлива и обратная теорема.

В треугольнике против большего угла лежит большая сторона.

Следствия

Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).

Следствие 2. Если три угла треугольника равны, то треугольник равносторонний.

Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.

Неравенство треугольника

Каждая сторона треугольника меньше суммы двух других сторон.

Lenki_malas2.png

Доказательство

Рассмотрим треугольник (ABC) и докажем, что (AB < AC + BC).

Продолжим сторону (AC) и отложим отрезок (CD = BC).

Треугольник (BCD) — равнобедренный, следовательно,

 (1 = )

 (2).

В треугольнике (ABD) очевидно, что

 (ABD >)

 (1), а это значит, что 

 (ABD >)

 (2).

Так как против большего угла лежит большая сторона, (AB < AD), а (AD = AC + BC), значит, (AB < AC + BC).

Следствие 4. Для любых трёх точек (A), (B) и (C), не лежащих на одной прямой, справедливы неравенства:
(AB < AC + CB,  AC < AB + BC,  BC < AB + AC).

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Соотношения между сторонами и углами треугольника
  5. Теорема о соотношениях между сторонами и углами треугольника

Теорема:

В треугольнике: 1) против большей стороны лежит больший угол; 2) обратно, против большего угла лежит большая сторона.

Доказательство:

1) Дано: АВС, АВАС.

   Доказать: СВ.

   Доказательство:

Отложим на стороне АВ отрезок АD, равный стороне АС.

 АDАВ, т.к. по построению АD = АС, а по условию АСАВ, значит, точка D лежит между точками А и В. Следовательно, 1 является частью С, т.е. С1. Угол 2 внешний угол DBC, поэтому 2В. АDСравнобедренный с основанием DC, т.к. по построению АD = АС, следовательно, 1 =2 (углы при основании).

Итак, С1, 1 =2, значит, С2, при этом 2В, следовательно, СВ.

2) Дано: АВС, СВ.

   Доказать: АВАС.

   Доказательство:

Предположим, что это не так. Тогда возможны два варианта:

  1. либо АВ = АС, тогда АВС равнобедренный с основанием ВС, значит, С =В (как углы при основании), что противоречит условию: СВ.
  2. либо АВАС, тогда СВ, т.к. против большей стороны лежит больший угол (смотри 1 часть доказательства), что противоречит условию: СВ

Значит, наше предположение неверно, следовательно, АВАС. Что и требовалось доказать.

Следствие 1

Доказательство:

Дано: АВС, ВС – гипотенуза, А – прямой.

Доказать: ВСАСВС АВ.

Доказательство:

АВС – прямоугольный, А прямой, следовательно, углы В и С острые, тогда АВ и АС, значит, ВСАСВСАВ (в треугольнике против большего угла лежит большая сторона). Что и требовалось доказать.

Следствие 2

Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).

Доказательство:

Дано: АВС, В =С.

Доказать: АС = АВ.

Доказательство:

Предположим, что одна из сторон будет больше, т.е. АСАВ, тогда и угол лежащий против этой стороны будет больше, т.е. ВС (в треугольнике против большей стороны лежит больший угол), а это противоречит условию: В =С, следовательно, наше предположение неверно, значит АС = АВ.

Итак, в АВС равны две стороны (АС = АВ), следовательно, данный треугольник – равнобедренный. Что и требовалось доказать.

Советуем посмотреть:

Теорема о сумме углов треугольника

Остроугольный, прямоугольный и тупоугольный треугольники

Неравенство треугольника

Некоторые свойства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Уголковый отражатель

Расстояние от точки до прямой

Расстояние между параллельными прямыми

Построение треугольника по двум сторонам и углу между ними

Построение треугольника по стороне и двум прилежащим к ней углам

Построение треугольника по трем его сторонам

Соотношения между сторонами и углами треугольника


Правило встречается в следующих упражнениях:

7 класс

Задание 243,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 246,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 256,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 301,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 336,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 7,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 816,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 821,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 852,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1025,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Геометрия

7 класс

Урок № 24

Соотношения между сторонами и углами треугольника. Неравенство треугольника

Перечень рассматриваемых вопросов:

  • Установление соотношений между сторонами и углами треугольника.
  • Формулирование неравенства треугольника.
  • Теоремы о сравнении сторон и углов треугольника, их применение при решении задач.
  • Проведение исследования о существовании треугольника с заданными элементами.

Тезаурус

Каждая сторона треугольника меньше суммы двух других сторон.

В треугольнике против большей стороны лежит больший угол. Против большего угла лежит большая сторона.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее, на уроках геометрии, вы познакомились с различными фигурами, в том числе и с треугольником.

Сегодня мы продолжим изучать треугольники и рассмотрим соотношение между его элементами.

Теорема: В треугольнике против большей стороны лежит больший угол.

Дано: ∆АВС.

AB > AC.

Доказать:

∠С > ∠В

Доказательство:

Отложим на стороне AB отрезок, равный стороне AC.

Так как AD < AB, то точка D лежит между точками A и B.

Следовательно, угол 1 является частью угла C и, значит,

∠C > ∠1.

Угол 2 – внешний угол треугольника BDC, поэтому ∠2 > ∠B (по свойству внешнего угла треугольника).

∠1 = ∠2 как углы при основании равнобедренного ∆ADC (по свойству равнобедренного треугольника).

→∠C > ∠1, ∠1 = ∠2, ∠2 > ∠B →∠C > ∠B.

Теорема доказана.

Справедлива и теорема, обратная данной. Против большего угла лежит большая сторона.

Дано: ∆АВС.

∠С > ∠В

Доказать:

AB > AC.

Доказательство:

Предположим, что АВ = АС или АВ < АС. Если АВ = АС → ∆АВС – равнобедренный (по определению равнобедренного треугольника) →∠С = ∠В (по свойству равнобедренного треугольника). Что противоречит условию, т. к. ∠С > ∠ В.

Если АВ < АС → ∠С < ∠В (по теореме доказанной выше: против большей стороны лежит больший угол) Что противоречит условию, т. к. ∠С > ∠В.

Поэтому наше предположение неверное → AB > AC.

Теорема доказана.

Докажем два следствия из этих теорем.

1 следствие. В прямоугольном треугольнике гипотенуза больше катета.

Дано: ∆АВС – прямоугольный.

∠В = 90°

Доказать: АС > СВ.

Доказательство: ∠В > ∠А, т. к. ∠В = 90° ( по условию), ∠А –острый → АС > СВ (по обратной теореме о соотношениях между сторонами и углами треугольника: против большего угла лежит большая сторона).

Что и требовалось доказать.

Докажем второе следствие из этих теорем.

2 следствие:

Если два угла треугольника равны, то треугольник равнобедренный. Это следствие называется признак равнобедренного треугольника.

Дано: ∆АВС

∠А = ∠С

Доказать: ∆АВС – равнобедренный

Доказательство:

Докажем, что АВ = ВС.

Пусть АВ > ВС →∠С > ∠А (по теореме доказанной выше: против большей стороны лежит больший угол), противоречит условию, т. к. ∠А = ∠С . → АВ = ВС →∆АВС – равнобедренный (по определению равнобедренного треугольника).

Что и требовалось доказать.

Докажем теорему по соотношению между сторонами треугольника.

Теорема:

Каждая сторона треугольника меньше суммы двух других сторон.

Дано:

АВС

Доказать: АВ < АС + СВ.

Доказательство:

Продолжим сторону AC и отложим отрезок CD = BC.

∆BCD – равнобедренный (по определению равнобедренного треугольника) →∠1 = ∠2 (по свойству равнобедренного треугольника).

В ∆ABD: ∠ABD > ∠1 (так как угол 1 часть угла АВD), →∠ABD > ∠2 (так как ∠1 = ∠2).

Так как против большего угла лежит большая сторона (по теореме о соотношениях между сторонами и углами треугольника) → AB < AD, AD = AC + CD, т.к. CD = BC, поэтому AD = AC + CВ → AB < AC + СВ.

Что и требовалось доказать.

Сформулируем следствие из этой теоремы.

Для любых трёх точек A, B и C, не лежащих на одной прямой, справедливы неравенства: AB < AC + CB, AC < AB + BC, BC < BA + AC.

Решим задачу на доказательство, используя теоремы о соотношениях между углами и сторонами треугольника.

Докажем, что в произвольном треугольнике, если медиана и высота проведены из одной вершины, то эта медиана не меньше высоты, проведённой из то же вершины.

Дано: ∆АВС.

ВМ – медиана,

ВН – высота.

Доказать: ВМВН.

Доказательство:

Рассмотрим случай, когда АВВС. То ВМ и ВН не совпадают (т. к. по свойству равнобедренного треугольника, высота и медиана совпадают, если проведены к его основанию).

Рассмотрим ∆ВНМ – прямоугольный (по определению прямоугольного треугольника), т. к. ∠Н = 90°, при этом угол в 90° единственный в данном треугольнике (по теореме о сумме углов треугольника) → ∠Н – самый большой → ВМ > ВН (по обратной теореме о соотношениях между сторонами и углами треугольника).

Рассмотрим ещё случай АВ = ВС → ∆АВС – равнобедренный (по определению равнобедренного треугольника). То ВМ = ВН (по свойству равнобедренного треуголника, высота и медиана совпадают, если проведены к его основанию)→ ВМВН.

Что и требовалось доказать.

Разбор заданий тренировочного модуля.

1 Дано: ABC, равнобедренный, вычислите чему равна третья сторона треугольника, если две других равны 8 см и 4 см?

Объяснение: По определению равнобедренного треугольника, две его боковые стороны равны, следовательно это будет сторона равная 4 см или 8см.

Сторона 4см не может быть, т. к. 8см = 4 см + 4 см., что противоречит теореме о соотношениях между сторонами треугольника: каждая сторона треугольника меньше суммы двух других сторон.

Предположим, что боковые стороны равны 8 см. Тогда, по теореме о соотношениях между сторонами треугольника, каждая сторона треугольника меньше суммы двух других сторон, получим следующее соотношение между сторонами треугольника:

4 см < 8 см + 8 см

8 см < 8 см + 4 см.

Соотношение верно, следовательно, третья сторона равна 8 см.

Ответ: третья сторона равна 8 см.

2. Дано: ∆АВК – равнобедренный, ВК – основание треугольника, его периметр равен 29 см, разность двух сторон равна 5 см, при этом один из его внешних углов – острый. Найдите длину боковой стороны АВ и основания ВК.

Объяснение: т. к. по условию, один из внешних углов острый, то один из внутренних углов будет тупым, а это может быть, в равнобедренном треугольнике, только вершина над основанием треугольника (следствие из теоремы о сумме углов треугольника). → Основание ВК – самая длинная сторона треугольника АВК (по теореме о соотношении между углами и сторонами треугольника). → ВКАВ = 5 см →ВК = 5см + АВ.

По определению равнобедренного треугольника, две его боковые стороны равны → АВ = АК. Периметр треугольника – сумма длин трёх его сторон.

Р∆АВК = АВ + АК + ВК = 29 см (по условию).

2АВ + ВК = 29 см

2АВ +5см + АВ = 29 см

3АВ = 24 см

АВ = 8 см, ВК = 8 + 5 =13 см.

Ответ: ВК = 13 см; АВ = 8 см.

Добавить комментарий