Как найти сопротивление контура при резонансе

Сопротивление
параллельного контура при резонансе
чисто активное; напряжение на контуре
и ток в неразветвленной части цепи
совпадают по фазе. Реальный контур
отбирает от питающего генератора
некоторое количество энергии, которое
превращается в тепло на активном
сопротивлении R
(сопротивлении потерь)
контура. На основании закона сохранения
энергии мощность, отдаваемая генератором,
и мощность, расходуемая на тепло в
активном сопротивлении контура, равны.

Мощность, отдаваемая
генератором, определяется выражением

где–ток в неразветвленной
части цепи при резонансе;

–сопротивление
контура при резонансе.

Мощность,
расходуемая в активном сопротивлении
R,
равна

,

где
–ток внутри контура
при резонансе ().

R
–активное сопротивление,
учитывающее потери энергии вкатушке.

Если
напряжение на зажимах генератора
,
то

и

.

Имея
в виду последние два выражения, приравняем
мощности
и:

.

Отсюда

,

или

.

Так
как
,
то,

где
– резонансное сопротивление
контура в омах;

L
–индуктивность
контура в генри;

С –емкость контура в фарадах;

R
– активное сопротивление
в омах.

Резонансное
сопротивление параллельного контура
зависит от величины активного сопротивления
потерь R
и от соотношения
величин L
и С,
т. е. от волнового сопротивления контура.
Чем больше R,
тем больше энергии расходуется в нем
на тепло и тем больше энергии (большая
мощность) поступает от генератора в
контур. Следовательно, чем больше
сопротивление потерь R,
тем больше ток
в общей части цепи. Но по величине тока
можно судить о величине сопротивления
контура: чем больше ток, тем меньше
сопротивление. Поэтому чем больше
сопротивление потерь, тем меньше
сопротивление параллельного контура
при резонансе. В отсутствиеR

.

3.2. Зависимость сопротивления параллельного контура от частоты

Пусть частота
генератора, питающего параллельный
контур, изменяется в широких пределах.
При повышении частоты генератора
емкостное сопротивление конденсатора
уменьшается:

,

а индуктивное
сопротивление увеличивается:

.

При
этом ток в емкостной ветви увеличивается,
а в индуктивной уменьшается. При частоте
ниже резонансной в общей цепи преобладает
индуктивный ток и контур ведет себя как
индуктивное сопротивление. При частоте
генератора, равной собственной частоте
контура , емкостной и индуктивный токи
равны по величине и реактивный ток в
общей части цепи равен нулю (состояние
резонанса). Сопротивление контура имеет
чисто активный характер и значительную
величину, определяемую формулой

.

При частоте выше
резонансной в общей цепи преобладает
емкостной ток и контур ведет себя как
емкостное сопротивление.

Чем
больше частота генератора отличается
от собственной (резонансной) частоты
контура, тем больше различаются токии,
тем больше реактивный ток в общей части
цепи и меньше реактивное сопротивление
контура. Исходя из этих рассуждений,
можно показать зависимость сопротивления
параллельного контура от частоты
питающего генератора (рис.14).

Рис.14.
Зависимость
сопротивления параллельного контура
от частоты генератора

При
изменении частоты генератора изменяется
фазовый сдвиг между напряжением
генератора и током
,
идущим через контур. Если частота
генератора значительно ниже собственной
(резонансной) частоты контура, то
сопротивление контура можно считать
чисто индуктивным, т.к. реактивный ток
в общей цепи во много раз больше активного.
Угол фазового сдвига между напряжением
генератора и током
при этом близок к.
По мере повышения частоты генератора
реактивная составляющая тока в общей
цепи и фазовый угол уменьшаются. При
резонансе сопротивление контура является
чисто активным и фазовый сдвиг между
напряжением генератора и током

равен нулю. Если частота генератора
превышает резонансную частоту контура,
то сопротивление контура состоит из
активной и емкостной составляющих. По
мере повышения частоты генератора
соотношение между активной и реактивной
составляющими изменяется и угол фазового
сдвига между напряжением генератора и
током

приближается к.

Кривая, показывающая
зависимость угла фазового сдвига между
напряжением генератора и током через
контур, называется фазо-частотной
характеристикой параллельного
контура(рис.15).

Рис.15.
Фазо-частотная характеристика
параллельного контура

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В прошлой статье мы с вами рассмотрели последовательный колебательный контур, так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы  рассмотрим параллельный колебательный контур, в котором катушка и конденсатор  соединяются параллельно.

Параллельный колебательный контур

Идеальный колебательный контур

На схеме идеальный колебательный контур выглядит вот так:

идеальный параллельный колебательный контур

где

L — индуктивность, Генри

С — емкость, Фарад

Реальный колебательный контур

В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:

реальный паралельный колебательный контур

где

R — это сопротивление потерь контура, Ом

L — индуктивность, Генри

С — емкость, Фарад

Принцип работы параллельного колебательного контура

Давайте подцепим к генератору частоты реальный параллельный колебательный контур

паралельный колебательный контур в цепи генератора частоты

Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока.

Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

Реактивное сопротивление катушки выражается по формуле

реактивное сопротивление катушки

а конденсатора по формуле

реактивное сопротивление конденсатора

Более подробно про это можно прочитать в этой статье.

Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки XL и конденсатора XC уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

Резонанс параллельного колебательного контура

Очень интересное свойство параллельного колебательного контура заключается в том, что при ХL = ХС   у нас колебательный контур войдет в резонанс. При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току. Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

формула резонансного сопротивления

где

Rрез  — это сопротивление контура на резонансной частоте

L — собственно сама индуктивность катушки

C — собственно сама емкость конденсатора

R — сопротивление потерь катушки

Формула резонанса

Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

формула резонанса параллельного колебательного контура

где

F — это резонансная частота контура, Герцы

L — индуктивность катушки, Генри

С — емкость конденсатора, Фарады

Как найти резонанс параллельного колебательного контура на практике

Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.

параллельный колебательный контур

Итак, реальная схема этого контура будет вот такая:

Параллельный колебательный контур

Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:

Параллельный колебательный контур

Параллельный колебательный контур

На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура Rкон.

Упрощенная схема будет выглядеть вот так:

Параллельный колебательный контур

Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление Rкон будет максимальным, вследствие чего у нас на этом сопротивлении «упадет» бОльшее напряжение.

У нас есть калькулятор резисторов по цветам. Самый крутой подборник.

Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

200 Герц.

Параллельный колебательный контур

Как вы видите, на колебательном контуре «падает» малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление Rкон

Добавляем частоту. 11,4 Килогерца

Параллельный колебательный контур

Как вы видите, напряжение на контуре поднялось. Это значит, что  сопротивление  колебательного контура увеличилось.

Добавляем еще частоту. 50 Килогерц

Параллельный колебательный контур

Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

723 Килогерца

Параллельный колебательный контур

Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.

частота резонанса

Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:

Параллельный колебательный контур

Снова добавляем частоту и видим, что напряжение стало еще меньше:

Параллельный колебательный контур

Что происходит на резонансной частоте в параллельном колебательном контуре

Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

Параллельный колебательный контур

Что здесь у нас произошло?

Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое  высокое сопротивление Rкон. На этой частоте ХL = ХС. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

Параллельный колебательный контур

Резонанс токов

Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

резонанс параллельного колебательного контура

Чему будет равняться резонансный ток  Iрез ? Считаем по закону Ома:

Iрез = Uген /Rрез  , где  Rрез = L/CR.

Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток Iкон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

Добротность параллельного колебательного контура

Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз.  Q — это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила  тока в контуре  Iкон  больше сила тока в общей цепи Iрез

Или формулой:

добротность паралелльного колебательного контура

Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

формула добротности

где

Q — добротность

R — сопротивление потерь на катушке, Ом

С — емкость, Ф

L — индуктивность, Гн

Применение параллельного колебательного контура

Параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные резонансные фильтры.

Также смотрите видео:

Содержание:

Частотные методы анализа электрических цепей:

Частотные характеристики являются компонентами комплексных функций цепи.

Комплексная функция цепи (КФЦ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-частотная характеристика (АЧХ)

Частотные методы анализа и расчёта электрических цепей

Фазочастотная характеристика (ФЧХ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— вещественная частотная характеристика (ВЧХ); Частотные методы анализа и расчёта электрических цепей— мнимая частотная характеристика (МЧХ).

Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.

На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в Частотные методы анализа и расчёта электрических цепей раз по сравнению с максимальными значениями.

Полоса пропускания может измеряться в радианах в секунду Частотные методы анализа и расчёта электрических цепей или в герцах (Гц).

Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)

Частотные методы анализа и расчёта электрических цепей

Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные методы анализа и расчёта электрических цепей

Частотные характеристики цепей с одним реактивным элементом

Примеры решения типовых задач:

Пример 4.2.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим комплексное напряжение на выходе цепи в виде 

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей. После преобразований получимЧастотные методы анализа и расчёта электрических цепей
Следовательно.

Частотные методы анализа и расчёта электрических цепей

Введем обозначения:

Частотные методы анализа и расчёта электрических цепей
Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина Частотные методы анализа и расчёта электрических цепей имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей

 С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:

Частотные методы анализа и расчёта электрических цепей

3. Из (4.3) запишем АЧХ и ФЧХ соответственно:

Частотные методы анализа и расчёта электрических цепей

4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения Частотные методы анализа и расчёта электрических цепей для крайних значений частот:

Частотные методы анализа и расчёта электрических цепей

График АЧХ Частотные методы анализа и расчёта электрических цепей (рис. 4.4, а) является кривой, монотонно возрастающей от значения Частотные методы анализа и расчёта электрических цепей

График функции ФЧХ Частотные методы анализа и расчёта электрических цепей можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как Частотные методы анализа и расчёта электрических цепейчто следует из формулы (4.1). Поэтому функция Частотные методы анализа и расчёта электрических цепейследовательно, дифференцирующий -контур вносит опережение по фазе.

Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в (4.5), получим

Частотные методы анализа и расчёта электрических цепей

Графики АЧХ и ФЧХ изображены на рис. 4.4.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.2.

Для электрической цепи, изображенной на рис. 4.5, определить АЧХ Частотные методы анализа и расчёта электрических цепей граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду
Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Отсюда: АЧХ
Частотные методы анализа и расчёта электрических цепей

ФЧХ

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем граничную частоту. По определению
Частотные методы анализа и расчёта электрических цепей

Из (4.7) найдем
Частотные методы анализа и расчёта электрических цепей

Следовательно,
Частотные методы анализа и расчёта электрических цепей

Из уравнения (4.9) получаем, что

Частотные методы анализа и расчёта электрических цепей

Отсюда    Частотные методы анализа и расчёта электрических цепей

3. Построим график функций.

Вычислим значения (4.7) и (4.8) для частот с дискретностью Частотные методы анализа и расчёта электрических цепей

Графики и таблицы выполним в среде Mathcad (рис. 4.6).

Пример 4.2.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.

2.Составим матрицы контурных сопротивлений для двух независимых контуров
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки равно Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем 

Частотные методы анализа и расчёта электрических цепей

или Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей С ростом частоты емкостное сопротивление уменьшается. ЕслиЧастотные методы анализа и расчёта электрических цепей то Частотные методы анализа и расчёта электрических цепей и шунтирует сопротивление Частотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей    = 0.

По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.

Частотные методы анализа и расчёта электрических цепей

5. Определяем полосу пропускания. По определению
Частотные методы анализа и расчёта электрических цепей

Поэтому из (4.11) имеем
Частотные методы анализа и расчёта электрических цепей

После преобразований уравнения (4.12) получаем

Частотные методы анализа и расчёта электрических цепей

откуда

Частотные методы анализа и расчёта электрических цепей

или

Частотные методы анализа и расчёта электрических цепей

Следовательно, цепь имеет полосу пропускания 

Частотные методы анализа и расчёта электрических цепей

На рис. 4.8 указана граничная частота Частотные методы анализа и расчёта электрических цепей

Данная цепь представляет собой фильтр нижних частот с полосой пропускания Частотные методы анализа и расчёта электрических цепей сигналы на частотах Частотные методы анализа и расчёта электрических цепей проходят с большим затуханием.

Пример 4.2.4.

Найти комплексную передаточную проводимость Частотные методы анализа и расчёта электрических цепей для цепи, изображенной на рис. 4.9, а методом узловых напряжений.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей  из последовательно включенных пассивных элементов, находится из соотношения Частотные методы анализа и расчёта электрических цепей, гдеЧастотные методы анализа и расчёта электрических цепей — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными Частотные методы анализа и расчёта электрических цепей

В начале рассчитывают комплексное сопротивление этой ветви, Частотные методы анализа и расчёта электрических цепей, а затем комплексную проводимость

Частотные методы анализа и расчёта электрических цепей

Составим матрицу проводимостей цепи 1 2
Частотные методы анализа и расчёта электрических цепей

Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения Частотные методы анализа и расчёта электрических цепей направлены одинаково, к базисному yзлy.

3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-комплексная проводимость ветви, по которой протекает ток Частотные методы анализа и расчёта электрических цепей,так как по определению

Частотные методы анализа и расчёта электрических цепей

Найдем алгебраические дополнения:

Частотные методы анализа и расчёта электрических цепей

После подстановки найденных значений получим

Частотные методы анализа и расчёта электрических цепей

Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем значения Частотные методы анализа и расчёта электрических цепей на частотах Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Примечание. Эти значения можно найти без вывода аналитического выражения для Частотные методы анализа и расчёта электрических цепей Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.

Учитывая, что Частотные методы анализа и расчёта электрических цепей получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Частотные методы анализа и расчёта электрических цепей

Для первой схемы:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Аналогично для второй схемы получим 

Частотные методы анализа и расчёта электрических цепей

При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.

Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.5.

Для интегрирующего -контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если

Частотные методы анализа и расчёта электрических цепей

Решение

1. Составим комплексную схему замещения цепи (рис. 4.12, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим Частотные методы анализа и расчёта электрических цепей из соотношения Частотные методы анализа и расчёта электрических цепей где

Частотные методы анализа и расчёта электрических цепей

Следовательно.

Частотные методы анализа и расчёта электрических цепей

3. Для нахождения АЧХ и ФЧХ комплексную функцию Частотные методы анализа и расчёта электрических цепейпредставленную в виде отношения двух полиномов мнимой частоты Частотные методы анализа и расчёта электрических цепей записывают в показательной форме

Частотные методы анализа и расчёта электрических цепей

Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;

Частотные методы анализа и расчёта электрических цепей

Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:

Частотные методы анализа и расчёта электрических цепей

4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения Частотные методы анализа и расчёта электрических цепей для трех значений частот: Частотные методы анализа и расчёта электрических цепейРезультаты расчетов для удобства построения графиков сведем в табл. 4.2.

Частотные методы анализа и расчёта электрических цепей

Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.

 Графики характеристик приведены на рис. 4.13.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).

ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте Частотные методы анализа и расчёта электрических цепей ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения

Частотные методы анализа и расчёта электрических цепей

Взяв производную, получим

Частотные методы анализа и расчёта электрических цепей

Решая полученное уравнение относительно Частотные методы анализа и расчёта электрических цепей, найдем

Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в выражение Частотные методы анализа и расчёта электрических цепей определим максимальное значение фазовой частотной характеристики.

Частотные методы анализа и расчёта электрических цепей

АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси Частотные методы анализа и расчёта электрических цепей в точке с абсциссой, равной

Частотные методы анализа и расчёта электрических цепей

Радиус окружности нетрудно определить из соотношения:

Частотные методы анализа и расчёта электрических цепей

МЧХ:

Частотные методы анализа и расчёта электрических цепей

Отрицательное значение Частотные методы анализа и расчёта электрических цепей свидетельствует о том, что 

Частотные методы анализа и расчёта электрических цепей принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.

5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для  частот Частотные методы анализа и расчёта электрических цепей(рис. 4.14).

На частоте Частотные методы анализа и расчёта электрических цепей цепь разомкнута (рис. 4.14, а), поэтому

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи

Частотные методы анализа и расчёта электрических цепей

Подставляя эти значения частот в аналитическое выражение (4.14) для Частотные методы анализа и расчёта электрических цепейполучаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, расчет АЧХ выполнен верно.

Частотные характеристики последовательного колебательного контура

Основные теоретические сведения:

В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие    

Частотные методы анализа и расчёта электрических цепей

 т. е. Частотные методы анализа и расчёта электрических цепей                     

Частотные методы анализа и расчёта электрических цепей

Резонансная частота

Частотные методы анализа и расчёта электрических цепей

Волновое сопротивление контура Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе Частотные методы анализа и расчёта электрических цепей

Собственная добротность контура  Частотные методы анализа и расчёта электрических цепей

Добротность нагруженного контура Частотные методы анализа и расчёта электрических цепей

Затухание контура  Частотные методы анализа и расчёта электрических цепей

Абсолютная расстройка   Частотные методы анализа и расчёта электрических цепей

Относительная расстройка   Частотные методы анализа и расчёта электрических цепей

Обобщенная расстройка

Частотные методы анализа и расчёта электрических цепей

Фактор расстройки:  Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.22)
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Для нагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Комплексные коэффициенты передачи по напряжению:

на активном сопротивлении
Частотные методы анализа и расчёта электрических цепей
на индуктивности
Частотные методы анализа и расчёта электрических цепей

на емкости 

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.3.1.

Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.

Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.

Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.    

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определяем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

2. Находим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

3. Вычисляем добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

4. Определяем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

5. Рассчитываем ток и напряжения на элементах контура при резонансе

Частотные методы анализа и расчёта электрических цепей

Напряжение на R равно

Частотные методы анализа и расчёта электрических цепей

Напряжения на реактивных элементах

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.

Учитывая (4.22), из (4.29) получим:

Частотные методы анализа и расчёта электрических цепей

Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.

Следует заметить, что максимум А11Х достигается на частоте

Частотные методы анализа и расчёта электрических цепей

т.е. при Частотные методы анализа и расчёта электрических цепей смещение максимума мало, тогда Частотные методы анализа и расчёта электрических цепей

Задача 4.3.2.

К последовательному колебательному контуру (рис. 4.25) с параметрами Частотные методы анализа и расчёта электрических цепей подключена нагрузка Частотные методы анализа и расчёта электрических цепей

Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.

Решение

1. Рассчитаем вторичные параметры ненагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем Частотные методы анализа и расчёта электрических цепей то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.

Для определения добротности рассчитаем сопротивление Частотные методы анализа и расчёта электрических цепей, вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как Частотные методы анализа и расчёта электрических цепейто
Частотные методы анализа и расчёта электрических цепей
Следовательно,

Частотные методы анализа и расчёта электрических цепей

Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.

Пример 4.3.3.

На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: Частотные методы анализа и расчёта электрических цепей. На резонансной частоте антенна наводит в контуре ЭДС Частотные методы анализа и расчёта электрических цепей Емкость конденсатора Частотные методы анализа и расчёта электрических цепейкатушка индуктивности имеет Частотные методы анализа и расчёта электрических цепей

Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.

Решение

1. Определяем эквивалентную емкость контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитываем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):

Частотные методы анализа и расчёта электрических цепей

4. Определяем добротность нагруженного контура
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем абсолютную полосу пропускания нагруженного контура

Частотные методы анализа и расчёта электрических цепей

6. Находим ток в контуре

Частотные методы анализа и расчёта электрических цепей

Пример 4.3.4.

Рассчитать емкость последовательного колебательного контура, если резонансная частота контура Частотные методы анализа и расчёта электрических цепей полоса пропускания Частотные методы анализа и расчёта электрических цепейпри сопротивлении потерь 0,5 Ом.

Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.

Решение

1. Определим требуемую добротность контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем емкость конденсатора. Из формулы Частотные методы анализа и расчёта электрических цепейнайдем

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем АЧХ и ФЧХ.

Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:

Частотные методы анализа и расчёта электрических цепей

Вычислим значения функций на частотах:

Частотные методы анализа и расчёта электрических цепей

Определим частоту, при которой АЧХ имеет максимум

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Смещением частоты Частотные методы анализа и расчёта электрических цепей можно пренебречь.

Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.

Частотные методы анализа и расчёта электрических цепей

Частотные характеристики параллельного колебательного контура

Основные теоретические сведения:

Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

где резонансная частота колебанийЧастотные методы анализа и расчёта электрических цепей

Для реального контура Частотные методы анализа и расчёта электрических цепей поэтому при расчете можно полагать, что

Частотные методы анализа и расчёта электрических цепей

При резонансе сопротивление контура является активным, поэтому ток Частотные методы анализа и расчёта электрических цепей в цепи и напряжение Частотные методы анализа и расчёта электрических цепей в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.

Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
Частотные методы анализа и расчёта электрических цепей
где  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Добротность Частотные методы анализа и расчёта электрических цепей нагруженного контура меньше собственной добротности Частотные методы анализа и расчёта электрических цепей Ее можно выразить через сопротивления элементов цепи

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

или через их проводимости

Частотные методы анализа и расчёта электрических цепей

Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)

Частотные методы анализа и расчёта электрических цепей

При этом напряжение на контуре максимально и равно

Частотные методы анализа и расчёта электрических цепей

Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный

Частотные методы анализа и расчёта электрических цепей

Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-обобщенная расстройка контура без учета внешних цепей; Частотные методы анализа и расчёта электрических цепей — фактор расстройки.

Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.

На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.

Частотные методы анализа и расчёта электрических цепей

Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.

Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — коэффициенты включения:

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.4.1.

Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Частотные методы анализа и расчёта электрических цепей Контур настроен в резонанс на длину волны, равную 1000 м.

Параметры катушки индуктивности: Частотные методы анализа и расчёта электрических цепей

Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.

Решение

1. Определим резонансную частоту колебания

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем волновое сопротивление

Частотные методы анализа и расчёта электрических цепей

3. Определим сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе

Частотные методы анализа и расчёта электрических цепей

5. Определим соответственную добротность контура

Частотные методы анализа и расчёта электрических цепей

6. Найдем ток в контуре и напряжение на нем:

Частотные методы анализа и расчёта электрических цепей

7.  Определим добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

8. Рассчитаем абсолютную и относительную полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

9.  Определяем добавочное cопротивление Частотные методы анализа и расчёта электрических цепей из (4.31)

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.2.

Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).

Дано: Частотные методы анализа и расчёта электрических цепей

Определить сопротивление Частотные методы анализа и расчёта электрических цепей шунта, необходимого для расширения полосы пропускания до 10 кГц.

Решение

1. Рассчитаем волновое сопротивление и резонансную частоту контура:

Частотные методы анализа и расчёта электрических цепей

2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

3. Определим полосу пропускания

Частотные методы анализа и расчёта электрических цепей

4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,

В этом случае добротность цепи должна быть равна

Частотные методы анализа и расчёта электрических цепей

Тогда из (4.32) получаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, сопротивление шунта должно быть равно

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.3.

Параллельный колебательный контур с параметрами: Частотные методы анализа и расчёта электрических цепей подключен к источникуЧастотные методы анализа и расчёта электрических цепей

Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.

Решение

1. Определим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем собственную добротность контура

Частотные методы анализа и расчёта электрических цепей

3. Найдем сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим добротность нагруженного контура по формуле (4.31)

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем резонансную частоту

Частотные методы анализа и расчёта электрических цепей

6. Найдем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

7. Определим граничные частоты полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем

Частотные методы анализа и расчёта электрических цепей

Напряжение па контуре при резонансе 

Частотные методы анализа и расчёта электрических цепей

Для построения резонансной характеристики задаемся характерными значениями частот: Частотные методы анализа и расчёта электрических цепей Результаты расчетов в графическом виде представлены на рис. 4.33.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.4.

Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.

Дано: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:

Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем эквивалентное сопротивление сложного контура II вида

Частотные методы анализа и расчёта электрических цепей

3. Найдем добротность нагруженного контура II  вида

Частотные методы анализа и расчёта электрических цепей

Сравним значения Частотные методы анализа и расчёта электрических цепей с добротностью простого нагруженного контура

Частотные методы анализа и расчёта электрических цепей

Вывод. За счет неполного включения индуктивности Частотные методы анализа и расчёта электрических цепей уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.

Частотные характеристики связанных колебательных контуров

Основные теоретические сведения:

С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).

Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Частотные методы анализа и расчёта электрических цепей

Эквивалентные схемы связанных контуров

Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).

Количественной характеристикой связи является сопротивление связи Частотные методы анализа и расчёта электрических цепей в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи Частотные методы анализа и расчёта электрических цепей в П-образной эквивалентной схеме (рис. 4.38, б).

Удобным параметром для оценки связи является коэффициент связи

В случае реактивной связи для Т-образной схемы

Для П-образной схемы

где — сопротивление (проводимость) связи;Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей— сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для этого используют понятия вносимого сопротивления Частотные методы анализа и расчёта электрических цепей и вносимой проводимости Частотные методы анализа и расчёта электрических цепей Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:

Частотные методы анализа и расчёта электрических цепей

Резонансы в связанных контурах:

При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.

Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Резонансные характеристики связанных контуров:

Для двух неидентичных связанных контуров: последовательного питания

Частотные методы анализа и расчёта электрических цепей

где   Частотные методы анализа и расчёта электрических цепей

параллельного питания:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— параметр связи. 

Если контуры идентичны, то обобщенная расстройка Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

На рис. 4.40 приведены резонансные характеристики при различных факторах связи.

Относительная полоса пропускания:

а) связь слабая Частотные методы анализа и расчёта электрических цепей

б) связь критическая Частотные методы анализа и расчёта электрических цепей

в) связь сильная Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей достигается максимально возможная полоса пропускания Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.5.1.

В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить емкость Частотные методы анализа и расчёта электрических цепей при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.

Решение

Емкость конденсатора Частотные методы анализа и расчёта электрических цепей определим но реактивному сопротивлению первого контура:

Частотные методы анализа и расчёта электрических цепей

отсюда

Частотные методы анализа и расчёта электрических цепей

Определим реактивное сопротивление Частотные методы анализа и расчёта электрических цепей, первого контура из условия первого частного резонанса (см. табл. 4.3)

Частотные методы анализа и расчёта электрических цепей

Peaктивное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Рассчитаем полное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепей

Определим сопротивление связи контуров

Частотные методы анализа и расчёта электрических цепей

Следовательно

Частотные методы анализа и расчёта электрических цепей

Находим емкость первого контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.2.

Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.

Дано: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим емкость конденсатора Частотные методы анализа и расчёта электрических цепей, полагая, что

Частотные методы анализа и расчёта электрических цепей

Отсюда

Частотные методы анализа и расчёта электрических цепей

2.  Сопротивление оптимальной связи при полном резонансе

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем токи в первом и втором контурах при полном резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.3.

На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Частотные методы анализа и расчёта электрических цепей Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим полосу пропускания одиночного контура 

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем полосу пропускания системы связанных контуров:

1)  определим параметр связи для Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Таким образом при Частотные методы анализа и расчёта электрических цепей связь меньше критической Частотные методы анализа и расчёта электрических цепей При этом относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)

Частотные методы анализа и расчёта электрических цепей

2) при Частотные методы анализа и расчёта электрических цепей параметр связи Частотные методы анализа и расчёта электрических цепей Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае

Частотные методы анализа и расчёта электрических цепей

3) если Частотные методы анализа и расчёта электрических цепей то параметр связи Частотные методы анализа и расчёта электрических цепей следовательно, связь больше критической.

Рассчитаем полосу пропускания для этого случая.

Частотные методы анализа и расчёта электрических цепей

Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.4.

Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту Частотные методы анализа и расчёта электрических цепей принимаемого сигнала. В антенном контуре наводится Частотные методы анализа и расчёта электрических цепей

Дано: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Входное сопротивление УВЧ считать бесконечно большим.

Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.

Решение

1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура

Частотные методы анализа и расчёта электрических цепей

Емкость конденсатора второго контура

Частотные методы анализа и расчёта электрических цепей
2. Рассчитаем волновое сопротивление контуров:

Частотные методы анализа и расчёта электрических цепей
3. Рассчитаем добротности контуров и параметр связи:

Частотные методы анализа и расчёта электрических цепей
4. Определим взаимную индуктивность двух связанных контуров

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем

Частотные методы анализа и расчёта электрических цепей

Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:

Частотные методы анализа и расчёта электрических цепей

С учетом этого рассчитаем ток во втором контуре

Частотные методы анализа и расчёта электрических цепей

6. Найдем напряжение на конденсаторе вторичного контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.5.

На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту Частотные методы анализа и расчёта электрических цепей

Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.

Решение

1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа получаем

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Емкость второго контура с учетом влияния входной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа

Частотные методы анализа и расчёта электрических цепей

2. Определим емкость связи

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем параметр связи Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе

Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс Частотные методы анализа и расчёта электрических цепейиз (4.35) получаем

Частотные методы анализа и расчёта электрических цепей

Найдем проводимость контуров

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.

Частотные методы анализа и расчёта электрических цепей

Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях

Основные теоретические сведения:

Зная частотную характеристику электрической цепи Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей то в установившемся режиме комплексное изображение выходного напряжения

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей амплитуда и сдвиг по фазе выходных колебаний соответственно.

С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие Частотные методы анализа и расчёта электрических цепей. Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].

Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид

Частотные методы анализа и расчёта электрических цепей

т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида Частотные методы анализа и расчёта электрических цепей

Каждому из этих колебаний соответствует выходное колебание Частотные методы анализа и расчёта электрических цепей а реакция системы на единичную ступенчатую функцию выражается интегралом

Частотные методы анализа и расчёта электрических цепей

Представляя Частотные методы анализа и расчёта электрических цепей в алгебраической форме Частотные методы анализа и расчёта электрических цепей и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.

Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:

Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от Частотные методы анализа и расчёта электрических цепей В области частот Частотные методы анализа и расчёта электрических цепей влияние ВЧХ Частотные методы анализа и расчёта электрических цепей на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]

Частотные методы анализа и расчёта электрических цепей

В результате интегрирования получают совокупность значений Частотные методы анализа и расчёта электрических цепейпереходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.

В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл

Частотные методы анализа и расчёта электрических цепей

Вид подынтегральной функции, соответствующей выражению

Частотные методы анализа и расчёта электрических цепей

при фиксированном времени Частотные методы анализа и расчёта электрических цепей приведен на рис. 4.47, кривая Частотные методы анализа и расчёта электрических цепей для t = 10 с, кривая 2 для Частотные методы анализа и расчёта электрических цепей, а кривая 3 изображает ВЧХ электрической цепи. Функция Частотные методы анализа и расчёта электрических цепей представляет функцию Частотные методы анализа и расчёта электрических цепей модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Частотные методы анализа и расчёта электрических цепей Если интервал аргумента Частотные методы анализа и расчёта электрических цепей разбить на Частотные методы анализа и расчёта электрических цепей равных частей, то длина одного интервала будет равна Частотные методы анализа и расчёта электрических цепей Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей и высотой Частотные методы анализа и расчёта электрических цепейТогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:

Частотные методы анализа и расчёта электрических цепей

Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов Частотные методы анализа и расчёта электрических цепей разбиения аргумента Частотные методы анализа и расчёта электрических цепей при конкретном времени Частотные методы анализа и расчёта электрических цепей При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.

В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.

Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].

Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Частотные методы анализа и расчёта электрических цепей Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Алгебраическая форма КФ
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная и мнимая части КФ. Построим кривуюЧастотные методы анализа и расчёта электрических цепей (рис. 4.49) в среде Mathcad, если Частотные методы анализа и расчёта электрических цепей.

Из графика ВЧХ видно, что при Частотные методы анализа и расчёта электрических цепей Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту Частотные методы анализа и расчёта электрических цепейможно принять частоту, при которой ВЧХ принимает значение Частотные методы анализа и расчёта электрических цепей Эту частоту принято называть «существенной частотой» и обозначать Частотные методы анализа и расчёта электрических цепей. В нашем примере Частотные методы анализа и расчёта электрических цепей Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при Частотные методы анализа и расчёта электрических цепей ВЧХ КФ этой цепи Частотные методы анализа и расчёта электрических цепейТогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением

Частотные методы анализа и расчёта электрических цепей

Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.

Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:

Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.

Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.

Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

После соответствующих преобразований выражение (4.46) примет вид:

I) для ступенчатой входной функции Частотные методы анализа и расчёта электрических цепей спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2) для линейной входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей
Частотные методы анализа и расчёта электрических цепей
y{t) = vP(0)t+±l
2 r0(
Л» И
(4.48)
О)
3) для параболической входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
4) для полиномиального воздействия видаЧастотные методы анализа и расчёта электрических цепей 

Частотные методы анализа и расчёта электрических цепей

Применение ЭВМ и численных методов интегрирования позволяет отказаться от графических и табличных методов построения переходных и других необходимых функций в электрических цепях.

Примеры решения типовых задач:

Пример 4.6.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего Частотные методы анализа и расчёта электрических цепей-контура (рис. 4.50,а), рассчитать и построить переходную функцию контура с помощью ВЧХ.

Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.50, б).

2. Определим комплексное напряжение на выходе цепи в виде

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся за скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей После преобразований получим
Частотные методы анализа и расчёта электрических цепей
Следовательно
Частотные методы анализа и расчёта электрических цепей
Введем обозначения:

Частотные методы анализа и расчёта электрических цепей

Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина k имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Примем:Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.51).

Из частотных характеристик КПФ принимаем Частотные методы анализа и расчёта электрических цепей Для построения переходной функции воспользуемся выражением (4.45). Построение проведем также в среде Mathcad.Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Переходная функция, показанная на рис.4.52, соответствует дифференцирую щему фазоопережающему контуру, который широко применяется в электронных и радиотехнических устройствах, системах автоматического управления.

Пример 4.6.2.

Для электрической цепи, изображенной на рис, 4.53, определить КПФ Частотные методы анализа и расчёта электрических цепей построить ВЧХ Частотные методы анализа и расчёта электрических цепей и МЧХ Частотные методы анализа и расчёта электрических цепей. Рассчитать и построить график переходной функции. Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию Частотные методы анализа и расчёта электрических цепей по формуле делителя напряжения

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду 

Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.54).

По виду ВЧХ и МЧХ определяем, что для построения переходной функции необходимо применить МЧХ. Примем из графика МЧХ Частотные методы анализа и расчёта электрических цепей Переходная функция и программа для ее вычисления и построения приведена на рис. 4.55.

Из рис. 4.55 видно, что переходная функция соответствует интегрирующему контуру.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.6.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.56, а), используя метод контурных токов. Построить в среде Mathcad графики АЧХ, ВЧХ, МЧХ. Рассчитать и построить эпюру входного и выходного напряжения, если на вход цепи поступает напряжение вида Частотные методы анализа и расчёта электрических цепей где Частотные методы анализа и расчёта электрических цепей

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1.Представим цепь комплексной схемой замещения (рис. 4.56, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направление контурных тиков выбираем одинаковым.

2.Составим матрицы контурных сопротивлений для двух независимых контуров

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

т.е.  Частотные методы анализа и расчёта электрических цепей

где  Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепей = = 0,75. С ростом частоты емкостное сопротивление уменьшается. Если Частотные методы анализа и расчёта электрических цепей   тоЧастотные методы анализа и расчёта электрических цепей и шунтирует сопротивлениеЧастотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей

5.Определим выражения для АЧХ, ВЧХ, МЧХ. Представим КГ1Ф (4.55) в алгебраической форме

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей вещественная частотная характеристика:

Частотные методы анализа и расчёта электрических цепей — мнимая частотная характеристика.
Амплитудно-частотную характеристику запишем в виде

Частотные методы анализа и расчёта электрических цепей

6. В среде Mathcad построим частотные характеристики и определим Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

По ВЧХ на рис. 4.57 определяем, что существенная частота Частотные методы анализа и расчёта электрических цепей

7. Построим переходную функцию электрической цепи, которая представлена на рис. 4.58.

Переходная функция электрической цепи соответствует апериодическому звену.

Частотные методы анализа и расчёта электрических цепей

8. Построим реакцию электрической цепи на напряжение, изменяющееся но линейному закону (рис. 4.59).

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

  • Операторные передаточные функции
  • Свободные колебания в пассивных электрических цепях
  • Цепи с распределёнными параметрами
  • Волновые параметры длинной линии
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей

Колебательный контур является типичным представителем резонансных колебательных систем, играющих важную роль в большинстве разделов физики — в механике это различного типа маятники и звуковые резонаторы (струны, мембраны, трубы, свистки, органы), в электродинамике — колебательные контуры, закрытые и открытые резонаторы с распределенными параметрами, в оптике — лазерные резонаторы, эталоны Фабри — Перо и т.д. Принципы описания всех колебательных систем настолько общи, что теория колебаний стала самостоятельным разделом физики. Поэтому изучение параметров, свойств и характеристик колебательного контура полезно рассматривать как общее введение в мир резонансных колебательных систем.

В теории колебаний выделяются два класса явлений — явления в линейных и нелинейных колебательных системах. Линейными называются такие системы, параметры которых не зависят от амплитуды колебаний. Например, для маятников это означает такие малые колебания, при которых упругость пружин и стержней не зависит от амплитуды колебания, а натяжение нити подвеса определяется только гравитационными силами. Для электрических колебательных контуров независимыми от амплитуды токов и напряжений должны оставаться такие величины, как индуктивность $L$, емкость $C$ и сопротивление $R$.

Резонансные системы имеют два важных свойства.

  1. Свойство избирательно реагировать на внешние источники сигналов, выделяя только те из них, частоты которых совпадают с собственной частотой колебательной системы.

  2. Свойство запасать энергию колебаний, возбужденных внешним источником, поддерживая колебания в течение определенного времени после выключения внешнего источника.

Колебательный контур характеризуется двумя основными параметрами: частотой собственных (резонансных) колебаний $omega _{0} $ и добротностью $Q$, характеризующей отношение мощности энергии собственного колебания к мощности потерь за период.

На рис. 18 приведены примеры «параллелей» электрических и механических колебательных систем. В электрических резонаторах происходит периодический переход электрической энергии, запасенной в конденсаторе $(W_Э =frac 12 CU^2),$ в магнитную энергию катушки индуктивности $(W_M =frac 12 LI^2)$ и обратно. В маятниках происходит аналогичный циклический переход энергии из потенциальной (поднятого груза или сжатой пружины) в кинетическую и обратно.

Свободные колебания происходят в замкнутой цепи без вынуждающей силы (рис. 19,а).

Согласно второму закону Кирхгофа для такой цепи можно написать:
$$
Rcdot I+U_{C} =-Lcdot frac{dI}{dt}.
$$
Выражая $U_{C} $ через заряд $q$, получим уравнение

$$
Rcdot I+Lcdot frac{dI}{dt} +frac{q}{C} =0 mbox{ (СИ). }
$$
Дифференцируя по времени и учитывая равенство $I=frac{dq}{dt} $, получаем
$$
Lfrac{d^{2} I}{dt^{2} } +Rfrac{dI}{dt} +frac{I}{C} =0 mbox{ (СИ). }
$$
Разделив на $L$ и вводя обозначения
$delta =frac{R}{2cdot L} $ и $omega _{0}^{2} =frac{1}{LC} $,
получим общее уравнение для свободных колебаний линейной резонансной системы:
$$
I”+2delta , I’+omega _{0}^{2} I=0,
$$
где параметр $delta $ называется затухание, а параметр $omega _{0} $ — собственная частота, или частота свободных колебаний. Оно решается подстановкой $I=Acdot e^{iomega , t} $, которая приводит к характеристическому уравнению
$$
-omega ^{2} +2iomega , delta +omega _{0}^{2} =0,
$$
с решением
$$
lambda , _{1,2} =i, delta pm sqrt{omega _{0}^{2} -delta ^{2} } .
$$
Общее решение имеет две составляющие
$$
I=Acdot e^{iomega _{1} , t} +Bcdot e^{iomega _{2} , t} .
$$
Константы $A$ и $B$ определяются начальными данными задачи, например, зарядом $q_{0} $ или напряжением на конденсаторе $U_{0} $. Характер начальных данных определяется конкретной физической системой.

Частный пример схемы для возбуждения свободных колебаний в колебательном контуре приведен на рис. 19,б. Конденсатор $C$ заряжается от батареи до напряжения $U_{0} $ (положение «а» переключателя), а затем переключается в точку «б». Свободные колебания будут представлять собой циклический переход энергии электрического поля (в конденсаторе) в энергию магнитного поля (в индуктивности) и обратно.

Подставив найденные значения $A$ и $B$, получим общее решение для свободных колебаний в контуре
$$
I=ifrac{U_{0} }{Lsqrt{omega _{0}^{2} -delta ^{2} } } e^{-delta , t} frac{e^{isqrt{omega _{0}^{2} -delta ^{2} } , t} -e^{-isqrt{omega _{0}^{2} -delta ^{2} } , t} }{2} .
$$

Если бы колебательный контур состоял только из идеальных (без потерь) реактивных элементов (индуктивности $L$ и емкости $C$), то переход энергии из электрической в магнитную и обратно совершался бы без потерь, а в контуре существовали бы незатухающие свободные колебания с собственной частотой $omega _{0} =2pi , f=sqrt{frac{1}{LC}}.$

Наличие в схеме активного элемента $R$ приводит к тому, что часть энергии за каждый период переходит в тепло и колебания затухают с некоторой постоянной времени $tau $. Роль частоты в уравнении теперь играет величина $omega _{p} =sqrt{omega _{0}^{2} -delta ^{2} } $, зависящая от отношения реактивной мощности к потерям на активном сопротивлении $R$. При этом вовсе не обязательно в схему должен быть включен отдельный резистор. В его качестве может выступать, например, омическое сопротивление провода, которым намотана катушка индуктивности, а также сопротивление утечки изоляторов конденсатора. Кроме того, часть энергии колебаний может излучаться контуром в окружающее пространство в виде электромагнитной волны. На этом основано действие так называемых связанных контуров: если вблизи данного колебательного контура расположен другой, то в нем «наводятся» (возникают) колебания за счет того, что часть энергии трансформируется из первого контура во второй. Передача энергии совершается переменным электромагнитным полем, возникающим вокруг первого контура.

Если затухание мало, т. е. $delta <omega _{0} $, то мы получаем уравнение слабо затухающих колебаний в виде
$$
I=-frac{U_{0} }{Lomega _{p} } e^{-delta , t} sin omega _{p} t=-I_{0} e^{-delta , t} sin omega _{p} t.
$$
При этом резонансная частота приближается к частоте собственных колебаний:
$$
omega _{p} =sqrt{omega _{0}^{2} -delta ^{2} } approx omega _{0} left(1-frac{1}{2} frac{delta ^{2} }{omega _{0}^{2} } right).
$$
Таким образом, при малом затухании резонансная частота практически совпадает с собственной, однако колебания при этом не являются гармоническими. Для гармонических колебаний должно соблюдаться условие $Ileft(tright)=Ileft(t+Tright)$, где $T$ — период колебания. В нашем случае $Ileft(tright)ne Ileft(t+Tright)$, и о периоде можно говорить лишь как о времени, через которое повторяются нули функции (рис. 20). Именно в этом смысле мы будем ниже использовать термин «период колебаний».

Введем понятия добротности $Q$ и логарифмического декремента затухания $gamma $ контура. Из отношение амплитуд $n$–того и $(n + k)$–го колебаний равно
$I_{n} I_{n+k}^{-1} = e^{kdelta T}$, где $T=2, pi omega ^{-1} $ — период колебания («повторения нулей»). Логарифмическим декрементом затухания $gamma $ называется величина
$$
gamma =delta , T=frac{1}{k} ln frac{I_{n} }{I_{n+k} } =ln frac{I_{n} }{I_{n+1} } .
$$
Из уравнения для тока видно, что величина $delta $ обратно пропорциональна времени, за которое амплитуда колебаний уменьшается в $e$ раз. Из последнего уравнения следует, что декремент затухания $gamma $ показывает уменьшение амплитуды за период колебания:
$$
gamma =delta , T=frac{2; pi , delta }{omega } .
$$
С логарифмическим коэффициентом затухания однозначно связан другой, более распространенный параметр, характеризующий колебательную систему, добротность $Q$.

Добротность контура $Q$ определяется соотношением
$$
Q=frac{omega _{0} L}{R} =frac{1}{omega _{0} CR} =frac{rho }{R},
$$
где $rho =sqrt{frac LC} $ (СИ).
Физический смысл добротности заключается в отношении запасенной в контуре энергии к энергии потерь за период колебания
$$
Q=omega cdot frac{W_0}{Delta W},
$$
откуда можно найти связь добротности с другими параметрами контура
$$
Q=frac{pi }{gamma } =frac{pi }{delta , T} =frac{omega }{2, delta } =omega frac{L}{R} mbox{ (СИ).}
$$

Экспериментально добротность определяется по резонансной кривой как отношение резонансной частоты $omega _{p} $ к полосе частот $2cdot Delta omega $, определяемой на уровне $U_{1,2} =pm frac{U_p}{sqrt{2}}$:
$$
Q=frac{omega _{з}}{2cdot Delta omega } =frac{f_{з}}{2cdot Delta f} ,
$$
где $U_{p} $ — амплитуда колебания на резонансной частоте контура. Величина $rho =sqrt{frac LC}$ называется характеристическим (волновым) сопротивлением контура.

При большом затухании, т.е. при $delta >omega _{0} $, величина $omega _{0}^{2} -delta ^{2} $ отрицательна, корень из нее мнимый. Такой случай называется апериодическим процессом. Общее решение, аналогичное, полученному ранее, будет иметь вид
$$
I=-frac{U_{0} }{Lsqrt{(delta ^{2} -omega _{0}^{2} )} } e^{-delta , , t} mbox{sh}sqrt{(delta ^{2} -omega _{0}^{2} )} , t.
$$
График этой функции приведен на рис. 21.

Критическим условием, при котором затухающие колебания переходят в апериодический процесс, является условие $delta =omega _{0} $. В этом случае решение общего уравнения имеет вид
$$
I=-frac{U_{0} }{omega L} (omega t)e^{-delta , t} , =-frac{U_{0} }{L} t, e^{-delta , t} .
$$
Остается добавить, что аналогичные параметры могут быть введены для любой резонансной колебательной системы независимо от ее физической природы (механические, термодинамические, электромагнитные, оптические, аэро– и гидродинамические системы).

Колебательный контур, рассмотренный в предыдущем разделе, представлял собой замкнутую электрическую цепь, в которой совершаются свободные колебания.

В случае вынужденных колебаний мы должны подводить к контуру электрическую энергию от внешнего источника (генератора). Есть много способов для подключения источника внешней энергии к контуру, которые сводятся к той или иной комбинации двух основных: в разрыв цепи контура (рис. 22, а) или параллельно емкостной и индуктивной ветвям контура (рис. 22,б).

В зависимости от способа включения различают соответственно последовательный (рис. 22,а) и параллельный (рис. 22,б) колебательные контуры. Они предъявляют разные требования к согласованию с генератором и нагрузкой. Поэтому нужно отличать собственные параметры контура от параметров нагруженного контура, получаемые с учетом влияния генератора и «нагрузки» (входного сопротивления той цепи, в которую включен контур). В параллельном контуре (рис. 22,б) возникает резонанс токов. Для его поддержания в качестве вынуждающей силы необходимо применение генератора стабильного тока. В последовательном контуре (рис. 22,а) имеет место резонанс напряжений, и для его поддержания должен применяться внешний генератор стабильного напряжения.

Закон Кирхгофа, позволяющий исследовать процессы в контуре (рис. 22,а) в зависимости от частоты, записывается в виде
$$
U=U_{R} +U_{L} +U_{C} =IR+iI(omega L-frac{1}{omega C} )=Icdot Z.
$$
Контур представляет для генератора некоторое комплексное сопротивление
$$
Z=R_L +icdot (omega L-frac{1}{omega C} ),
$$
$$
left|Zright| = sqrt{R_L^2 +(omega L-frac{1}{omega C})^2}, mbox{tg}varphi =frac{omega L-frac{1}{omega C} }{R_L}
$$
где $left|Zright|$ — модуль комплексного сопротивления; $R_{L}$ — омическое сопротивление катушки индуктивности; $varphi $ — сдвиг фазы между активным и реактивным сопротивлениями, равный сдвигу фазы между током $I$ в цепи и входным напряжением $U$.

Из последнего выражения видно, что сопротивление цепи будет минимально и равно активному сопротивлению $R_{L} $ на некоторой частоте $omega _{0} $, определяемой условием
$$
omega _0 L=frac{1}{omega _0 C} , mbox{ где } omega _{0} =frac{1}{sqrt{LC}} mbox{ (СИ).}
$$
Таким образом, на резонансной частоте сопротивление контура минимально, чисто активно, а ток в цепи совпадает по фазе с входным напряжением (напряжением генератора). Фактически это и есть определение резонанса в последовательном колебательном контуре.

Для практических целей представляет интерес исследовать поведение напряжений на реактивных элементах контура в зависимости от частоты генератора и определить его добротность $Q$.

Поскольку фазы $U_{L} $ и $U_{C} $ независимо от частоты всегда сдвинуты относительно тока $I$ на $+$ и $-90^{circ}$ соответственно, то достаточно исследовать зависимость от частоты их модулей. Это можно сделать исходя из уравнений
$$
U_{R} =IR, U_{L} =Iomega L, U_{C} =frac{I}{omega C}, I=frac{U}{Z} .
$$

Для примера раскроем уравнения для $I$ и $U_{L} $. Используя введенное для свободных колебаний понятие добротности $Q=left(omega _{0} RCright)^{-1}$, получим следующее выражение для тока в последовательном контуре:
$$
I=frac{U}{sqrt{R^{2} +(omega L-frac{1}{omega C} )^{2} } } =frac{U}{R} frac{1}{sqrt{1+Q^{2} (frac{omega }{omega _{0} } -frac{omega _{0} }{omega } )^{2} } } .
$$
Тогда напряжение на индуктивности будет равно
$$
U_{L} =omega LI=Ufrac{Qfrac{omega }{omega _{0} } }{sqrt{1+Q^{2} (frac{omega }{omega _{0} } -frac{omega _{0} }{omega } )^{2} } } .
$$

Аналогичное уравнение можно получить для напряжения на $C$. При $omega =omega _{0} $ напряжения на $L$ и $C$ будут равны $U_{L0} =U_{C0} =Qcdot U$, т.е. в $Q$ раз больше напряжения вынуждающей эдс.

На самом деле максимумы напряжения на элементах $L$ и $C$ несколько выше и смещены от резонансной частоты и выражаются следующими соотношениями:
$$
omega _{Lmax } =omega _{0} sqrt{frac{2}{2-frac{R^{2} C}{L} } } =omega _{0} sqrt{frac{2}{2-left(frac{1}{Q} right)^{2} } } , omega _{Cmax } =frac{omega _{0}^{2} }{omega _{L} } .
$$

При добротности контура $Q ge 10$ сдвиг частот максимумов $U_{L} $ и $U_{C} $ относительно резонансной частоты $omega _{0} $ не превышает 1% и экспериментально резонансную частоту и добротность можно определять по резонансной кривой любого из напряжений $U_{L} $ и $U_{C} $. Напряжение на реактивных элементах $U_{L} $ и $U_{C} $ при $omega =omega _{0} $ в $Q$ раз больше, чем входное напряжение $U$, поэтому резонанс в последовательном контуре называется резонансом напряжений.

Важно отметить, что для нашего анализа существенно, что само входное напряжение $U$ от частоты не зависит. В противном случае все параметры зависели бы не только от самого контура, но и от параметров источника сигнала. Как было показано в предыдущем параграфе, для этого выходное сопротивление генератора должно быть много меньше $R$.

Схема подключения параллельного контура представлена на рис. 21,б. Из–за комплексного характера нагрузки ток генератора является комплексной величиной. Поэтому модуль тока $I$ может оказаться меньше не только суммы модулей токов индуктивной и емкостной ветвей контура, но и каждого из них в отдельности. Именно это и происходит при резонансе в параллельном контуре: токи в индуктивной и емкостной ветвях контура в $Q$ раз больше, чем ток, потребляемый от генератора тока. Поэтому резонанс в параллельном контуре называется резонансом токов.

Комплексное сопротивление параллельного контура равно
$$
Z=frac{Z_{1} Z_{2} }{Z_{1} +Z_{2} } =
frac{(R_{L} +iomega L)(iomega C)^{-1}}{R_{L} +i(omega L-(omega C)^{-1} )} approx
frac{LC^{-1}}{R_{L} +i(omega L-(omega C)^{-1})} .
$$

Мы пренебрегли величиной $R_{L} $ в числителе, поскольку она в $Q$ раз меньше индуктивного сопротивления, но этого нельзя делать в знаменателе, поскольку при резонансе величина в скобках стремится к нулю.

Условие резонанса для параллельного контура то же, что и для последовательного — равенство реактивных сопротивлений ветвей с $L$ и $C$:
$$
omega _{0} L=frac{1}{omega _{0} C}, mbox{ где } omega _{0} =frac{1}{sqrt{LC} } mbox{ (СИ). }
$$
Таким образом, при резонансе сопротивление контура становится чисто активным и равным
$$
R_{э} =frac{L}{ C R_{L} } =frac{rho ^{2} }{R_{L} } ,
$$
где — $rho =sqrt{frac LC} $ волновое сопротивление контура.

Сопротивление $R_{э} $ отдельного физического эквивалента в контуре не имеет, а является комбинацией волнового сопротивления $rho $ и сопротивления потерь $R_{L} $. Поэтому оно не составляет отдельной ветви параллельного контура и не ответвляет в себя ток. Следовательно, «переносить» его куда–либо или к чему–нибудь «подсоединять» (например, к внутреннему сопротивлению источника тока) бессмысленно. На схеме это просто условное обозначение того факта, что на резонансной частоте параллельный колебательный контур представляет для внешнего генератора некоторое чисто активное сопротивление величиной $R_{э} $, а в формулах символическая запись определенной комбинации $rho $ и $R_{L} $, даваемой последней формулой.

Добротность параллельного контура
$$
Q=frac{omega _{0} L}{R_{L} } =frac{1}{R_{L} omega _{0} C} =frac{R_{э} }{rho } =R_{э} sqrt{frac{C}{L} } .
$$

Собственные параметры параллельного контура, т.е. резонансная частота $omega _{0} $ и добротность $Q$ будут такими же, как и в последовательном контуре при тех же $C$, $L$ и $R_{L}.$

Добавить комментарий