Как найти соотношение в физике

Пропорции и соотношения в физических задачах.

Автор: Аметова Эльмас Зеккиевна, учитель физики высшей категории МБОУ «Вилинская СОШ №2 с русским и крымскотатарским языками обучения» Бахчисарайского района Республики Крым.

Знания по физике становятся необходимыми в различных сферах деятельности человека. Решение физических задач – едва ли не главная часть физических знаний. Профессор Лев Давидович Ландау сказал: “Учебник физики должен состоять из одних задач. При их решении происходит усвоение физических знаний”. Но есть проблемы, одна из которых: неумение учащимися применять математические знания для решения физических задач. Практически все задачи по физике можно легко решать, используя математический аппарат. Но иногда то, что допустимо при решении задач по физике, недопустимо в общей математической практике.

Мне хотелось бы разобрать решения задач с использованием пропорций, отношений и соотношений из следующих физических тем: “Равновесие рычага”, “Уравнение Менделеева-Клапейрона. Внутренняя энергия идеального газа”, “Закон всемирного тяготения”, “Закон прямолинейного распространения света” и “Механические колебания. Математический маятник”.

Впервые интерес к пропорции, возникающей при делении отрезка в крайнем и среднем отношении, возникает в античной науке. Об этом свидетельствуют древнеегипетские храмы, знаменитые пирамиды (III тысячелетие до н.э.), также гробницы Менеса, дворцы в Персии и другое множество архитектурных сооружений древности. Необходимость возникновения и развития понятий пропорциональности и отношения отрезков, площадей и других величин появилась при построении упомянутых памятников древности.

Важную роль в создании понятия “пропорция” сыграл древнегреческий математик, астроном и механик Евдокс ( IV век до нашей эры). Слово «пропорция» ввел в употребление Цицерон в 1 веке до н.э., который буквально означал аналогия, соотношение.

Пропорция (от лат. proportio – «соотношение») – это отношение между двумя или более соразмерными величинами. Термин «пропорция» используется в математике, архитектуре, медицине, кулинарии, строительстве, химии, физике, природе, музыке и других областях науки и искусства. В создании образной выразительности в костюме огромную роль играют отношения и пропорции частей формы одежды. Пропорция-это равенство двух отношений. Если это равенство содержит переменную, значение которой надо найти, то оно является уравнением.

Запись пропорции.

Пропорцию с помощью букв записывают так: a:b=с:d или .

Хочется упомянуть о так называемом «золотом сечением». Золотым сечением называли математики древности и средневековья деление отрезка, при котором длина всего отрезка так относится к длине его большей части, как длина большей части к меньшей, и это отношение равно 8:5=5:3 =1,6. (8=5+3).

Основное свойство пропорции гласит, что в правильной пропорции произведение крайних членов равно произведению средних членов.

Отличным примером применения пропорции является задача на использование правила равновесия рычага (Архимеда).

Рассмотрим задачу на рычаг.

На концах рычага действуют силы 2 и 18 Н. Длина рычага 1 м. Где находится точка опоры, если рычаг – в равновесии? (Весом рычага пренебречь).

Преобразовав пропорцию и используя ее новый вид (уравнение), определили длины плеч рычага.

Еще есть соотношение (или просто отношением). Это некоторая взаимосвязь между сущностями нашего мира. Это могут быть числа, физические величины, предметы, продукты, явления, действия и даже люди.

В математике соотношение чаще употребляется как «отношение того-то к тому-то». Например, соотношение четырёх цилиндров и двух кубов в математике будет читаться как «отношение четырех кубов к двум цилиндрам»

Рассмотрим задачу из геометрической оптики.

На какой высоте H находится лампа над горизонтальной поверхностью стола, если тень от вертикально поставленного на стол карандаша высотой h= 0,15 м оказалась равной x= 0,1м при расстоянии от основания карандаша до основания перпендикуляра, опущенного из центра лампы на поверхность стола ℓ= 0,9 м?

Как видим, чтобы измерить высоту потолка или столба не обязательно лезть на него, достаточно построить правильное соотношение.

В 10-м классе мы решали задачу на закон всемирного тяготения. Оказалось, что у этой задачи есть 2 способа решения. Остановимся на них.

Задача про космонавта.

Космонавт, находясь на Земле, притягивается к ней с силой 700 Н. С какой силой он будет притягиваться к Марсу, находясь на его поверхности, если радиус Марса примерно в 2 раза, а масса в 10 раз меньше чем у Земли?

Видно, что гораздо проще и интересней использовать не метод подстановки, а метод составления отношения величин друг к другу. Столько сокращений сразу! Главное: не перепутать основную дробь с другими! И ведь опять – пропорция!

Подобным образом можно решить задачу про маятники.

За одно и то же время один математический маятник делает 50 колебаний, а второй 30. Найти их длины, если один из них на 0, 32 м короче другого.

Как видно, можно без измерительных приборов и с помощью пропорций определить длину математического маятника. Здесь была использована формула периода колебаний математического маятника (через его длину ускорение свободного падения) и зависимость периода от числа колебаний и времени.

Во многих задачах, на первый взгляд, слишком много неизвестных. Кажется, что такая задача не может быть решена. Но если в задаче стоит вопрос о том, во сколько раз одна величина больше или меньше другой, то, скорее всего, все вспомогательные величины, которые мы введем для того, чтобы было проще, рассуждать на заключительном этапе, когда мы будем рассчитывать отношение, сократятся.

Уравнения с одним неизвестным во время решения задач по физике появляются при использовании законов, правил, определений или непосредственно выведенных применительно к той или иной задаче формул. В школьной физике большинство уравнений могут быть сведены к уравнениям, которые содержат неизвестные величины в первой степени. Достаточно редко встречаются уравнения второй степени и крайне редко третьей. Другое дело, что записанные в своем первоначальном виде, уравнения часто являются довольно громоздкими, и требуется большой опыт для того, чтобы выразить из них неизвестные величины. К сожалению, именно неумение выполнить тождественные преобразования уравнений, очень часто не позволяет школьникам правильно решить задачу и получить удовольствие от изучения физики. Из ошибок, которые наиболее часто делаются школьниками, следует особо сказать о тех, которые связаны с неумением производить операции с алгебраическими дробями. При решении уравнения допускается выполнять только тождественные преобразования, т.е. такие, которые не приводят к изменению решений первоначального уравнения.

Применение отношения при решении задач молекулярной физики.

Рассмотрим пример. Дано уравнение PV = m/µ RT, нужно вычислить неизвестную µ. Более половины учащихся самостоятельно сделать это не могут, хотя на математике долго изучают делитель, делимое, частное. Самый простой способ выражения неизвестной – это метод пропорций (крест на крест) т. е. при переносе из одной части уравнения в другую меняем расположение µ = mRT/PV. Такой способ успешно используется многими учителями.

До сих пор мы рассмотрели все случаи, когда делятся друг на друга одинаковые величины. В следующей же задаче мы будем делить друг на друга разные величины.

При ее решении образуется система уравнений, причем ее можно решить двумя методами.

Первый метод – это метод подстановки, при котором неизвестная величина, входящая в одно из уравнений, выражается, так как при решении уравнения с одним неизвестным. Затем полученное выражение для этой неизвестной величины подставляется вместо нее во второе уравнение. Этот метод часто приводит к громоздким выражениям. При этом можно совершить множество ошибок.

Суть второго метода в том, что уравнения системы складываются, вычитаются, умножаются или делятся друг на друга. То есть над правыми и над левыми частями уравнений производятся одинаковые действия. Это нужно для сокращения неизвестных величин после выполнения некоторых действий над ними. Этот метод является более эффективным, но в данном случае требуется сообразительность и опыт.

Рассмотрим применение этих методов в следующей задаче.

В баллоне объемом 2 л находится гелий. Внутренняя энергия гелия равна 300 Дж. Определите давление в сосуде.

Здесь важно было определить, что на что делить и заметить одинаковые величины в уравнении Менделеева – Клапейрона и формуле внутренней энергии газа! Кстати, можно делить импульс на кинетическую энергию, даже силу Кулона взаимодействия электрических зарядов на силу всемирного тяготения, то есть фактически один закон на другой! В “многоэтажных” выражениях, когда одна дробь делится на другую, необходимо различать основную дробь и дополнительные, знак равенства следует ставить точно напротив основной дроби. При решении уравнения допускается выполнять только тождественные преобразования, т.е. такие, которые не приводят к изменению решений первоначального уравнения.

И еще. Умение построить правильное отношение— важный навык при решении задач.

Использовать математику в физике – это настоящее искусство! Но, чем заниматься методом подстановки, проще делить одно выражение на другое, причем можно делить и разные физические величины. Мои материалы могут пригодиться школьникам и молодым учителям на уроках физики. А сколько еще тем мы не рассмотрели! Описанные алгоритмы, при их активном использовании на уроках позволяют существенно сократить время на приобретения учащимися навыка решения задач. Алгоритмы универсальны и могут применяться в любой теме курса физики. Можно один раз затратить учебное время на обучение решению задач, а затем вводить только новые законы и закономерности. И еще: все-таки, есть своя красота в физических задачах!

Список использованных источников:

  1. Поль Дирак http://dmpokrov.livejournal.com/403285.html

  2. Лев Давидович Ландау: Обучение студентов Майя Бессараб. Москва. «Октопус» 2008 г. 61 с.

  3. Глава из книги И.И.Гарина «Ангелы библиотек». 2017 г. 660с. Автор И.И.Гарин. https://www.proza.ru/2017/03/10/804

  4. Книга «Начала», автор Евклид, издательство «Лириком» год 2012. 446 страниц

  5. «Теория отношений Евдокса и теория сечений Дедекинда» Струнилина К. tehkrasina.ruNSOteorija_otnosheniji_teorija

  6. Никольский. С.М. Математика -6 класс. С.М.Никольский, М.К.Потапов, Н.Н.Решетникова Москва: «Просвещение” 2014 год, 256 с.

  7. Сборник задач по физике для 7-9 классов – Лукашик В.И., Иванова Е.В. Москва “Просвещение” 2011:

  8. Исаков Александр Яковлевич. И 85 Физика. Решение задач ЕГЭ. Часть 8. Оптические явления. Кам-чат ГТУ, 2013. 195 с.7

  9. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. (Под ред. Николаева В.И., Парфентьевой Н.А). Физика-10: учебник для общеобразовательных учреждений с приложением на электронном носителе: базовый и профильный уровни М.: Просвещение, 2014, 416 с.

  10. Сборник задач и упражнений по физике под ред. Рымкевич -2011 г. 158 с.

  11. Демидова М.Ю., Грибов В.А., Лукашева Е.В., Чистякова Н.И. «Физика ЕГЭ 2016». Издательство «Экзамен», 2016 г. 294 с.

Содержание

  1. I. Механика
  2. Тестирование онлайн
  3. Угловая скорость
  4. Период и частота
  5. Линейная скорость
  6. Центростремительное ускорение
  7. Вращение Земли
  8. Связь со вторым законом Ньютона
  9. Как вывести формулу центростремительного ускорения
  10. Движение по циклоиде*
  11. Значение слова «соотношение»
  12. соотноше́ние
  13. Делаем Карту слов лучше вместе

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

im3im4 form1

Период и частота

im5 form2

Частота и период взаимосвязаны соотношением

im6 form3

Связь с угловой скоростью

im7 form4

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

im60

im8 form5

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

im2im9 form6

Используя предыдущие формулы, можно вывести следующие соотношения

im10

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

im1

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

im11

Разница векторов есть form7. Так как form8, получим

form9

Движение по циклоиде*

im12

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью form10, которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле form11

Источник

Значение слова «соотношение»

android bar znachenije

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Проще говоря, соотношение показывает для каждого количества чего-то одного сколько есть чего-то другого. Например, предположим, что у кого-то есть 8 апельсинов и 6 лимонов в вазе для фруктов, соотношение апельсинов и лимонов составит 4:3 (что эквивалентно 8:6), а соотношение лимонов и апельсинов составит 3:4. Кроме того, количество апельсинов относительно общего количества фруктов составит 4:7 (что эквивалентно 8:14). Соотношение 4:7 можно преобразовать в дробь 4/7, показывающую, какую долю от общего числа фруктов составляют апельсины.

СООТНОШЕ’НИЕ, я, ср. (книжн.). Взаимное отношение, связь между двумя или несколькими предметами или явлениями. Экономика и политика находятся в постоянном соотношении. С. спроса и предложения. С. борющихся сил.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

соотноше́ние

1. взаимное отношение; взаимная связь, зависимость ◆ Для меня достижимость желаемого (вещи ли, души ли) в обратном соотношении с желанностью его: чем желанней ― тем недостижимей. М. И. Цветаева, «Смерть Стаховича», 1919 г. (цитата из НКРЯ)

2. научн. мера относительной величины двух количеств ◆ В результате несколько снижается динамический диапазон сигнала, то есть соотношение самого высокого и самого низкого уровней, и плохо воспроизводятся крутые фронты. В. Хорт, «Информохранилища», 2008 г. // «Наука и жизнь» (цитата из НКРЯ) ◆ С гололёдом на улицах столицы много лет боролись, используя смесь песка и технической соли (обычное соотношение 92: 8). Александр Попов, «Ледниковый период», 2004 г. // «За рулем» (цитата из НКРЯ) ◆ Естественно, мы напрямую зависим от стабильности этой валюты, и вы прекрасно понимаете: соотношение, или курс, рубля к доллару ― это очень важно. Александр Гимельштейн, «Мы должны быть ответственны!», 2003 г. // «Восточно-Сибирская правда» (цитата из НКРЯ) ◆ Соотношение времени экспонирования ― 1: 2: 4: 8. Лев Быстров, «Цветное тоноразделение», 1974 г. // «Техника — молодежи» (цитата из НКРЯ) ◆ А оптимальное соотношение газов для роста водородных бактерий: 7 частей водорода, 2 части кислорода и 1 часть углекислого газа. Владимир Котелев, ««Водородный» белок — соперник «нефтяного»», 1974 г. // «Техника — молодежи» (цитата из НКРЯ)

Делаем Карту слов лучше вместе

USSR botПривет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова штырёк (существительное):

Источник

Что означает слово “отношение” в формулах в физике и математике ?



Ученик

(99),
на голосовании



7 лет назад

Голосование за лучший ответ

Аркаша

Высший разум

(539664)


7 лет назад

Во сколько раз одно больше или меньше другого. Буквально : одно разделить на другое. Это не всегда может выразиться в некой конкретной размерности . Может быть коэффициентом, выражаться в децибелах (dB), процентах…

Igor

Мыслитель

(5061)


7 лет назад

Отношение чисел к друг другу с определённой закономерностью! Первое число больше или меньше на чило “х” или в “х” раз, или обратнопропорционально второму числу.
Пример: Пи 3,14….это отношение длины окружности к его собственному диаметру! Тоесть если диаметр окружности умножить на Пи, то получаем его длину!
Другими словами два числа связанных одной закономерностью ( как верёвкой) изменяют свои значения, если повлиять хотябы на одно из них ( как бы потянуть за верёвку).

Основные формулы молекулярной физики

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

В кодификаторе ЕГЭ нет тем, непосредственно относящихся к содержанию данного листка. Однако без этого вводного материала дальнейшее изучение молекулярной физики невозможно.

Введём основные величины молекулярной физики и соотношения между ними.

m — масса вещества, V — объём вещества, rho =frac{displaystyle m}{displaystyle V vphantom{1^a}} — плотность вещества (масса единицы объёма). Отсюда

m = rho V.

N — число частиц вещества (атомов или молекул).
m_0 — масса частицы вещества. Тогда

m = m_0 N.

n=frac{displaystyle N}{displaystyle V vphantom{1^a}} — концентрация вещества (число частиц в единице объёма), [n]=m^{-3}. Отсюда

N = nV.

Что получится, если m_0 умножить на n? Произведение массы частицы на число частиц в единице объёма даст массу единицы объёма, т. е. плотность. Формально:

m_0 n = m_0 frac{displaystyle N}{displaystyle V vphantom{1^a}}=frac{displaystyle m_0 N}{displaystyle V vphantom{1^a}}=frac{displaystyle m}{displaystyle V vphantom{1^a}}=rho .

Итак,

rho = m_0n.

Массы и размеры частиц невообразимо малы по нашим обычным меркам. Например, масса атома водорода порядка 10^{-24} г, размер атома порядка 10^{-8} см. Из-за столь малых значений масс и размеров число частиц в макроскопическом теле огромно.

Оперировать столь грандиозными числами, как число частиц, неудобно. Поэтому для измерения количества вещества используют специальную единицу — моль.

Один моль — это количество вещества, в котором содержится столько же атомов или молекул, сколько атомов содержится в 12 граммах углерода. А в 12 граммах углерода содержится примерно 6,02 cdot 10^{23} атомов. Стало быть, в одном моле вещества содержится 6,02 cdot 10^{23} частиц. Это число называется постоянной Авогадро: N_A=6,02 cdot 10^{23} мольvphantom{1}^{-1}.

Количество вещества обозначается nu. Это число молей данного вещества.

Что получится, если nu умножить на N_A? Число молей, умноженное на число частиц в моле, даст общее число частиц:

N = nu N_A.

Масса одного моля вещества называется молярной массой этого вещества и обозначается mu([mu] = кг/моль). Ясно, что

m = mu nu.

Как найти молярную массу химического элемента? Оказывается, для этого достаточно заглянуть в таблицу Менделеева! Нужно просто взять атомную массу A (число нуклонов) данного элемента — это будет его молярная масса, выраженная в г/моль. Например, для алюминия A=27, поэтому молярная масса алюминия равна 27 г/моль или 0,027 кг/моль.

Почему так получается? Очень просто. Молярная масса углерода равна 12 г/моль по определению. В то же время ядро атома углерода содержит 12 нуклонов. Выходит, что каждый нуклон вносит в молярную массу 1 г/моль. Поэтому молярная масса химического элемента с атомной массой A оказывается равной A г/моль.

Молярная масса вещества, молекула которого состоит из нескольких атомов, получается простым суммированием молярных масс. Так, молярная масса углекислого газа rm CO_2 равна 12 + 16 cdot 2 = 44 г/моль = 0,044 кг/моль.

Будьте внимательны с молярными массами некоторых газов! Так, молярная масса газообразного водорода равна 2 г/моль, поскольку его молекула состоит из двух атомов rm (H_2). То же касается часто встречающихся в задачах азота и кислорода rm (N_2, O_2). Вместе с тем, наиболее частый персонаж задач — гелий rm (He) — является одноатомным газом и имеет молярную массу 4 г/моль, предписанную таблицей Менделеева.

Ещё раз предостережение: при расчётах не забывайте переводить молярную массу в кг/моль! Если ваш ответ отличается от правильного на три порядка, то вы наверняка сделали именно эту, очень распространённую ошибку 🙂

Что получится, если m_0 умножить на N_A? Масса частицы, умноженная на число частиц в моле, даст массу моля, т. е. молярную массу:

mu = m_0 N_A.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Основные формулы молекулярной физики» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

В этой главе …

  • Концепции физики и почему они так важны
  • Учимся измерять (и решать уравнения)
  • Оцениваем значимость и ошибку величин
  • Освежаем свои знания алгебры и тригонометрии

Представьте себе, что вы бьетесь над решением почти неразрешимой физической задачи и пытаетесь найти подход к ней. Задача очень сложна и многим так и не поддалась. Внезапно в результате озарения все становится предельно ясным.

“Ну конечно, — говорите вы, — это же элементарно! Мяч в максимальной точке поднимется на высоту 9,8 м”.

Глядя на правильное решение задачи, преподаватель одобрительно кивнет головой, а вы, окрыленные успехом, с удвоенной силой приметесь за решение следующей задачи.

В физике, как и в любой другой области деятельности, заслуженный успех и слава достаются только в результате упорного труда. Не бойтесь работы, ведь цель оправдывает средства. По окончании чтения этого курса вы настолько овладеете предметом, что сможете решать те задачи, которые прежде казались вам просто неразрешимыми.

Эта глава начинается с описания некоторых базовых сведений и навыков, которые потребуются для освоения следующих глав. В ней описываются способы научных измерений, научные обозначения, базовые сведения по алгебре и тригонометрии, а также правила оценки значимости величин и точности полученных результатов. Полагаясь на эти твердые и незыблемые сведения, вы сможете овладеть всем другим материалом в этом курсе.

Содержание

  • Не бойтесь, это всего лишь физика
  • Измеряем окружающий мир и делаем предсказания
    • Никогда не смешивайте единицы из разных систем
    • От метров к дюймам и обратно: преобразуем значения из разных единиц измерения
  • Исключаем нули: представляем числа в экспоненциальном виде
  • Проверяем точность измерений
    • Определяем значащие цифры
    • Оцениваем точность
  • Вспоминаем алгебру
  • Немного тригонометрии

Не бойтесь, это всего лишь физика

Многих от слова “физика” бросает в дрожь. Легко прийти в ужас, если представить себе физику, как нечто совершенно чуждое с высосанными из пальца абстрактными числами и правилами. Однако истина заключается в том, что физика призвана помочь нам понять реальный мир. Погружение в физику — это увлекательное путешествие, которое совершает человечество в попытке понять устройство мира.

Хотя может показаться справедливым и обратное утверждение, но нет никакой загадки в целях и методах физики: физика просто моделирует мир. Идея заключается в том, чтобы создать мысленные модели, описывающие поведение мира: как бруски скользят по наклонной плоскости, как образуются и светят звезды, как черные дыры захватывают свет, что происходит при столкновении автомобилей и т.п. В момент создания модели она совсем не содержит чисел, а только описывает самую суть явления. Например, звезда образуется из этого слоя, потом из того слоя, дальше возникает реакция, за ней другая и — бац, вот вам новая звезда!

По мере совершенствования модели ее описание становится количественным, и именно с этого момента изучения физики у учеников и студентов возникает большинство проблем. С изучением физики было бы меньше проблем, если бы можно было просто сказать: “Тележка, скатываясь по наклонной плоскости, движется все быстрее и быстрее”. Но для полного физического описания этого явления недостаточно сказать, что тележка движется быстрее, нужно сказать, насколько именно быстрее движется тележка.

Суть физики заключается в следующем: сделать наблюдение, создать модель для имитации явления, добавить математическое описание и — все! В таком случае вы сможете предсказывать развитие событий в реальном мире. Математика нужна, чтобы занять более уверенную позицию в реальном физическом мире и чтобы помочь в исследовании принципов и причин такого явления.

Учитесь у гения: не отгораживайтесь математикой от физики

Ричард Фейнман, лауреат Нобелевской премии по физике 1965 года “За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц*, в 1950-1960 годах заработал уникальную репутацию среди физиков. Свой метод исследования он объяснял так: нужно мысленно “на пальцах” описать задачу с указанием аналогии из реальной жизни, тогда как другие стремились сразу перейти к математическому описанию. Когда ему встречалась очень длинная теория с подозрительным результатом, он стремился найти какое-то физическое явление, которое можно было бы объяснить этой теорией. Если в своих размышлениях он достигал точки, в которой ему становилось очевидно несоответствие предлагаемой теории и факта реального мира, он сразу же заявлял: “Это не верно, проблема в том-то и том-то”. Он всегда оказывался прав, что озадачивало многих его коллег и буквально лишало их дара речи. Многие современники считали и считают его настоящим гением. Хотели бы стать супергением? Поступайте так же: не дайте математике запугать вас и скрыть от вас физику.

Всегда имейте в виду, что реальный мир находится на первом месте, а математика — на втором. Для успешного решения физической задачи важно не утонуть в математических выкладках и сохранить глобальное видение явления, чтобы удержать контроль над ситуацией. После обучения физике студентов колледжа в течение многих лет я столкнулся с одной из самых крупных проблем в изучении физики: студенты часто напрочь запуганы математикой.

А теперь зададимся одним из наиболее важных вопросов: для чего вам нужна физика? Если вы хотите продолжить свою карьеру в физике или смежной области, то ответ прост: вам нужно знать физику для “ежедневного применения”. Но даже если вы не планируете карьеру физика, вы все еще можете извлечь достаточно много пользы от овладения этим предметом. Многие сведения из вводного курса физики можно применять на практике. Но еще более важным преимуществом овладения физикой является не ее применение на практике, а приобретенные навыки решения задач. Решение физических задач учит вас настойчивости, умению учитывать все варианты решения и выбирать наиболее оптимальный, а также поиску простейшего метода решения.

Измеряем окружающий мир и делаем предсказания

Физики прекрасно умеют измерять и предсказывать явления реального мира. В конце концов, именно потому физика оказалась такой жизнеспособной. Измерение является начальной точкой, на основе которой создается модель явления и делаются предсказания. Множество мер предусмотрено для измерения длины, веса, времени и т.д. Овладение искусством измерения величин является залогом успешного изучения физики.

Для достижения согласия в измерениях физики и математики сгруппировали меры в системы единиц измерения. Наиболее распространенными являются система СГС (сантиметр-грамм-секунда) и СИ (система интернациональная). Например, в табл. 2.1 показаны основные единицы измерения в системе СГС. (Пока не стоит напрягаться и запоминать эти единицы, поскольку мы вернемся к ним позже.)

В табл. 2.2 перечислены основные единицы измерения в системе СИ и их сокращения.

Никогда не смешивайте единицы из разных систем

Поскольку в разных системах используются разные единицы длины, то в зависимости от используемой системы можно получать разные численные значения. Например, для измерения глубины плавательного бассейна можно использовать систему СИ, с помощью которой ответ будет выражен в метрах; в системе СГС она будет представлена в сантиметрах, а в еще менее популярной системе — в дюймах.

Предположим, однако, что вам нужно узнать давление воды на дне бассейна. Измеряем глубину бассейна и подставляем найденное значение в формулу давления (см. главы 14 и 15). Однако в этом месте нужно обратить пристальное внимание на используемую систему единиц измерения.

Всегда помните, что в процессе решения задачи нужно использовать одну и ту же систему единиц измерения. Если вы начали решать задачу с помощью системы СИ, то придерживайтесь ее до конца. Иначе вместо правильного ответа вы получите бессмысленную смесь разных величин, поскольку в таком случае вы фактически приравниваете величины, измеренные с помощью разных мерок. Эта ситуация подобна ошибке кулинара, когда, читая рецепт, вместо двух ложек муки он использует два стакана.

В течение многих лет мне приходилось видеть, как студенты ошибочно смешивали величины, полученные с помощью разных систем измерения, и не могли понять причину неправильного решения. Конечно, их намерения были совершенно благородны, идеи прекрасны, выводы уравнений безупречны, а численные значения в ответах получались неверными. Например, в ответе для величины ускорения приведено значение 15, а студент получил 1500. Оказывается, в ответе используется система СИ и ответ дан в метрах на секунду в квадрате, а студент решал задачу с помощью системы СГС и получил правильный ответ, но выраженный в сантиметрах на секунду в квадрате. Численный ответ получился другим именно из-за использования другой системы единиц измерения.

От метров к дюймам и обратно: преобразуем значения из разных единиц измерения

Физики используют разные системы измерения для записи измеренных значений. Но как преобразовать эти значения при переходе от одной системы к другой? При решении физических задач часто приходится иметь дело с величинами, выраженными в разных системах: одни величины могут быть измерены в метрах, другие — в сантиметрах, а третьи — даже в дюймах. Не пугайтесь. Нужно просто научиться их преобразовывать из одной системы в другую. Как проще всего это сделать? Используйте коэффициенты преобразования! Рассмотрим следующую задачу.

Допустим, что за 3 дня вы преодолели расстояние 4680 миль. Впечатляет. Подсчитаем среднюю скорость движения. Как показано в главе 3, в физике скорость определяется так же, как и в жизни: нужно пройденное расстояние поделить на время. Итак, с помощью приведенной ниже формулы получим конечный результат:

Полученный ответ выражен в нестандартных единицах измерения. Обычно для скорости используют другие единицы, например мили в час (в США), а потому нам придется преобразовать полученный ответ в более понятные единицы.

Для преобразования величин из одной системы единиц измерения в другую нужно использовать коэффициенты преобразования. Коэффициент преобразования — это значение, после умножения на которое все нежелательные единицы измерения устраняются, а остаются только нужные.

В предыдущем примере результат получен в милях в день и записан как миль/день. Для вычисления количества миль в час нужно использовать коэффициент преобразования, который позволит исключить дни и оставить часы, т.е. нужно умножить на величину “количество дней в час” (дней/час) и таким образом избавиться от дней:

Коэффициентом преобразования в данном случае является количество дней в час. После подстановки всех значений, упрощения полученного выражения и умножения на коэффициент преобразования получим следующее выражение:

Слова “секунда” (или “метр”) можно рассматривать как некие переменные ( x )или ​( y )​, которые исключают друг друга из соотношения, если встречаются одновременно в числителе и знаменателе.

Если числа затуманивают голову, взгляните на единицы измерения

Хотите узнать об одной хитрости, которую применяют учителя при решении задач по физике? Внимательно следите за единицами измерения! Мне приходилось тысячи раз решать задачи “лицом к лицу” со студентами, и я убедился в том, что преподаватели всегда пользуются этим трюком.

Допустим, что нужно определить скорость по заданному расстоянию и времени. Эта задача решается практически мгновенно, потому что всем известно, что расстояние (например, выраженное в метрах), деленное на время (например, выраженное в секундах), дает скорость (выраженную в метрах в секунду).

Однако в более сложных задачах может быть гораздо больше величин, например масса, расстояние, время и т.д. В таких случаях приходится вылавливать в формулировке задачи численные значения и единицы измерения. Как определить количество энергии? Как показано в главе 10, единица энергии выражается как единица массы, умноженная на квадрат единицы длины и деленная на квадрат единицы времени. Если вы сможете легко выделить величины и их единицы измерения, то сможете не запутаться и представить их в решении.

На самом деле единицы измерения — это наши друзья. Они упрощают нам жизнь, в общем, и путь к решению, в частности. Потому если вы чувствуете, что “погрязли» в числах, то проверьте используемые единицы измерения.

Обратите внимание, что в сутках 24 часа, т.е. коэффициент преобразования равен 1/24. Потому преобразование единиц измерения (дней на часы) происходит при умножении величины 1560 миль/день на этот коэффициент преобразования.

При исключении дней во время умножения отношений получается следующий ответ:

Итак, средняя скорость равна 65 милям в час, что достаточно быстро, если ехать с такой средней скоростью на протяжении 3 суток!

Совсем не обязательно использовать коэффициент преобразования. Если инстинктивно вам понятно, что для преобразования единицы измерения “миль в день” в единицу “миль в час” нужно поделить числовое значение на 24, то нечего такой огород городить. Но если вы все же пребываете в сомнениях, то лучше все-таки найти и использовать все нужные коэффициенты преобразования. Лучше пройти этот длинный путь преобразования единиц измерения, чем поспешить и людей насмешить. Мне довольно часто встречались студенты, которые умели успешно решать задачи, но не справлялись с такими преобразованиями.

Преобразование суток в часы выполняется легко и просто, поскольку всем известно, что в сутках содержится 24 часа. Однако не все преобразования единиц измерения столь очевидны. Далеко не всем хорошо известны системы единиц СГС и СИ. Потому всегда полезно иметь под рукой табличку преобразований единиц из одной системы в другую, как, например, табл. 2.3. (Расшифровка приведенных здесь сокращений приводится в табл. 2.1 и 2.2.)

Поскольку разница между величинами в двух этих системах практически всегда кратна степеням 10, то преобразование величин выполняется достаточно просто. Например, если шар падает с высоты 5 метров, но вам нужно выразить расстояние в сантиметрах, то для этого достаточно умножить результат на отношение 100 сантиметров/1 метр:

А как преобразовать величины в единицы измерения Английской системы мер на основе фута-фунта-дюйма (foot-pound-inch — FPI)? Нет проблем. Все необходимые сведения о таких преобразованиях приведены в шпаргалке. Держите ее под рукой при чтении этой книги или при решении задач.

Исключаем нули: представляем числа в экспоненциальном виде

Физики часто мысленно погружаются в самые темные глубины и отправляются в самые далекие дали, а потому вынуждены использовать чудовищно большие или малые величины. Например, расстояние от Солнца до Плутона приблизительно равно 5 890 000 000 000 метрам. Что делать с таким огромным количеством метров и нулей? Физики для более удобной работы с такими очень большими или очень малыми величинами используют экспоненциальное представление чисел. В этом представлении нули выражаются в степенях 10. Чтобы определить степень, нужно подсчитать все цифры справа налево до первой цифры (первая цифра будет находиться перед запятой в итоговом экспоненциальном представлении). Итак, расстояние от Солнца до Плутона можно выразить следующим образом:

Экспоненциальное представление чисел также используется для записи очень маленьких значений, где степень имеет отрицательный знак. В таком случае нужно подсчитать количество цифр слева направо от десятичной запятой до места после первой ненулевой цифры (опять первая ненулевая цифра будет находиться перед запятой в итоговом экспоненциальном представлении):

Если число больше 10, то в экспоненциальном представлении оно будет иметь положительную степень, а если меньше 1, то — отрицательную. Как видите, операции с очень большими или малыми числами в экспоненциальном представлении выполняются гораздо проще. Именно поэтому во многих калькуляторах встроена возможность такого представления чисел.

Проверяем точность измерений

Точность имеет огромную важность для измерения и анализа физических параметров. Нельзя считать, что измерение стало более точным, если к измеренной величине необоснованно добавить дополнительное количество значащих цифр. Кроме того, всегда следует указывать оценку ошибки измерения с помощью знака ±. В следующих разделах более подробно описываются указания точности измерения физических величин.

Определяем значащие цифры

В измеренной величине значащими цифрами считаются те, которые были фактически получены в ходе измерения. Так, например, если после измерения ученые сообщили, что ракета прошла расстояние 10,0 за 7,00 секунд, то в результате этих измерений получено по три значащие цифры.

Чтобы определить скорость ракеты, эти данные можно ввести в калькулятор и после деления 10,0 на 7,00 получить, казалось бы, очень точный результат: 1,428571429. Но это совсем не так: если после измерения расстояния и времени для них получено всего по три значащие цифры, то в результате манипуляций с числами точность измерений не может возрасти до десяти значащих цифр. Ведь после измерения расстояния с помощью линейки с миллиметровыми делениями нельзя утверждать, что результат получен с точностью до нескольких микрон.

В примере с ракетой получено только по три значащие цифры, потому величина скорости равна 1,43, а не 1,428571429. Если записать больше цифр, то в таком случае будет сделано ничем необоснованное заявление о повышенной точности измерений, которой не было на самом деле.

При округлении числа нужно учитывать следующее простое правило. Если цифра справа от округляемой цифры больше или равна 5, то округление выполняется в сторону увеличения, а если эта цифра меньше 5, то округление выполняется в сторону уменьшения. Например, число 1,428 округляется до 1,43, а число 1,42 — до 1,4.

А что если в результате двух измерений ракета преодолела 10,0 метров за 7,0 секунд? Одно число имеет три, а другое — две значащих цифры. В таком случае нужно учитывать перечисленные ниже правила округления чисел с разным количеством значащих цифр.

  • При умножении или делении чисел результат будет иметь то же количество значащих цифр, что и исходное число с наименьшим количеством значащих цифр.

В примере с ракетой, где нужно поделить расстояние на время, результат будет иметь только две значащие цифры, т.е. правильный ответ равен 1,4 м/с.

  • При сложении или вычитании чисел нужно расположить их в столбик и выровнять по положению десятичной запятой в числах; самая последняя значащая цифра в результате будет соответствовать самой правой значащей цифре в том столбце, в котором все числа в столбике имеют значащие цифры.

Например, при сложении чисел 3,6, 14 и 6,33 получим:

Здесь нужно округлить результат до целого числа, поскольку число 14 не имеет значащих цифр после десятичной запятой, т.е. до 24.

По соглашению нули, используемые доя заполнения пустых мест до или после десятичной запятой, не считаются значащими цифрами. Например, по умолчанию число 3600 имеет только две значащие цифры. Но если некая величина измерена с высокой точностью и действительно равна 3600, то для подчеркивания точности измерения ее иногда приводят с указанием знака, отделяющего целую часть числа от десятичной дроби 3600,0.

Оцениваем точность

Физики при записи результатов измерений не всегда полагаются только на значащие цифры, и иногда можно встретить следующую запись:

Символ ± обозначает оценку физика возможной ошибки измерения. Физик сообщает таким образом, что действительное значение измеряемой величины находится в промежутке от 5,36+0,05 (т.е. 5,41) до 5,36-0,05 (т.е. 5,31) метров. (Это не значит, что именно настолько измеренное значение отличается от “истинного”. Это просто оценка точности измерения, т.е. насколько надежно это измерение.)

Определяем размер ±

С недавних пор символ ± стал чрезвычайно популярным, и его можно встретить даже в объявлениях о продаже недвижимости, например “продается 35± акров”. Иногда даже публикуются объявления о продаже ±35 акров. Значит ли это, что в итоге вы можете приобрести участок площадью в диапазоне от «-35 до +35 акров? Что значит приобрести -15 акров? Может быть, то, что после приобретения такого участка вы будете должны 15 акров?

Вспоминаем алгебру

В физике используется довольно много уравнений, и чтобы умело работать с ними, нужно овладеть основными приемами манипулирования частями уравнения. Сейчас самое время напомнить некоторые основные сведения из курса алгебры.

Следующее уравнение выражает расстояние ​( s )​, которое проходит объект с ускорением ​( a )​ за время ​( t )​:

Допустим, что нужно определить ускорение по известному времени движения и пройденному расстоянию. Манипулируя отдельными членами уравнения, получим следующее соотношение:

Для получения такого соотношения для ​( a )​ нужно обе стороны предыдущего выражения умножить на 2 и поделить на ​( t^2 )​.

А что если нужно найти время ( t )? С помощью несложных манипуляций с переменными и числами получим следующее соотношение:

Нужно ли запоминать все эти три варианта одного уравнения? Конечно же, нет. Достаточно запомнить только один вариант, который связывает эти три величины (расстояние, ускорение и время), а потом извлекать из него соотношение для нужной переменной. (В шпаргалке приводится несколько основных соотношений, которые следует помнить.)

Немного тригонометрии

Кроме базовых сведений из алгебры для решения физических задач необходимо также иметь некоторые сведения из тригонометрии, например о синусе, косинусе, тангенсе. Для этого нужно запомнить простые соотношения на основе прямоугольного треугольника, который показан на рис. 2.1 во всей своей красе.

Для определения тригонометрических величин с помощью треугольника на рис. 2.1 нужно поделить длину одной стороны на длину другой, как показано ниже:

Эти простые соотношения пригодятся нам при изучении векторов в главе 4 и при решении многих задач по физике.

Зная величину одного острого угла и длину одной стороны этого треугольника, можно найти величину другого угла и длины двух других сторон. Ниже приводится несколько примеров, которые по мере изучения курса станут для вас просто родными, но которые вовсе не нужно запоминать наизусть. Если вы знаете предшествующие соотношения для синуса, косинуса и тангенса, то вы сможете легко вывести приведенные ниже соотношения:

Помните, что можно пойти и в “обратную сторону”, т.е. вычислить обратные функции для синуса (( sin^{-1} ), или ( arcsin )), косинуса (​( cos^{-1} )​, или ​( arccos )​) или тангенса (( tan^{-1} ), или ​( arctg )​). Вот как они определяются:

(Строго говоря, обратной синусу функцией является функция “арксинус”, или ( arcsin(x) ), обратной косинусу — “арккосинус”, или ( arccos(x) ), обратной тангенсу — “арктангенс”, или ​( arctg(x) )​. Обозначения ( sin^{-1}(x) ), ( cos^{-1}(x) ) и ( tg^{-1}(x) ) часто используются в иностранной литературе для обозначения функций “арксинус”, “арккосинус” и “арктангенс”, но их не рекомендуется употреблять, чтобы не путать с функциями ​( 1/sin(x) )​, ( 1/cos(x) ) и ( 1/tg(x) ). — Примеч. ред.)

Глава 2. Постигаем основы физики

4.4 (88.33%) 12 votes

Добавить комментарий