Как найти сопротивление при температуре 0 градусов



Знаток

(310),
на голосовании



11 лет назад

Дополнен 11 лет назад

Спасибо ответ услышан, мне нужно было Ro.

Голосование за лучший ответ

Крабочка

Искусственный Интеллект

(107048)


11 лет назад

У большинства металлов при повышении температуры сопротивление увеличивается.
Формула : Rt = Ro * ( 1 + А * t )
t . температура проводника.
Rt . сопротивление при температуре t
Ro . сопротивление при температуре 0 градусов цельсия.
А . температурный коэффициент электросопротивления.
Например : Ro меди = 0,017 . ом * мм^2 / м . ( А ) меди = 0,0043.
Если нам нужно найти сопротивление медного провода ( длинной 1 метр, сечением 1 мм^2 )
при 100 градусах цельсия, то решение такое :
Rt = 0,017 * ( 1 + 0,0043 * 100 ) = 0,017 * 1,43 = 0,02431 ом.

Содержание

  1. Температурный коэффициент сопротивления
  2. Сопротивление металлов при 0 градусов цельсия
  3. Расчёт сопротивления проводника. Удельное сопротивление
  4. Удельное сопротивление
  5. Удельное сопротивление меди и алюминия для расчетов
  6. Проводимость и электросопротивление
  7. Проводимость жидкостей
  8. Электросопротивление проводов
  9. Параметры, определяющие сопротивление проводника
  10. Выбор сечения кабеля
  11. Выбор по допустимому нагреву
  12. Допустимые потери напряжения
  13. Электрическое сопротивление
  14. Электросопротивление других металлов
  15. Достоинства и недостатки медных проводов
  16. Индуктивное сопротивление
  17. Расчет сопротивления

Температурный коэффициент сопротивления

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко — от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Известен каждому и закон Ома для однородного участка электрической цепи, из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.

За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.

Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.

Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда — составных частей тока — электронов проводимости. Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение — образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях — причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление металлических проводников зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления . Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате — сопротивление при нагревании проводника возрастает. Данное явление используется технически в термометрах сопротивления.

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К — кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в электроизмерительных приборах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Температурный коэффициент сопротивления

Как вы могли заметить, значения удельных электрических сопротивлений в таблице из предыдущей статьи даны при температуре 20 ° Цельсия. Если вы предположили, что они могут измениться при изменении температуры, то оказались правы.

Зависимость сопротивления проводов от температуры, отличной от стандартной (составляющей обычно 20 градусов Цельсия), можно выразить через следующую формулу:

Константа «альфа» ( α) известна как температурный коэффициент сопротивления, который равен относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу. Так как все материалы обладают определенным удельным сопротивлением (при температуре 20 ° С) , их сопротивление будет изменяться на определенную величину в зависимости от изменения температуры . Для чистых металлов температурный коэффициент сопротивления является положительным числом, что означает увеличение их сопротивления с ростом температуры. Для таких элементов, как углерод, кремний и германий , этот коэффициент является отрицательным числом , что означает уменьшение их сопротивления с ростом температуры. У некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, что означает крайне малое изменение их сопротивления при изменении температуры. В следующей таблице приведены значения температурных коэффициентов сопротивления нескольких распространенных типов металлов :

Проводник α, на градус Цельсия
Никель 0,005866
Железо 0,005671
Молибден 0,004579
Вольфрам 0,004403
Алюминий 0,004308
Медь 0,004041
Серебро 0,003819
Платина 0,003729
Золото 0,003715
Цинк 0,003847
Сталь (сплав) 0,003
Нихром (сплав) 0,00017
Нихром V (сплав) 0,00013
Манганин (сплав) 0,000015
Константан (сплав) 0,000074

Давайте на примере нижеприведенной схемы посмотрим, как температура может повлиять на сопротивление проводов и ее функционирование в целом:

Общее сопротивление проводов этой схемы (провод 1 + провод 2) при стандартной температуре 20 ° С составляет 30 Ом. Проанализируем схему с помощью таблицы напряжений токов и сопротивлений:

При 20 ° С мы получаем 12,5 В на нагрузке, и в общей сложности 1,5 В (0,75 + 0,75) падения напряжения на сопротивлении проводов. Если температуру поднять до 35 ° С, то при помощи вышеприведенной формулы мы легко сможем рассчитать изменение сопротивления на каждом из проводов. Для медных проводов (α = 0,004041) это изменение составит:

Пересчитав значения таблицы, мы можем увидеть к каким последствиям привело изменение температуры:

Сравнив эти таблицы можно прийти к выводу, что напряжение на нагрузке при увеличении температуры снизилось (с 12,5 до 12,42 вольт), а падение напряжения на проводах увеличилось (с 0,75 до 0,79 вольт). Изменения на первый взгляд незначительны, но они могут быть существенны для протяженных линий электропередач, связывающих электростанции и подстанции, подстанции и потребителей.

Источник

Расчёт сопротивления проводника. Удельное сопротивление

Главная > Теория > Удельное сопротивление меди

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.


Формула вычисления сопротивления проводника

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.


Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Удельное сопротивление меди и алюминия для расчетов

Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.

Недавно я изучал один очень интересный ГОСТ:

ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.

Советую почитать данный документ, т.к. там много чего полезного.

В этом документе приводится формула для расчета потери напряжения и указано:

р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм2/м для меди и 0,036 Ом · мм2/м для алюминия;

Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.

Стоит заметить, что все табличные значения приводят при температуре 20 градусов.

А какие нормальные условия? Я думал 30 градусов Цельсия.

Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.

R0 – сопротивление при 20 градусах Цельсия;

R1 — сопротивление при Т1 градусах Цельсия;

Т0 — 20 градусов Цельсия;

α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);

Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.

Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.

Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.

В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм2/м, а для алюминия – 0,028 Ом · мм2/м.

Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.

А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.

Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.

Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?

Советую почитать:

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.


Сопротивление проводов

Параметры, определяющие сопротивление проводника

На предыдущих уроках мы уже поднимали вопрос о том, каким образом электрическое сопротивление влияет на силу тока в цепи, но не обсуждали, от каких же конкретно факторов зависит сопротивление проводника. На сегодняшнем уроке мы узнаем о параметрах проводника, которые определяют его сопротивление, и узнаем, каким образом Георг Ом в своих экспериментах исследовал сопротивление проводников.

Для получения зависимости силы тока в цепи от сопротивления Ому пришлось провести огромное количество экспериментов, в которых необходимо было изменять сопротивление проводника. В связи с этим он столкнулся с проблемой изучения сопротивления проводника в зависимости от его отдельно взятых параметров. В первую очередь, Георг Ом обратил внимание на зависимость сопротивления проводника от его длины, о которой уже вскользь шла речь на предыдущих уроках. Он сделал вывод, что при увеличении длины проводника прямо пропорционально увеличивается и его сопротивление. Кроме того, было выяснено, что на сопротивление влияет еще и сечение проводника, т. е. площадь фигуры, которая получается при поперечном разрезе. При этом, чем площадь сечения больше, тем сопротивление меньше. Из этого можно сделать вывод, что чем провод толще, тем его сопротивление меньше. Все эти факты были получены опытным путем.

Кроме геометрических параметров на сопротивление проводника влияет еще и величина, описывающая род вещества, из которого состоит проводник. В своих опытах Ом использовал проводники, изготовленные из различных материалов. При использовании медных проводов сопротивление было каким-то одним, серебряных – другим, железных – третьим и т. д. Величину, которая характеризует род вещества в таком случае, называют удельным сопротивлением.

Таким образом, можно получить следующие зависимости для сопротивления проводника (рис. 1):

1. Сопротивление прямо пропорционально длине проводника , которую в СИ измеряют в м;

2. Сопротивление обратно пропорционально площади сечения проводника , которую мы будем измерять в мм2 из-за малости;

3. Сопротивление зависит от удельного сопротивления вещества (читается «ро»), которое является табличной величиной и измеряется обыкновенно в .

Рис. 1. Проводник

Выбор сечения кабеля

Сопротивление медного провода

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.


Таблица выбора сечения провода по допустимому нагреву

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.


Максимально допустимая длина кабеля данного сечения

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω. 1 000 Ом называется 1 килоом (1кОм, или 1кΩ), 1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Сопротивление тока: формула

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Достоинства и недостатки медных проводов

Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.


В таблице дано удельное электрическое сопротивление стали и других металлов

Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:

  • Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру). По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
  • Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
  • Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.


Медь лишь немного уступает серебру

Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:

  • Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
  • Цена: алюминий в несколько раз дешевле;
  • Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Расчет сопротивления

Сегодня все сделано для человека. И даже такой простой расчет можно сделать несколькими способами. Есть простые, есть сложные. Начнем с простых.

Первый вариант табличный. В чем его простота? К примеру, таблица на нижнем рисунке.

Здесь все четко показано и взаимосвязано. Зная определенные размеры медного провода, можно определить его сопротивление и силу тока, которую провод может выдержать. Или, наоборот, имея в наличие показатели сопротивления или силы (плотность) тока, которые, кстати, можно определить мультиметром, можно легко определить сечение или диаметр проводника. Данный вариант самый удобный, таблицы можно найти в свободном доступе в интернете.

Второй способ определения – с помощью калькулятора (онлайн). Таких интернетовских приспособлений великое множество, работать с ними удобно и легко. Можно в такой калькулятор вставлять физические величины медного проводника и получать размерные показатели, или, наоборот. Правда, основная масса таких калькуляторов в своей программе имеет одно стандартное значение – это удельное сопротивление меди, равное 0,0172 Ом·мм²/м.

И самый сложный вариант расчета – это провести его своими руками, используя формулу. Вот она: R=pl/S, где:

  • р – это то самое удельное сопротивление меди;
  • l – длина медного провода;
  • S – его сечение.

Хотелось бы отметить, что медь обладает одним из самых низких удельных сопротивлений. Ниже него только серебро – 0,016.

Определить сечение проводника можно через формулу, где основным параметром является его диаметр. А вот определить диаметр можно разными способами, кстати, такая статья на нашем сайте есть, можете прочитать и получить полную и достоверную информацию.

Раз будет меньше эта величина, во столько раз понизится сопротивление

Если есть такая возможность, уменьшите длину проводника, который используется в цепи. Сопротивление прямо пропорционально длине проводника. Если укоротить проводник в n раз, то сопротивление

понизится во столько же раз.

Увеличьте площадь поперечного сечения проводника. Установите проводник с большим поперечным сечением или соедините несколько проводников параллельно в пучок проводов. Во сколько раз увеличится площадь поперечного сечения проводника, во столько раз понизится сопротивление

Можно комбинировать эти способы. Например, чтобы понизить сопротивление

проводника в 16 раз, заменяем его проводником, удельное
сопротивление
в 2 раза меньше, уменьшаем в 2 раза его длину, а площадь поперечного сечения в 4 раза.

Чтобы уменьшить сопротивление

на участке цепи, присоедините к нему параллельно еще одно
сопротивление
, величину которого рассчитайте. Учитывайте, что при параллельном соединении,
сопротивление
участка цепи всегда меньше самого малого сопротивления, находящегося в параллельных ветках. Рассчитайте необходимое
сопротивление
, которое нужно присоединить параллельно. Для этого измерьте
сопротивление
участка цепи R1. Определите то
сопротивление
, которое должно на нем быть – R. После этого определите
сопротивление
R2, которое нужно присоединить к сопротивлению R1 параллельно. Для этого найдите произведение сопротивлений R и R1 и поделите на разность R1 и R (R2 = R R1 / (R1 — R)). Учитывайте, что по условию, R1 всегда больше R.

— это некая способность элемента электрической цепи препятствовать прохождению по нему электрического тока. Им обладают различные материалы, например, медь, железо и нихром. Общее сопротивление — это сопротивление всей электрической цепи в целом. Оно измеряется в Омах. Нужно знать сопротивление цепи для оценки токов короткого замыкания и выбора коммутационных аппаратов.

  • Омметр, измерительный мост, калькулятор.

Для начала определите, как подключены элементы электрической цепи по отношению друг к другу, так как это влияет на подсчет общего сопротивления. Проводники могут находиться в последовательном или параллельном подключении. Последовательное соединение — это такое соединение, когда все элементы связаны так, что включающий их участок цепи не имеет ни одного узла, а параллельное соединение — это такое соединение, когда все элементы цепи объединены двумя узлами и не имеют связей с другими узлами.

Если вы определили, что проводники в электрической цепи подключены последовательно, найти полное сопротивление не составит труда. Просто сложите сопротивления всех элементов . Если вам не дано сопротивление каждого проводника, но даны их напряжения и сила тока какого-либо элемента цепи, то, сложив все напряжения, вы узнаете общее напряжение. Силы тока каждого элемента при последовательном соединении равны, то есть и общая сила тока во всей цепи равна силе тока любого проводника данной цепочки . И тогда, чтобы найти полное сопротивление, разделите общее напряжение на силу тока.

Если же элементы подключены параллельно, то общее сопротивление можно найти следующим способом: перемножьте сопротивления всех проводников и разделите на их сумму. Если вам не дано сопротивление каждого элемента, но даны их силы тока и напряжение какого-либо элемента цепи, то, сложив все силы тока, вы узнаете общую. Напряжения каждого элемента при параллельном соединении равны, то есть и общее напряжение во всей цепи равно напряжению любого проводника данной цепочки. И тогда, чтобы найти полное сопротивление, разделите напряжение на общую силу тока.

Чтобы определить общее сопротивление электрической цепи, воспользуйтесь такими измерительными приборами , как омметр и измерительный мост. Они помогут вам определить электрические активные сопротивления.

Обязательно определяйте способ подключения элементов в электрической цепи, так как именно от него зависит правильный подсчет общего сопротивления!

  • рассчитать сопротивление цепи в 2017

Сопротивление
провода
показывает то, насколько он препятствует прохождению электрического тока. Измерьте его при помощи тестера, переключенного в режим работы омметра. Если такой возможности нет, можно рассчитать его разными способами.

  • — тестер;
  • — линейка или рулетка;
  • — калькулятор.

Измерьте сопротивление провода

. Для этого к его концам присоедините тестер, включенный в режим работы омметра. На экране прибора появится электрическое сопротивление
провода
в Омах или кратных им величинах, в зависимости от настроек прибора. Провод при этом должен быть отключен от источника тока.

Рассчитайте сопротивление при помощи тестера, который работает в режиме амперметра и вольтметра. Если провод является участком электрической цепи, подключите ее к источнику тока. К концам провода

параллельно присоедините тестер, включенный в режим работы вольтметра. Измерьте падение напряжения на проводе в вольтах.

Переключите тестер в режим работы амперметра и включите его в цепь последовательно. Получите значение силы тока в цепи в амперах. Используя соотношение, полученное из закона Ома, найдите электрическое сопротивление проводника. Для этого поделите значение напряжения U на силу тока I, R=U/I.

Пример. Измерение показало, что при падении напряжения на проводнике 24 В, сила тока в нем составляет 1,2 А. Определите его сопротивление. Найдите отношение напряжения к силе тока R=24/1,2=20 Ом.

Найдите сопротивление провода

, не подключая его к источнику тока. Узнайте, из какого материала сделан провод. В специализированной таблице найдите удельное сопротивление этого материала в Ом∙мм2/м.

Рассчитайте сечение провода

, если оно не указано изначально. Для этого очистьте его от изоляции, если он изолирован, и измерьте диаметр токопроводящей жилы в мм. Определите ее радиус, поделив диаметр на число 2. Определите сечение
провода
, умножив число π≈3,14 на квадрат радиуса жилы.

С помощью линейки или рулетки измерьте длину провода

в метрах . Рассчитайте сопротивление
провода
, умножив удельное сопротивление материала ρ на длину проводника l. Поделите результат на его сечение S, R=ρ∙l/S.

Пример. Найдите сопротивление медного провода

диаметром 0,4 мм длиной 100 м. Удельное сопротивление меди равно 0,0175 Ом∙мм2/м. Радиус
провода
равен 0,4/2=0,2 мм. Сечение S=3,14∙0,2²=0,1256 мм². Рассчитайте сопротивление по формуле R=0,0175∙100/0,1256≈14 Ом.

  • сопротивление медного провода

Если замкнуть электрическую цепь, создав на ее концах разность потенциалов, то по ней побежит электрический ток, силу которого можно измерить Амперметром. Но сила эта будет варьироваться, если в цепи заменить один проводник другим. Это говорит о том, что не только напряжение влияет на силу тока, но и материал, из которого сделан проводник. Вот это свойство проводника препятствовать прохождению электрического тока и называется сопротивлением.

Каждое тело по отношению к электрическому току характеризуется своим сопротивлением. Если вспомнить электронную теорию, то согласно ей, все вещества состоят из атомов и молекул. Эти атомы и молекулы в разных веществах имеют разную структуру. И именно они встречаются на пути движения свободных электронов в проводнике, когда по электрической цепи идет ток. То есть, когда свободный электрон сталкивается с ионом кристаллической решетки материала проводника, он неизбежно теряет часть своей кинетической энергии и испытывает как бы сопротивление своему движению.

Чем больше сопротивление проводника, тем он хуже пропускает электрический ток. Обозначается электрическое сопротивление латинской буквой R, а за единицу измерения принят 1 Ом.

Обратной характеристикой сопротивления вещества является его проводимость. Чем выше электрическая проводимость материала, тем лучше он проводит ток. Изоляторы отличаются от проводников по проводимости в огромное число раз, измеряемое единицей с двадцатью двумя нулями!

Источник

Сопротивление. Зависимость от температуры

Сопротивление проводника,R

Площадь поперечного сечения,S

Длина проводника, l

Удельное сопротивление (в Ом*мм2/м)

Удельная проводимость (в м/Ом/мм2)

Температурный коэффицент сопротивления

Разность теператур между 20 градусами и заданной

Сопротивление проводника при 20 градусах Цельсия

Параметры проводника при заданных условиях

Единица электрического сопротивления Ом определяется как сопротивление  проводника, по которому течет ток силой 1 Ампер при напряжении на концах проводника в 1 Вольт.

Эту единицу можно представить как сопротивление  ртутного столбика длиной 106.3 сантиметра и сечением 1 квадратный миллиметр при температуре в 0 градусов по Цельсию.

Для облегчения расчетов заранее определяют сопротивление проводника длиной 1 метр, и площадью поперечного сечения 1 квадратный миллиметр. Эта величина  называется удельным сопротивлением и обозначается  буквой.

Сопротивление проводника R проводника зависит от его удельного сопротивления, длины и площади поперечного сечения

R=frac{lrho}{S}=frac{l}{varkappaS}

где 

R=frac{lrho}{S}=frac{l}{varkappaS} – площадь поперечного сечения проводника, мм2

R=frac{lrho}{S}=frac{l}{varkappaS} – удельное сопротивление, Ом*мм2

R=frac{lrho}{S}=frac{l}{varkappaS} –  длина проводника, м

R=frac{lrho}{S}=frac{l}{varkappaS} – удельная проводимость, м/Ом/мм2

Сопротивление  проводников зависит от температуры, изменение которой  влечет за собой изменение  величины сопротивления.

R=R_0(1+alphaDelta{t})

если известны R , R_0 , Delta{t} то температурный  коэффициент сопротивления можно рассчитать по формуле

alpha=frac{R-R_0}{R_0Delta{t}}

где

R_0 – сопротивление проводника при температуре 20 градусов Цельсия, Ом

R – сопротивление проводника при данной температуре, Ом

Delta{t} – разность между температурой 20 градусов и температурой, при котрой производится измерение

alpha – температурный коэффициент сопротивления проводника.

Ниже представлена таблица удельных сопротивлений и проводимостей, а также температурного коэффициента для некоторых металлов.

Материал R=frac{lrho}{S}=frac{l}{varkappaS},Ом*мм2 R=frac{lrho}{S}=frac{l}{varkappaS},м/Ом/мм2 alpha, 1/C
Алюминий 0.029 34.8 0.0037
Железо 0.13 7.5 0.0048
Константан 0.5 2 0.000005
Медь 0.0178 57 0.0039
Латунь 0.075 13.35 0.0015
Платина 0.1 10 0.0038
Ртуть 0.958 1.05 0.0009
Серебро 0.0165 62.5 0.0036

Определить температурный коэффициент сопротивления проводящей пластины если при температуре 20 градусов, её сопротивление равно 33 Ом; а при температуре 500 градусов, сопротивление увеличилось до 67 Ом

Ответ

Определить сопротивление серебрянного провода длиной 700 м и площадью поперечного сечения 3,5 мм2

Ответ

Найти площадь поперечного сечения латунного провода длиной 0,4 км, имеющего сопротивление 500 Ом.

Ответ

Удачных расчетов!

Зависимость сопротивления от температуры, формула

Удельное сопротивление проводников и непроводников зависит от температуры.

Сопротивление металлических проводников увеличивается с повышением температуры.
У полупроводников сопротивление сильно уменьшается при повышении температуры

У некоторых металлов при температуре, близкой к абсолютному нулю, сопротивление скачком уменьшается до нуля (явление сверхпроводимости).

В таблицах значения удельного сопротивления проводников обычно приводятся для температуры 20°C. Сопротивление или удельное сопротивление при других значениях температуры можно найти пересчетом.

Если

то зависимость сопротивления от температуры выражается формулами:

Удельное сопротивление проводника, зависимость от температуры, формула

[ ρ_t = ρ_{20}[1 + α(t-20°C)] ]

Удельное сопротивление проводника, зависимость от температуры, формула

[ ρ_t = ρ_{20}[1 + α(t-20°C)] ]

Сопротивление проводника, зависимость от температуры, формула

[ R_t = R_{20}[1 + α(t-20°C)] ]

Сопротивление проводника, зависимость от температуры, формула

[ R_t = R_{20}[1 + α(t-20°C)] ]

Зависимость сопротивления от температуры

стр. 603

UCHEES.RU – помощь студентам и школьникам


В 22:40 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Сопротивление медного провода при 0 градусах Цельсия равно 4 Ом. Определите его сопротивление при 50 градусах Цельсия, если температурный коэффициент сопротивления меди a=4,3*10^-3  K^-1

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике “ЕГЭ (школьный)”. Ваш вопрос звучал следующим образом: Сопротивление медного провода при 0 градусах Цельсия равно 4 Ом. Определите его сопротивление при 50 градусах Цельсия, если температурный коэффициент сопротивления меди a=4,3*10^-3  K^-1

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

ответ к заданию по физике
 

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Лебедева Эжени Денисовна – автор студенческих работ, заработанная сумма за  прошлый месяц 61 200 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы – в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи – раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания – цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

  • Абадзехская стоянка, Даховская пещера. ..
  • По закону сохранения заряда каждый шарик после соприкасl..
  • 2)прогудел первый мохнатый шмель 3) Зазвенела Прогудел 4) ..
  • В мілкій траві ворушаться сліди веселих, сполоханих доще
    ..

ПОХОЖИЕ ВОПРОСЫ

  • По графику на рисунке 121 определите сопротивление проводника при температуре 0 градусов Цельсия и температурный коэффициент сопротивлени…
  • Кипятильник с КПД 80% изготовлен из нихромовой проволоки сечением 0,84 мм^2 и включен в сеть с напряжением 220 В. За 20 мин с его помощью
  • Сопротивление проводника при 20 градусах Цельсия равно 25 Ом, а при 35 градусах Цельсия увеличилось до 25,17 Ом. Определите

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.


2020 – 2023 – UCHEES.RU

Добавить комментарий