Как найти сопротивление лампочки при параллельном соединении

Здравствуйте, уважаемые читатели сайта sesaga.ru. Сегодня мы рассмотрим практичные схемы последовательного и параллельного соединения ламп накаливания.

В статье схемы подключения трех и более ламп я рассказывал про параллельное соединение, а вот про последовательное упустил. В этой статье мы рассмотрим оба вида соединений используемых в быту.

Пойдем от простого к сложному. Обыкновенная лампа на принципиальных схемах обозначается таким образом:

Обозначение ламп на принципиальных схемах

Следующий момент Вы должны понять и запомнить:

Соединительные провода на схемах показываются линиями. Места соединения трех и более проводов показываются точками, а если провода пересекаются без соединения, то в месте их пересечения точка не ставится.

На рисунке ниже показано, когда провода просто пересекаются, то есть проходят рядом и не касаются друг друга, и когда провода уже соединены между собой — об этом говорит точка, стоящая в пересечении.

Соединения проводов

А теперь рассмотрим виды соединений:

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.
Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Последовательное соединение двух ламп

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

Последовательное соединение трех ламп

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Монтажная схема гирлянды

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельное соединение ламп.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

Параллельное соединение ламп накаливания

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Еще один способ параллельного соединения

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Кстати, именно «звездой» делают разводку по квартире при монтаже розеток.

Ну вот в принципе и все. И как всегда по традиции ролик о последовательном и параллельном подключении ламп

Теперь я думаю, у Вас не должно возникнуть проблем с последовательным и параллельным соединением ламп.
Удачи!

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей — проводников.

Для начала давайте вспомним, что такое проводник? Проводник — это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

формула сопротивления проводника

формула сопротивление проводника

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

резистор

обозначение резистора на схемах

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение проводников

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

общее сопротивление при последовательном соединении

Получается, можно записать, что

формула при последовательном соединении проводников

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

общее сопротивление

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

замкнутая цепь

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на  любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

задача на закон ома

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

общее сопротивление

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3  . Но как это сделать?

падение напряжения на резисторе

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Следовательно,

UR1 = IR1 =1×2=2 Вольта

UR2 = IR2 = 1×3=3 Вольта

UR3 = IR3 =1×5=5 Вольт

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Получается

U=UR1+UR2+UR3

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение проводников

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

параллельное соединение двух резисторов

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

сопротивление двух резисторов, включенных параллельно формула

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

резисторы в параллель

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

напряжение при параллельном соединении проводников

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

делитель тока

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

В этом случае, сила тока в цепи будет равна:

формула делителя тока

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

задача на делитель тока

Решение

Воспользуемся формулами, которые приводили выше.

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

Следовательно,

I1 = U/R1 = 10/2=5 Ампер

I2 = U/R2 = 10/5=2 Ампера

I3 = U/R3 = 10/10=1 Ампер

Далее, воспользуемся формулой

формула делителя тока

чтобы найти силу тока, которая течет в цепи

I=I1 + I2 + I3 = 5+2+1=8 Ампер

2-ой способ найти I

I=U/Rобщее

Чтобы найти Rобщее мы должны воспользоваться формулой

Последовательное и параллельное соединение

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них — «калькулятор резисторов«. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Подробное объяснение на видео:

Прикольный набор радиолюбителя по ссылке <<<

Похожие статьи по теме «последовательное и параллельное соединение»

Закон Ома

Проводник (электрический проводник)

Что такое резистор

Делитель напряжения

Делитель тока

Что такое напряжение

Что такое сила тока

Август 27, 2018

283 просмотров

Параллельное и последовательное и соединение ламп в быту

Особенности двух вариантов подключения

Принцип подсоединения любой лампы подразумевает подключение к фазе одного из контактов, а другого – к нулю при соблюдении требования о параметрах напряжения в 220В.

Параллельный метод означает, что надо предусмотреть непременное подсоединение контактов именно таким способом. Это создает условия для прохождения через лампочку тока с показателями, зависящими от мощности источника света. Удобство подобного приема заключается в возможности со временем добавлять элементы в осветительную систему без опасности нанесения вреда уже работающим лампам.

Параллельное и последовательное и соединение ламп в быту

Разделение напряжения в зависимости от мощности характерно для последовательного подсоединения. Элементы с более низкими показателями по данному параметру перегорают значительно быстрее, чем лампочки с высокой мощностью.

Заложенная конструктивная долговечность люминесцентных и светодиодных моделей делает абсолютно нецелесообразным их последовательное подключение.

Несколько примеров

Подключение контактов на N – ноль и фазу L необходимо для любой лампочки. Для этого пара проводов из розетки или коробки подходит к прибору. Способ параллельного подсоединения предусматривает образование схемы с несколькими источниками на общем нулевом и фазном проводе. Принципиальная схема с выключателем и тремя лампами накаливания представлена ниже.

Параллельное и последовательное и соединение ламп в быту

Преимущество такой конструкции – подсоединение к сети нескольких потребителей без изменения параметров напряжения.

Параллельно соединенные лампочки

При таком способе обычно используется шлейфовое и лучевое подключение:

  1. Первый метод – это применение для каждого из источников света отдельного кабеля с тремя или двумя жилами.
  2. Во втором случае от щитка до первого элемента и дальше выполняется подсоединение «нейтрали» и «фазы». Исключение делается только для последнего прибора, который соединяется парой кабелей.

Параллельное и последовательное и соединение ламп в быту

Более надежной считается лучевая схема. Но   стоит учитывать потребность в значительном количестве кабеля и скопление проводов в одной точке. Особенность шлейфового варианта состоит в прекращении работы всех светильников в случае неполадок на каком-либо участке.

Сохранение работоспособности всех элементов при поломке одного источника света – главное достоинство параллельного лучевого соединения.

Особенности последовательного способа подсоединения

Используется в быту не очень часто по причине эксплуатационной специфики электроприборов, получающих питание от сети 220В.

Для данной методики характерно отсутствие разветвлений с подключением резисторов, при котором образуется неразрывная цепь. Суммарный показатель напряжения на всех имеющихся в подобной цепи элементах равен общему напряжению, которое приложено к электроцепи.

Параллельное и последовательное и соединение ламп в быту

Самый элементарный пример – таким способом можно соединить для номинального напряжения 220В 22 осветительных низковольтных прибора с потреблением каждого из них 10В.

«Гирляндный» вариант, так обычно именуют подобную схему, при обрыве на одном участке приводит к полному отключению всей цепи.

Схемы возможного подключения и типы ламп

В отличие от процесса подсоединения обычных ламп накаливания работа с люминесцентными и галогенными источниками света имеет некоторые особенности, которые обязательно нужно знать и учитывать.

Безопасную эксплуатацию галогенных элементов позволит осуществить их запитывание пониженным напряжением. Само подключение светильников с применением клеммных колодок выполняется способом параллельного подсоединения к обмотке вторичного типа в 12В.

Параллельное и последовательное и соединение ламп в быту

На компактный электронный трансформатор подается рабочее напряжение, а галогенки с относительно небольшой вольтностью после параллельного подключения устанавливаются в любом месте, в том числе и подвесных потолках.

Предлагаем ознакомиться с блок-схемой, в состав которой входят два трансформатора. Распределительная коробка подает на них стандартное напряжение. Коричневый цвет имеет фазный провод, а синий – нулевой. В разрыве расположен выключатель.

Параллельное и последовательное и соединение ламп в быту

Стандартные устройства пускорегулирующей категории необходимы для устранения «эффекта мерцания» в люминесцентных лампах.

Происходящее благодаря такому способу снижение общей пульсации потока света достигается применением варианта параллельного подключения к сети с переменным напряжением нескольких светильников.

Примером может быть схема с прибором, имеющим расщепленную фазу. Параллельное подключение к сети переменного напряжения имеет две лампочки. Для каждой из них характерно наличие индуктивного балласта L1 и L2. Присоединение к о второму элементу дополнительного балластного конденсатора Сб приводит к образованию сдвига фазного тока на 600.

Параллельное и последовательное и соединение ламп в быту

Происходит значительное уменьшение суммарной пульсации, а комбинация отстающей и опережающей схем позволяет добиться совпадения по фазе тока внешней цепи с напряжением. Таким образом улучшаются показатели коэффициента мощности.

  • Правильно в квартире или доме сделать подключение лампочек можно, если строго выполнить следующие рекомендации:
  • И наиболее ответственный момент – аккуратный и правильный монтаж лампочек.

Параллельное соединение

Для проведения 3-го занятия потребуются:
1.Устройство собранное в течении 2-го занятия.
2.Электрический патрон, подобный использованному ранее.
3.Отрезок кабеля ВВГ 2*1.5, длинною около 0,5 метра.
4.Электрическая лампочка.

Подсоединяем патрон к кабелю, вворачиваем лампочку — получаем в результате то же изделие, что и в конце 1-го занятия, за исключением отсутствующей эл. вилки.

Параллельное и последовательное и соединение ламп в быту

Берем устройство, собранное в течении 2-го занятия — аккуратно срезаем изоляцию
на участке около 1см. провода, идущего на эл. патрон. Снимаем крышку с выключателя, что бы получить доступ к его электрическим клеммам.

Параллельное и последовательное и соединение ламп в быту

Присоединяем второй патрон с лампочкой номер 2, как показано на рисунке ниже.

Параллельное и последовательное и соединение ламп в быту

Таким образом, один конец оказывается присоединен с помощью скрутки к проводу идущему напрямую к лампочке номер 1.

Второй конец присоединяется к клемме выключателя вместе с другим проводом идущим на электрическую лампочку номер 1.
Изолируем место скрутки проводов, с помощью изоленты, закрываем крышку-корпус выключателя. Втыкаем эл.

вилку в розетку, нажимаем выключатель — обе лампочки горят. Такое соединение называется параллельным.

Параллельное и последовательное и соединение ламп в быту Эл. схема параллельного подключения выглядит вот так.Параллельное и последовательное и соединение ламп в быту

Особенностью такого соединения, является возможность, задействовать одновременно несколько
потребителей электроэнергии, рассчитаных на одно и то же напряжение. Эл. лампочек может быть не две, как в нашем примере, а гораздо больше.

На яркость свечения отдельно взятой лампы, увеличение их количества (до определенного предела) практически не влияет, напряжение эл. сети уменьшается незначительно.

Но потребление электроэнергии в сети возрастает с каждым, дополнительно подключенным приемником электроэнергии — растет сила тока, начинают греться провода. Что бы предотвратить возгорание изоляции, при превышении эл.

током определенного порога, срабатывает автоматический выключатель, и все гаснет.

В нашем быту, как правило, мы постоянно сталкиваемся именно с таким подключением эл. устройств. Различные
электроприборы, группы точечных, и других светильников — все это примеры параллельного соединения.
Можно сказать, что все электроприемники, например, в отдельно взятой квартире так или иначе, в итоге оказываются подключенными параллельно, к жилам вводного питающего кабеля.

В случае, если Вас, заинтересовала эта тема, с теоретической точки зрения, дополнительную интересующую информацию, легко почерпнуть в любом учебнике по электротехнике. Параллельное и последовательное соединение, подробно описано там с позиции законов Кирхгофа и Ома, со всеми формулами и выкладками. Несколько упрощенный вариант этой темы вы можете посмотреть здесь

Перейти к 4-му занятию

Необязательное лирическое дополнение

В моем детстве (конец 70-х), огромной популярностью пользовались, самодельные цветомузыкальные установки. Радиолюбители собирали свои электронные схемы, как правило, используя в выходных каскадах тиристоры ку202н. Это позволяло, применять в качестве источника света, самые обычные лампочки 220-240 вольт.

Их покрывали разноцветными лаками, устанавливали в рассеивающие экраны, автомобильные фары — очень ярко и очень красиво. К тому времени, у меня не было, ни достаточных познаний в радиоэлектронике, ни тиристоров, ни магнитофона.

Была ламповая радиола Кантата-203, большое количество лампочек от карманного фонаря(2,5 вольт) и огромное желание что-нибудь сделать.

Опытным путем было определено — маленькая лампочка подсоединенная к выходу динамика начинала моргать в такт музыке, чем громче, тем ярче. Лампочка маленькая — света, соответственно, тоже мало. Что же делать? Тут и пришло на помощь параллельное соединение.

Паять к тому времени, я уже немного умел (научили на уроках «труда»),взял два достаточно длинных проводка, да и припаял с десяток лампочек. Один проводок к цокольным контактам, второй к боковым. Подключил к «Кантате», влупил громкость на полную — красота! Половину лампочек покрасил зелеными чернилами, половину красными.

Прилепил это все пластилином к большой стекляшке от старой люстры, найденной на помойке — настоящая получилась вещь!

Большее количество лампочек добавлять не стал (а хотелось!) — яркость начинала падать, звук в динамиках — хрипеть. Даже у Советских ламповых радиол, запас мощности был ограничен.

Соединял я в дальнейшем параллельно и динамики, радиола выдержала, но кассетный магнитофон «Электроника» моего друга, таких издевательств не вынес — сдох. Но точечные светильники и силовая сеть 220 вольт, это совсем другое дело.

Можно брать их хоть четыре(светильников), хоть шесть — да и подключать, к двум проводам, торчащим из потолка (где был старый светильник), самое главное делать это очень надежно.

Параллельное и последовательное и соединение ламп в быту

Как подключить надежно, Вы можете посмотреть на странице»Контакты и соединения» В начало.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Последовательное и параллельное соединение лампочек: схемы и примеры

Нет ничего проще для электрика, чем подключить светильник.

Но если приходится собирать люстру или бра с несколькими плафонами, часто возникает вопрос: «Как лучше соединить?» Чтобы понять, чем отличается последовательное и параллельное соединение лампочек – вспомним курс физики за 8 класс. Давайте заранее договоримся, что будем рассматривать как пример освещение в сетях 220 V AC, эта информация справедлива и для других напряжений и токов.

Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, – распределяется согласно собственным сопротивлениям. При этом ток равняется частному напряжения и сопротивления, т.е.:

  • I=U/Rобщ,
  • Где Rобщ – сумма сопротивлений всех элементов последовательно соединенной цепи.
  • Чем больше сопротивление – тем меньше ток.
  • Параллельное и последовательное и соединение ламп в быту

Подсоединение потребителей последовательно

Чтобы соединить два и больше источника света последовательно, нужно концы от патронов соединить между собой так, как изображено на картинке, т.е. у крайних патронов останется по одному свободному проводу, на которые мы и подаем фазу (P или L) с нулем (N), а средние патроны соединяются друг с другом одним проводом.

Через лампу 100 Вт, при напряжении 220 В, течет ток чуть меньше чем 0,5 А. Если соединить две по этой схеме, ток упадет в два раза. Лампы будут светить в половину накала. Потребляемая мощность не сложится, а уменьшиться до 55 (примерно) с обеих. И так далее: чем больше ламп, тем меньше ток и яркость каждой отдельной.

Преимущество:

  • ресурс ламп накаливания возрастает;

Недостатки:

  • если перегорает одна – не горят и остальные;
  • если использовать приборы разной мощности, те, что больше, – практически не будут светиться, те, что меньше, – будут светиться нормально;
  • все элементы должны быть одинаковой мощности;
  • нельзя в светильник с таким соединением включать энергосберегающие лампы (светодиодные и компактные люминесцентные лампы).

Такое соединение отлично подходит в ситуациях, когда нужно создать мягкий свет, например, для бра. Так соединяются светодиоды в гирляндах. Огромный минус – это то, что при сгорании одного звена не светят и другие.

Параллельное и последовательное и соединение ламп в быту

Параллельное соединение

В цепях, соединенных параллельно, к каждому из элементов прикладывается полное напряжение источника питания. При этом ток, протекающий через каждую из ветвей, зависит только от ее сопротивления. Провода от каждого патрона соединены между собой обоими концами.

Преимущества:

  • если одна лампа перегорит – остальные продолжат выполнять свои функции;
  • каждая из цепей светит в полный накал независимо от своей мощности, потому что к каждой приложено полное напряжение;
  • можно вывести из светильника три, четыре и больше проводов (ноль и нужное количество фаз к выключателю) и включать нужное количество ламп или группу;
  • работают энергосберегающие лампочки.
  1. Недостатков нет.
  2. Чтобы включать свет по группам, соберите такую схему либо в корпусе светильника, либо в распределительной коробке.
  3. Параллельное и последовательное и соединение ламп в быту
  4. Каждая из ламп включается своим выключателем, их в этом случае три, а включены две.

Законы последовательного и параллельного соединения проводников

Для последовательного соединения важно учитывать, что ток через все лампы протекает один и тот же. Это значит, что чем больше элементов в цепи, тем меньше через нее протекает ампер. Напряжение на каждой лампе равняется произведению тока на ее сопротивление (закон Ома). Увеличивая количество элементов, вы будете понижать напряжение на каждом из них.

В параллельной цепи каждая ветвь берет на себя необходимое ей количество тока, а напряжение прикладывается то, которое выдает источник питания (напр. Бытовая электросеть)

Смешанное соединение

Другое название этой схемы последовательно-параллельная цепь. В ветвях параллельной цепи включено последовательно несколько потребителей, например, накаливания, галогенных или светодиодных. На LED-матрицах часто применяется такая схема. Этот способ дает некоторые преимущества:

  • подключение отдельных групп лампочек на люстре (например, 6-рожковой);
  • если сгорит лампа – не будет гореть только одна группа, из строя выйдет только одна последовательная цепь, остальные, параллельно стоящие, будут светить;
  • группируйте лампы последовательно одной мощности, а параллельные цепи – разной, если это нужно.

Недостатки те же, что присущи последовательным цепям.

Параллельное и последовательное и соединение ламп в быту

Схемы подключения других типов ламп

Чтобы правильно подключить другие виды осветительных приборов, нужно сначала узнать их принцип работы и ознакомиться со схемой подключения. Каждый из типов ламп требует определенных условий для работы. Процесс накаливания спирали совсем не предназначен для излучения света. В области больших мощностей и площади их заметно потеснили газоразрядные приборы.

Люминесцентные лампы

Кроме ламп накаливания, часто применяются и галогенные, и люминесцентные трубчатые лампы (ЛЛ). Последние распространены в административных зданиях, боксах для покраски автомобилей, гаражах, производственных и торговых помещениях. Немного реже их применяют дома, например, на кухне для подсветки рабочей зоны.

ЛЛ нельзя подключить напрямую к сети 220 В, для розжига нужно высокое напряжение, поэтому используется специальная схема:

  • дроссель, стартер, конденсатор (не обязательно);
  • электронный балласт.

Параллельное и последовательное и соединение ламп в быту

Первая схема применяется все реже, отличается меньшим КПД, гудением дросселя и мерцанием светового потока, который часто не заметен глазу. Подключение электронного балласта часто изображено на корпусе.

Подключается либо одна лампу, либо две последовательно, в зависимости от ситуации и того, что есть в наличии, также и с электронным балластом.

Конденсатор между фазой и нулем нужен для компенсации реактивной мощности дросселя и снижения сдвига фазы, цепь запустится и без него.

Обратите внимание на то, как подсоединяются лампы, в освещении люминесцентным светом нельзя пользоваться теми же правилами, что и при работе с лампами накаливания. Похожим образом обстоит дело и с ДРЛ и ДНАТ-лампами, но они редко встречаются в быту, чаще в промышленных цехах и уличных фонарях.

Галогенные источники света

Этот тип часто применяется в точечных светильниках на подвесных и натяжных потолках. Подходят для освещения мест с повышенной влажностью, поскольку выпускаются для работы в цепях с пониженным напряжением, например, 12 вольт.

Параллельное и последовательное и соединение ламп в быту

Для питания используют сетевой трансформатор 50 Гц, но габариты велики и со временем он начинает гудеть. Лучше для этого подойдет электронный трансформатор, на него приходит 220 В с частотой 50 Гц, а уходит 12 В переменного тока с частотой в несколько десятков кГц. В остальном подключение аналогичное с лампами накаливания.

Заключение

Правильно собирайте схемы в светильниках. Не подключайте энергосберегающие лампы последовательно и придерживайтесь схемы включения люминесцентных и галогенных светильников. Энергосберегающие лампы «не любят» пониженное напряжение и быстро сгорят, а люминесцентный светильник может и вовсе не зажечься.

Для подключения освещения подойдут клеммные колодки или зажимы Wago, тем более, если проводка алюминиевая, а провода у светильника медные. Главное – соблюдайте правила безопасности при работе с электрическими приборами.

Последовательное и параллельное соединение лампочек: схемы и примеры

Правила параллельного и последовательного соединения ламп

Параллельное и последовательное и соединение ламп в быту

  • В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше.
  • При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света.
  • Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы.

Особенности и характеристики схем подключения ламп

Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов.

Параллельной

При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке. Напряжение на всех светильниках одинаковое, они горят с яркостью, установленной производителем.  Перегорание отдельного элемента не влияет на функциональность остальных.

Справка! На практике при наличии нескольких источников света при параллельном соединении провода не скручиваются. Используется кабель, к которому подключаются все элементы.

Параллельное подключение может быть:

  • лучевое – на каждый светильник отдельный кабель;
  • шлейфное – фаза и ноль сначала идут на первый осветительный прибор, потом часть кабеля идет в остальные (кроме последнего, к которому подключаются две части).Параллельное и последовательное и соединение ламп в быту

При использовании параллельной лучевой модели перегорание одного элемента не мешает работе остальных. Перед тем, как выбрать шлейфную модель, необходимо учесть, что нарушение одного соединения выведет из строя элементы, расположенные после него. Но проблема решается быстро за счет легкого определения проблемного места.

При подключении галогенных источников с трансформатором необходимо учесть, что они присоединяются к вторичной обмотке преобразователя через клеммные колодки.

Главный недостаток люминесцентных ламп – мерцание. От него избавляет пускорегулирующая аппаратура, но она стоит дорого. Для снижения пульсации применяется специальная схема для двух светильников со сдвигом фазы на одном из них. Две лампочки соединяются параллельно, к одной подключается конденсатор, сдвигающий фазу.

Последовательной

Параллельное и последовательное и соединение ламп в быту  Как сделать плавное включение лампы накаливания

Сравнение достоинств и недостатков схем

Преимущества и недостатки последовательного подключения

Вид лампы Преимущества Недостатки
Накаливания, галогеновые, люминесцентные Продлевается срок службыСнижается мерцание люминесцентных ламп Падение напряженияПри выходе из строя отдельного элемента остальные не работаютУ источников света должна быть одинаковая мощность
Светодиодная Оптимальный вариант для обеспечения одинакового тока на всех источниках Для большого количества лампочек требуется источник питания с большой мощностиПри выходе из строя отдельного элемента перестают работать остальные

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме

  1. Перегорание отдельного элемента лучевой модели не влияет на работу остальных
  2. Накал полный на всех лампочках
  3. Можно подключить люстру с несколькими лампами
  4. Немного соединительных контактов
Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодкеПри щлейфной модели нарушение одного соединения мешает работе остальных
Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питанияПри перегорании отдельного источника остальные работают Схема не работает, если диоды подсоединяются через один резисторКонструкция громоздкая и дорогая из-за большого количества деталейПри выходе из строя отдельного элемента на остальных увеличивается нагрузка

В какой схеме лампочки одинаковой мощности будут светить ярче и почему

При использовании последовательной схемы вольтаж снижается с увеличением количества элементов. Лампочки горят в полнакала или даже меньше, так как напряжение делится равномерно. Общая мощность при последовательном соединении 2-х элементов по 100 Вт ниже, чем у одного (уровень освещенности снижается).

При параллельном соединении двух светильников на каждый подается 220 В, они работают в полный накал. Общая мощность увеличивается в 2 раза (уровень освещенности повышается).

Применение обеих схем в быту

Самые популярные изделия с последовательным соединением – гирлянды.

Эту модель можно использовать и для других целей:

  • сделать дешевую подсветку в длинном коридоре;
  • сэкономить на покупке лампочек из-за частого перегорания подключением дополнительной;
  • продлить срок эксплуатации источников света (если вместо одной на 60 Вт подключить 2 по 100 Вт).

Справка! Опытные электрики данное свойство используют для определения фаз в трехфазной сети.

В мастерских и гаражах мощные лампы накаливания или галогенки используют для обогрева. Два элемента по 1кВт соединяют последовательно и помещают в металлическую емкость, которую устанавливают на кирпич. Температура такого обогревателя примерно 60оС. Но следует учесть минус – лампы перегорают очень скоро.

Параллельное и последовательное и соединение ламп в быту

Параллельная схема используется в помещениях любого назначения (в подсветке, люстрах), на улицах. Она позволяет включать отдельные источники света независимо от работы остальных, достаточно подключить несколько выключателей. Обычно не только светильники, но и все электроприборы в жилых домах соединяются параллельно и подключаются к бытовой сети на 220 В.

Для подключения светодиодных светильников часто используется смешанная модель. Создается несколько последовательных цепочек, которые между собой соединяются параллельно.

Частые ошибки при сборке схемы и подключении выключателя

Неграмотный специалист чаще всего вместо фазы вводит в выключатель ноль. Светильники могут работать, но в выключенном состоянии они будут под напряжением, что опасно при необходимости заменить лампы.

По неопытности заводят в выключатель и фазу, и ноль.

Важно! Ноль всегда уходит на осветительный прибор.

Третья ошибка – присоединение питающего провода на отвод вместо общего контакта. В результате работает только часть люстры.

Случается, что нулевой провод осветительного прибора подключается не к нулю в коробке, а к фазе.

Чтобы избежать ошибок с выключателем, следует внимательно отнестись к проводам. Желательно перед установкой выключателя промаркировать их, чтобы в процессе монтажа соединить одноименные.

Как выполнить фазировку вводов лампочками накаливания

Фазировка выполняется при необходимости параллельно подключить к источнику питания 2 трехфазных ввода. Путать фазы нельзя, чтобы не создалось межфазное короткое замыкание.

Используются 2 лампы накаливания с последовательным соединением. Один конец провода подключается к фазе, вторым нужно коснуться остальных жил. Если фазы одинаковые, лампочки не горят.

Важно! Не стоит подобным образом экспериментировать с одной лампочкой – она в сети 380 В сразу перегорит. Последовательное соединение двух элементов снижает напряжение в 2 раза.

Основные выводы

Некоторые владельцы городских квартир проводят ремонт самостоятельно. В процессе требуется монтаж новой электропроводки. Для проведения этой работы необходимо ориентироваться в основах электрики и уметь определять оптимальные варианты подключения, учитывающие особенности интерьера и предпочтения членов семьи.

Хотя большинства электроприборов в жилых помещениях подключаются параллельно, знания о том, как подключить лампочки последовательно, тоже не помешают. Они помогут, если появится желание устроить дешевую систему освещения в стиле лофт или сэкономить на покупках.

При самостоятельном выполнении работ важно обладать знаниями о видах проводов, кабелей, выключателей, способах их соединения, сферах использования. Если не ни знаний, ни опыта, подключение лампочек лучше доверить специалисту.

ПредыдущаяСледующая

Схема параллельного подключения ламп

При подключении света в доме и квартире иногда возникает ситуация, когда нужно несколько источников света подключить к одному выключателю.

В этом случае рекомендуется отдавать предпочтение параллельной схеме соединения лампочек, которую Вы должны еще знать со школьного курса физики.

Если Вы забыли, как выглядит такой вариант электромонтажа, рекомендуем освежить память, взглянув на предоставленный ниже пример!

Когда мы рассматривали схему подключения точечных светильников, то как раз и показывали читателям сайта «Сам электрик» вариант с параллельным соединением изделий. Все довольно просто – на вводе у нас фаза, заземление и ноль.

Все три провода нужно подвести к патронам в соответствии с этой схемой.Параллельное и последовательное и соединение ламп в быту

На электрической схеме параллельное соединение лампочек в цепи может быть обозначено следующим образом:Параллельное и последовательное и соединение ламп в быту

Преимущество такого варианта в том, что если один источник света перегорит, остальные будут функционировать, как ни в чем не бывало.

При монтаже освещения в квартире и доме не стоит использовать альтернативный способ – последовательное подключение устройств. В этом случае Вы намучаетесь при поиске неисправности, т.к. если перегорит одна лампа накаливания, погаснут все (принцип как у гирлянды).

На видео ниже наглядно рассмотрена схема параллельного подключения ламп к сети:

Как Вы видите, все довольно просто и с электромонтажом справится даже чайник в электрике! Рекомендуем также ознакомиться со способами соединения проводов в распределительной коробке!

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого.

Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток.

Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям.

Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры.

Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно.

Если их соединить последовательно, то при включении одной лампочки мы включим все остальные.

При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

  • Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
  • А = I х U х t, где А – работа тока, t – время течения по проводнику.
  • Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
  • А=I х (U1 + U2) х t
  • Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения.

Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

  1. При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
  2. Р=U х I
  3. После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
  4. Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

  • qобщ= q1 = q2 = q3
  • Для определения напряжения на любом конденсаторе, необходима формула:
  • U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

  1. С= q/(U1 + U2 + U3)
  2. Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
  3. 1/С= 1/С1 + 1/С2 + 1/C3
  4. Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

  • С= (q1 + q2 + q3)/U
  • Это значение рассчитывается как сумма каждого прибора в схеме:
  • С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов.

Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Параллельное подключение лампочек

Главная > Лампы электрические > Параллельное подключение лампочек

Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.

Параллельное подключение светильников к проводам питания

В моду вошли точечные светильники, в результате количество источников света в домах и квартирах значительно увеличилось, а освещению стали уделять особое внимание. На фото выше изображены светильники для подвесного потолка с параллельным соединением. Через клеммные колодки лампы подключаются к фазному (L) и нулевому (N) проводам.

На первый взгляд здесь нет ничего сложного, но для длительной и надежной работы все должно быть сделано по правилам, которые нужно знать.

Схема подключений

Для создания подключений лампочек, прежде всего, надо изобразить упрощенную электрическую схему соединений и подключения к питанию. Она составляется по определенным правилам:

  • проводники графически обозначаются прямыми неразрывными линиями;
  • соединения обозначаются точками (если их больше двух), если точки нет, значит, провода пересекаются;
  • электрическая арматура и проводка на плане изображаются по ГОСТ 21.614 и ГОСТ 21.608.

Параллельное и последовательное соединение

Параллельное соединение проводников

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки.

Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис.

б) изображает соединения нагляднее.

Схема параллельного соединения лампочек

Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.

  • Сила тока (I) в питающих проводах равна сумме сил токов всех участков (I1, I2, I3), подключенных параллельно (рис. б выше):
  • I = I1 + I2 + I3.
  • Мощность цепи (Р) находится как сумма мощностей всех участков (Р1, Р2, Р3):
  • Р = Р1 +Р2 + Р3.
  • Сопротивление (R) для трех нагрузок определяется из выражения:
  • 1/R = 1/R1 + 1/R2 + 1/R3,
  • где R1, R2, R3 – сопротивления лампочек.

Типы ламп и схемы подключения

Подключение ламп накаливания, приведенное выше, не представляет особой сложности. Но схема галогенных и люминесцентных ламп имеет некоторые отличия.

Галогенные

Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В (рис. ниже).

Схема подключения галогенной лампы

Напряжение 220 В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках.

Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение 220 В подается на них через распределительную коробку.

Нулевой провод обозначен синим цветом, а фазный – коричневым, со вставленным в разрыв выключателем.

Схема подключения галогенных ламп

Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.

Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки (на схеме не показаны).

Выходной провод низкого напряжения не должен быть длиннее 2 метров. Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп.

Пример расчета

Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. При питающем напряжении V=12 В к трансформатору подключены параллельно 2 лампочки с сопротивлениями R1 = R2 = 36 Ом. Сопротивления подводящих проводов к ним равны r1 = r2 = r3 = r4 = 1,5 Ом. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. ниже.

Потери в проводах питания лампочек

  1. Напряжение на первой и второй лампочках составят:
  2. V1 = VR(2r + R)/(4r2 +6rR + R2) = 10,34 В,
  3. V2 = VR2/(4r2 +6rR + R2) = 9,54 В.
  4. Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.
  5. Общая нагрузка в схеме поддерживается на уровне 70-75% от максимальной, чтобы не перегревались трансформаторы.

Люминесцентные

Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА (пускорегулирующие аппараты) решают эту проблему, но цена их выше.

Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени.

В результате суммарный световой поток выравнивается.

На рис. ниже изображена схема светильника с расщепленной фазой. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты (L1) и (L2). Но к лампе (2) подключен дополнительный балластный конденсатор (Сб), благодаря которому создается сдвиг тока по фазе на 600.

Схема двухлампового светильника

В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.

Видео про подключения

Последовательное и параллельное соединение аккумуляторов

Про особенности параллельного и последовательного подключения рассказывает видео ниже.

Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:

  • начертить принципиальную электрическую схему системы освещения;
  • выполнить расчет проводки;
  • подобрать электрооборудование, арматуру и светильники;
  • правильно выполнить монтаж лампочек.

На чтение 12 мин Просмотров 7.3к. Опубликовано 22.08.2020
Обновлено 06.03.2021

Содержание

  1. Можно ли параллельно соединить лампочки
  2. Правила соединения лампочек
  3. Последовательное
  4. Параллельное
  5. Плюсы и минусы параллельного соединения
  6. Применение
  7. Пример расчета соединения ламп разной мощности
  8. Как избежать ошибок

Каждый день мы пользуемся источниками освещения. Лампы в источниках соединяются последовательно или параллельно. Каждый способ имеет особенности и эффективен в конкретных ситуациях.

Можно ли параллельно соединить лампочки

Этот тип подключения наиболее эффективен. Лампа соединяется с фазой и нулем. При подключении двух и более ламп подающие напряжение провода могут скручиваться.

Но чаще к общему кабелю крепят все нагрузки. Параллельное соединение бывает лучевым или шлейфовым. В первом варианте к каждой лампе подводится отдельный кабель. Во втором фаза и ноль подаются на первый источник освещения, остальные приборы подпитываются частично.

Подключение нагрузок к сети

Подключение нагрузок к сети.

При использовании галогенных светильников с трансформатором необходимо помнить, что их подключают на вторичную обмотку преобразователя с помощью клеммных колодок.

Параллельным подключением можно несколько сгладить недостатки осветительного оборудования, снизить мерцание люминесцентных ламп. В схему добавляется конденсатор для сдвига фазы всех элементов цепи.

Правила соединения лампочек

При подключении ламп необходимо соблюдать правила. Рассмотрим последовательные и параллельные соединения.

Последовательное

Последовательное соединение предполагает подключение к сети 220 В так, что через все элементы в цепи будет течь одинаковый ток. При этом распределение падений напряжения пропорционально внутренним сопротивлениям нагрузок. Мощность также распределяется пропорционально.

Схема стандартного последовательного подключения представлена на рисунке ниже.

Схема последовательного подключения

Схема последовательного подключения.

Параллельное

Оно отличается подачей на каждую лампу полного сетевого напряжения. Ток будет различным, в зависимости от сопротивления прибора.

Схема параллельного подключения

Схема параллельного подключения.

Проводники подводятся к патронам ламп одинаково, иногда по принципу шины, когда к общей магистрали подключаются все нагрузки.

К одному подводу можно подключить сколько угодно лампочек. Выключатель работает так же, как при последовательном подключении.

Плюсы и минусы параллельного соединения

Плюсы:

  • если один элемент выйдет из строя, остальные продолжат работать;
  • цепь дает максимально яркий свет, поскольку к каждому прибору подводится полное напряжение;
  • от одной лампы можно отвести сколько угодно проводов для подключения дополнительных нагрузок (потребуется один ноль и конкретное количество фаз);
  • подходит для энергосберегающих электрических устройств.

Схема подключения одной лампы к ЭПРА

Схема подключения энергосберегающей лампы к ЭПРА.

Недостатков практически нет, если не считать большого количества проводников в разветвленной системе с множеством ламп.

Применение

В быту параллельное соединение встречается очень часто. Например елочные гирлянды, где все лампочки имеют максимальную яркость свечения.

Подключением можно создавать интерьерную подсветку любой длины. Замена сгоревшего элемента делается легко. Два прибора по 60 Вт можно поменять на одну лампу мощностью 10 Вт без ущерба для параметров освещенности. Это свойство цепи используется опытными электриками для выявления фазы в трехфазных сетях.

Галогенные лампы и приборы накаливания не только дают яркое свечение, но нагревают окружающую среду. По этой причине их часто используют в гаражах, ангарах или мастерских для отапливания помещений. Для этого подключают приборы к сети, размещая в металлическом блоке. Конструкция прогревается до 60 градусов и поддерживает комфортную температуру в помещении. Однако высокие мощности приводят к частому перегоранию ламп.

Параллельное подключение применяется в ленточных подсветках, люстрах, уличном освещении. Каждой лампой при этом можно управлять отдельно, что повышает удобство использования общей сети. Надо лишь вмонтировать в систему нужное количество выключателей.

При создании осветительных приборов со светодиодными элементами нередко используется смешанное подключение на основе последовательной цепи нагрузок с последующим параллельным соединением ее с такой же цепочкой.

Пример расчета соединения ламп разной мощности

Чтобы разобраться в различиях, достаточно знания закона Ома и других простых электрических законов.

Пусть имеется лампочка накаливания на напряжение 220 вольт. На частоте 50 Гц она представляет собой чисто активное сопротивление, поэтому с ней удобнее разбираться в начальных вопросах. Если лампа имеет мощность 100 Ватт, то при включении в сеть через нее пойдет ток I=P/U=100 ватт/220 вольт=0,5 А (приблизительно, достаточно для рассуждений). На ней будет падать полное напряжение сети 220 вольт. Можно вычислить сопротивление нити: R=U/I=220 вольт /0,5 ампер =400 Ом (приблизительно).

Если подключить вторую аналогичную лампочку параллельно первой, то очевидно, что все сетевое напряжение будет приложено к каждой лампе. Потребляемый ток Iпотр разветвится на два потока и через каждую лампочку пойдет ток I=U/R=220 вольт/400 Ом=0,5 ампер. Потребляемый ток будет равен сумме двух токов (так гласит первый закон Кирхгофа) и составит 1 А. В итоге обе лампы будут находиться под полным сетевым напряжением, через них потечет номинальный ток, и общий световой поток будет равен удвоенному потоку одного светильника.

Как последовательно и параллельно соединить лампочки

Параллельное и последовательное соединение источников света равной мощности.

Если два одинаковых светильника соединить последовательно, то сетевое напряжение разделится между ними, и на каждой будет падать около 110 вольт. Общее сопротивление цепи станет равным Rобщ=400+400=800 Ом, и ток через каждую лампу (при последовательном соединении он одинаков для каждого элемента) составит Iлампы=U/Rобщ=220 вольт/800 Ом = 0,25 А. В итоге получается:

  • на каждой лампе падает только половина сетевого напряжения;
  • через каждую лампу течет ток, уменьшенный от номинального в 2 раза.

Чтобы оценить световой поток ламп накаливания для данного случая, можно воспользоваться законом Джоуля-Ленца. Свечение ламп накаливания осуществляется за счет нагрева нити. За период времени t нить выделит количество теплоты Q=I2*R*t=U*I*t. Ток уменьшится в два раза, напряжение на одной лампе тоже в два раза. Значит можно ожидать уменьшение светового потока в 2*2=4 раза. Для двух ламп поток уменьшится в два раза относительно одной лампы в номинальном режиме. То есть, при последовательном соединении две лампочки будут светить примерно в два раза тусклее, чем одна.

Проблему можно решить применением ламп с рабочим напряжением в два раза ниже сетевого. Если применить два стоваттных источника света на напряжение 127 вольт, то 220 вольт разделятся пополам, и каждый светильник будет работать в номинальном режиме, световой поток по сравнению с одной лампой той же мощности удвоится. Но этим не избавиться от главного недостатка такой схемы – при выходе из строя одного осветительного прибора цепь разрывается, и вторая лампа также перестает светить.

Все вышесказанное касается ламп с одинаковой мощностью. Если мощность светильников заметно отличается, то в схемах возникают следующие эффекты. Пусть одна лампа на 220 вольт имеет мощность 70 ватт, другая 140.

Тогда номинальный ток первой I1=P/U=70/220=0,3 ампера (округленно), второй – I2=140/220=0,7 ампера. Сопротивление нити менее мощного светильника R1=U/I=220/0,3=700 ом, второй – R2=220/0,7=300 ом.

Как последовательно и параллельно соединить лампочки

Параллельное и последовательное соединение источников света различной мощности.

При параллельном соединении напряжение на обоих приборах будет равным, через каждую лампу пойдет свой ток. Общий ток потребления равен сумме двух токов Iпотр=0,3+0,7=1 ампер. Каждая лампа работает в номинальном режиме и потребляет свой ток.

При последовательном соединении ток будет ограничен сопротивлением Rобщ=300+700=1000 Ом и будет равен I=U/R=220/1000=0,2 А. Напряжение распределится пропорционально сопротивлению нити (мощности). На лампе в 140 ватт оно составит 1/3 от 220 вольт – приблизительно 70 вольт. На маломощной лампе — 2/3 от 220 вольт. То есть, около 140 вольт. Обе лампы будут светить с недокалом из-за снижения напряжения и тока, но режим для них будет облегченным. Другое дело, если используются лампы на половину сетевого напряжения. На лампе меньшей мощности напряжение будет выше допустимого, и разница будет тем больше, чем больше разница в мощностях. Такая лампа скоро выйдет из строя. И это еще один недостаток последовательного включения ламп. Поэтому такое подключение на практике используется крайне редко. Исключение – последовательное соединение люминесцентных ламп. Считается, что при такой схеме они работают более устойчиво.

Как последовательно и параллельно соединить лампочки

Последовательное соединение люминесцентных источников света. Стартеры здесь также рассчитаны на 127 вольт.

Подытоживая отличия параллельного включения от последовательного:

  • при параллельном включении напряжение на всех потребителях одинаково, ток распределяется пропорционально мощности светильников (если мощность одинакова, то токи будут равными), общий ток потребления равен сумме токов всех ламп;
  • при последовательном соединении ток через все лампы будет одинаковый, он определяется общим сопротивлением цепи (и будет меньше тока самой маломощной лампы), напряжение на потребителях распределится пропорционально мощности ламп (если она одинакова, то напряжения будут равными).

Как избежать ошибок

Подключать электроприборы к сети необходимо с соблюдением правил электротехники. Особенности подключения не очевидны и могут быть непонятны далеким от тематики людям.

Важно учесть:

  1. Каждый тип подключения имеет особенности, связанные с законом Ома. В последовательном соединении ток равен на всех участках цепи, тогда как напряжение зависит от сопротивления. В параллельном соединении одинаковым оказывается напряжение, а общая сила тока складывается из величин отдельных участков.
  2. Любую цепь не стоит перегружать, это может привести к нестабильной работе приборов и повреждению проводников.
  3. В параллельном соединении сечение проводов должно соответствовать подаваемой нагрузке, иначе неизбежен перегрев проводников с последующим расплавлением обмотки и коротким замыканием.
  4. В выключатель подводится фаза, ноль уходит на осветительный прибор. Пренебрежение правилом может привести к поражению током при замене лампы, поскольку даже в выключенном состоянии устройство находится под напряжением.
  5. Основной провод от светильника подсоединяется к общему контакту. Если его подключить к отводу, будет работать только часть цепи.
  6. Перед установкой выключателя лучше заранее промаркировать провода. При монтаже будет просто соединить между собой одноименные проводники.

Отказ от рекомендаций может стать причиной нестабильной работы осветительного оборудования, быстрого перегорания ламп и повлечь серьезные травмы с риском для жизни.

Содержание

  1. Виды соединений электрических проводников
  2. Последовательное
  3. Параллельное
  4. Смешанное
  5. Как вычисляются напряжение, сила тока и электрическая мощность в зависимости от подключения
  6. При параллельном соединении
  7. При последовательном соединении
  8. Примеры расчетов
  9. Для резисторов
  10. Для лампочек
  11. Для светодиодов

При разработке электрических цепей применяется последовательное и параллельное соединение проводников. Умение анализировать (как количественно, так и качественно) и рассчитывать такие схемы является базовым принципом знаний электротехники.

Виды соединений электрических проводников

Основными схемами подключения являются параллельное и последовательное соединение. Также существуют комбинации из этих двух включений.

Последовательное

При последовательном (в зарубежной терминологии serial) соединении выводы элементов соединяются так, чтобы получилась цепочка. Один вывод устройства подключается к одному соседнему звену, а второй – к другому, с противоположной стороны.

Параллельное и последовательное подключение проводников

Последовательное соединение и практический пример применения.

Параллельное

При параллельном (parallel) включении одноименные выводы элементов цепи соединяются между собой. Практический пример – лампы в многорожковой люстре или повторители светового сигнала поворота в автомобиле.

Параллельное и последовательное подключение проводников

Параллельное подключение и практический пример.

Смешанное

В одной цепи схема подключения может быть комбинированной – serial+parallel. Часть элементов подключена в параллель, образуя звенья. Эти звенья могут быть включены в последовательную цепочку. Или наоборот – последовательные цепи включаются параллельно.

Параллельное и последовательное подключение проводников

Комбинированное соединение проводников.

Как вычисляются напряжение, сила тока и электрическая мощность в зависимости от подключения

Параметры электрической цепи рассчитываются по-разному в зависимости от типа подключения. Чтобы разобраться, какова будет сила тока, проходящего через каждое сопротивление, можно воспользоваться первым законом Кирхгофа. Одна из его формулировок гласит, что алгебраическая сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла. Остальные зависимости будут вытекать из данного рассуждения.

При параллельном соединении

Если рассмотреть параллельное соединение, например, трех резисторов, то можно отметить, что втекающий ток I в узле 1 распадается на три ветви I1, I2, I3, причем Кирхгоф утверждает, что их сумма I1+ I2+ I3 = I. В узле 2 все токи стекаются в один ток, и снова I= I1+ I2+ I3.

Параллельное и последовательное подключение проводников

Цепь из трех элементов в параллель.

Очевидно, что напряжение на каждом резисторе одинаково и равно U, следовательно, по закону Ома:

  • I1=U/R1;
  • I2=U/R2;
  • I3=U/R3;
  • I=U/Rобщ.

Отсюда U/Rобщ= U/R1+ U/R2+ U/R3, после сокращения обеих частей на U получается формула для нахождения общего сопротивления при параллельном соединении резисторов:

1/Rобщ= 1/R1+ 1/R2+ 1/R3.

Параллельное и последовательное подключение проводников

Параллельная цепь из n элементов.

Отсюда следует, что при параллельном соединении общее сопротивление будет меньше наименьшего сопротивления в наборе. При соединении двух резисторов формула принимает вид Rобщ=R1* R2/(R1+ R2).

Также из равенства I=U/R1+U/R2+U/R3 следует, что токи через параллельно включенные резисторы распределяются обратно пропорционально значениям их сопротивлений – чем выше сопротивление, тем ниже ток, и наоборот. Если все резисторы имеют одинаковый номинал, то ток, текущий через каждый из них, находится делением общего тока на количество сопротивлений. Если элементов в сборке три, то через каждый течет треть общего тока, а если параллельно включены n одинаковых резисторов, то через каждый протекает I/n.

Так как электрическая мощность равна P=U*I, а напряжение на каждом резисторе равно, то мощность, выделяемая на каждом элементе, распределяется пропорционально току и обратно пропорционально сопротивлению резистора. Если все элементы одинаковы, то и мощность на них будет рассеиваться одинаковая.

Для наглядности видео.

При последовательном соединении

Если рассматривать последовательную цепь из трех элементов, можно заметить, что ток, втекающий в узел 1 будет равен вытекающему. В узле 2 выполняется то же самое соотношение и так до бесконечности.

Параллельное и последовательное подключение проводников

Отсюда сила тока в последовательном соединении будет одинакова для любого элемента и равна I. Напряжение, приложенное к цепи и равное I*R, распределится между резисторами:

U=U1+U2+U3=I*R1+I*R2+I*R3 = I* Rобщ

После сокращения на I можно найти общее сопротивление цепи. Оно равно сумме составляющих, и общее значение сопротивления будет выше сопротивления любого элемента:

Rобщ=R1+R2+R3

Очевидно, что падение напряжения в последовательной цепи прямо пропорционально сопротивлению каждого элемента – чем выше сопротивление, тем выше на нем напряжение. Точно так же, эти соотношения выполняются для цепи из n элементов.

Примеры расчетов

В качестве практических примеров можно рассмотреть несколько вариантов расчетов параметров цепи в разных схемах соединения.

Для резисторов

Самым простым примером расчета будет цепь из двух сопротивлений – 10 Ом и 100 Ом, соединенных в цепочку. К цепи приложено 12 вольт.

Параллельное и последовательное подключение проводников

Последовательная цепь из двух резисторов.

Сначала надо найти Rобщ, оно равно сумме R1 и R2. Rобщ=100+10=110 Ом. Отсюда ток в цепи I=U/R=12/110=0,109 ампер. Падение на каждом элементе можно вычислить исходя из равенств U1=I*R1 и U2=I*R2. Отсюда U1=1,1 В, а U2=10,9 В. Очевидно, что U1/U2=R1/R2. На первом элементе будет рассеиваться мощность P1=U1*I=1,1*0,109=0,12 ватт (для практики подойдет стандартный компонент на 0,125 ватт), а на втором – P2=U2*I=10,9*0,109=1,19 ватт (для практической реализации понадобится двухваттник).

Если соединить эти же два резистора параллельно и подать то же самое напряжение, то параметры распределятся по-другому.

Параллельное и последовательное подключение проводников

Соединение элементов в параллель.

Сначала надо определить Rобщ=R1*R2/(R1+R2)=110*10/(110+10)=1100/120=9,17 Ом (меньше наименьшего значения в 10 Ом). Общий ток составит I=U/Rобщ=12/9,17=1,31 ампер. Через первый элемент потечет I1=U/R1=12/10=1,2 ампер, через второй I2=U/R2=12/100=0,12. Очевидно, что I1+I2=I (с учетом погрешностей округления). Мощности потребуются такие:

  • P1=I1*U=1,2*12=14,2 ватт;
  • P2=I2*U=0,12*12=1,42 ватт.

Если имеется смешанное соединение элементов, надо сначала преобразовать схему к однотипному виду – параллельному или последовательному. Пусть имеется схема следующего вида.

Параллельное и последовательное подключение проводников

Преобразование смешанной схемы.

В данном случае удобно заменить параллельную сборку R1 и R2 на резистор с эквивалентным сопротивлением R12, а R3 и R4 – на R34. Сначала находится R12=R1*R2/(R1+R2)=9,17 Ом. Тем же способом рассчитывается R34=150*5/(150+5)=4,8 Ом. Тогда общее сопротивление эквивалентной цепи будет равно R12+R34=9,17+4,8=13,97 Ом.

Отсюда I=U/R=12/13,97=0,86 ампер. На “гирлянде» R1R2 падает U12=I*R12=0,86*9,17=7,87 вольт, а на R3R4 падение составит U34= I*R34=0,86*4,8=4,13 вольт. Дальше надо вернуться к исходной схеме и рассмотреть отдельно участок схемы R1R2 с найденными параметрами.

Параллельное и последовательное подключение проводников

Участок цепи, содержащий R1 и R2.

Отсюда I1=U/R1=7,87/10=0,787 ампер, I2=U/R2=7,87/100=0,0787 ампер. По мощностям – P1=U*I1=7,87*0,787=6,2 ватт, P2= U*I2=7,87*0,0787=0,62 ватт.

Аналогично рассчитывается и участок, содержащий элементы R3R4.

Читайте также

Последовательное и параллельное подключение аккумуляторных батарей

Для лампочек

Точно такими же способами можно рассчитать параметры цепи, состоящей из двух или более лампочек накаливания – на практике с такой ситуацией можно столкнуться чаще. Но есть две проблемы. Первая из них – на лампочках и в технических данных на них не указывается сопротивление нити. Его придется пересчитывать исходя из номинального напряжения и мощности. Так как P=U*I, а I=U*R, то P=U2/R, а R=U2/P. Так, для 10-ваттной лампочки на 12 вольт сопротивление нити будет равно 122/10=144/10=14,4 Ом. Можно рассчитать характеристики цепи для двух последовательно и параллельно соединенных лампочек.

Параллельное и последовательное подключение проводников

Соединение ламп в цепочку.

В первом случае ток, текущий через каждую лампу будет общим, и равным I=U/Rобщ=12/(14,4+14,4)=12/28,8=0,42 А. На каждой лампе упадет U/2=6 вольт. А электрическая мощность каждого элемента составит 0,42*6=2,5 Вт, что составляет ¼ от номинала лампочки. Такое уменьшение произошло из-за двукратного снижения тока и двукратного снижения напряжения. Естественно, лампочки будут светиться далеко не в полный накал. Чтобы довести яркость свечения до нормальной, придется вдвое увеличивать напряжение, что одновременно вдвое увеличит ток.

Параллельное и последовательное подключение проводников

Соединение двух лампочек в параллель.

Если лампочки соединить в параллель, то на каждой из них упадет номинальный уровень в 12 вольт. Через каждый элемент потечет I=U/R= 12/14,4=0,83 А, а мощность на каждой лампочке будет равна P=U*I=12*0,83=10 ватт, то есть, номинал. И каждая нить будет светить в полный накал. Но вся цепь будет потреблять 20 ватт и через нее потечет 0,83*2=1,66 А, что вдвое больше значения для одной лампы.

Есть и вторая проблема. В общем случае сопротивление зависит от тока и приложенного напряжения, но у ламп накаливания эта зависимость выражена ярко. Нить в холодном состоянии имеет низкое сопротивление, а номинального значения достигает при прогреве в номинальном режиме. Поэтому данные выше расчеты верны лишь для штатного напряжения 12 вольт. В других условиях характеристики лампы будут другими, и, по большому счету, расчет для параллельного случая неточен – сопротивление нити будет меньше 14,4 Ом. Зато это свойство позволяет применять лампу в качестве стабилизатора тока – при увеличении его значения нить нагреется, сопротивление вырастет, ток упадет примерно до прежнего уровня. При его уменьшении произойдет обратный процесс со снижением уровня накала нити лампочки.

Рекомендуем посмотреть видео урок «Просто физика»

Для светодиодов

Еще сложнее ситуация со светодиодами. В отличие от лампочек они стабилизируют напряжение, причем не всегда, а только после открывания. Иными словами, сначала при росте напряжения на последовательной цепочке (LED+резистор), она ведет себя согласно закону Ома. После того, как светодиод открылся (и начал светиться), увеличение падения на нем прекратилось, и рост напряжения на цепочке ведет к росту тока и увеличению U на резисторе. На полупроводниковом приборе напряжение остается стабильным (в зависимости от технологии изготовления – от 1,2 до 3 вольт или выше), хотя ток через него также растет.

Параллельное и последовательное подключение проводников

Распределение падений до открывания и после открывания светодиода.

По мере освоения приемов расчета можно научиться анализировать все более сложные схемы, содержащие как параллельное, так и последовательное подключение элементов. Потом можно переходить к следующему этапу – анализ и расчет устройств, содержащих реактивные (а впоследствии – и нелинейные) компоненты.

Добавить комментарий