Помогите с физикой)
Натуся
Знаток
(352),
на голосовании
12 лет назад
Как можно определить сопротивление катушки на которой намотан провод не измеряя длины и сечения намотанной части провода?
Голосование за лучший ответ
Ryt
Профи
(953)
12 лет назад
по закону ома, для проводника с током.. . сила тока пропорциональна напряжению и обратно пропорциональна сопротивлению…. I=U/R, отсюда находим что сопротивление R=U/I
Похожие вопросы
Как можно определить сопротивление катушки, на которой намотан провод, не измеряя длины и сечения намотанной части провода?
Вы открыли страницу вопроса Как можно определить сопротивление катушки, на которой намотан провод, не измеряя длины и сечения намотанной части провода?. Он относится к категории
Физика. Уровень сложности вопроса – для учащихся 5 – 9 классов.
Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие
ответы по интересующей теме. Чтобы получить наиболее развернутый ответ,
можно просмотреть другие, похожие вопросы в категории Физика,
воспользовавшись поисковой системой, или ознакомиться с ответами других
пользователей. Для расширения границ поиска создайте новый вопрос, используя
ключевые слова. Введите его в строку, нажав кнопку вверху.
Активное сопротивление любого проводника определяется:
где ρ = 1,7∙10-8 Ом∙м – удельная проводимость материала (в данном случае – меди),
l – длина проводника, м,
S – площадь поперечного сечения проводника, м2.
Определим длину проводника. Для этого рассчитаем длину витка и умножим её на число витков. При этом длина витка будет равна длине окружности:
Определим площадь поперечного сечения проводника. В реальности проводник имеет круглое сечение, Maxwell же рассчитывает потери для всей области занятой катушкой, т.е. предполагается, что проводники полностью заполняют область. В случае, если необходим точный расчёт для катушек, намотанных проводом круглого сечения, каждый проводник катушки должен быть прорисован отдельным объектом.
Исходя из вышесказанного, будем условно считать, что катушка намотана проводником прямоугольного сечения. В этом случае площадь поперечного сечения проводника будет определяться:
Определим сопротивление обмотки:
Построим геометрию модели из Примера 1 в 3D. Для этого нажимаем ПКМ на проекте модели 2D примера 1 и выбираем Create 3D Design. После чего модель будет автоматически преобразована в 3D.
1. Создадим сечение для задания возбуждения катушки.
Для этого выделим объект катушки и применим к нему операцию “сечение” (меню Modeler > Surface > Section, выбираем плоскость сечения YZ). Получим объект, состоящий из двух сечений. Для задания возбуждения необходимо одно сечение, поэтому разделим получившийся объект (меню Modeler > Boolean > Separate Bodyes). Второе сечение не нужно, и его можно удалить.
Последнему сечению назначим величину тока, равную 10 ампер-виткам (ПКМ по сечению > Assign Excitation > Current > Value), тип обмотки – распределённая (Stranded).
2. Задание граничных условий.
В 3D постановке задачи в Maxwell по умолчанию действует условие обнуления поля на границах модели. В отличии от 2D постановки задачи открытых границ (условие Balloon) в 3D нет. Поэтому расчётную область иногда приходится увеличивать до тех пор, пока результат расчёта модели не перестанет ощутимо изменяться.
Создадим область для расчёта: Create Region (Создание региона), в открывшемся окне выберем Pad Individual Direction и по каждой оси отступим 40% от объектов модели:
Граничные условия для модели не задаём, т.к. действует граничное условие по умолчанию (присваивается нулевая величина поля на границе расчётной модели).
3. Создание сетки элементов и задания на расчёт.
Далее – создаём сетку конечных элементов, предварительно выделив все объекты модели (Assign Mesh Operation > Inside Selection > Length Based… )
Создаём новое задание на расчёт с параметрами по умолчанию (ПКМ на Analysis > Add Solution Setup)
Запускаем задачу на расчёт.
Рисунок П.2.1 – 3D модель рассчитываемой катушки
4. Расчёт омических потерь катушки.
Запустим калькулятор поля (ПКМ на Field Overlays > Calculator…)
В калькуляторе поля (Рисунок П.2.2), необходимо задать следующее выражение:
Рисунок П.2.2 – Калькулятор поля Maxwell
где V – объём, в котором рассчитываются потери (обмотка);
– вектор плотности тока в обмотке;
σ = 1/ρ = 58∙106 См/м – удельная проводимость материала (в данном случае – меди).
Запишем искомое выражение в калькуляторе поля, набрав следующую последовательность команд:
Quantity > J | Выбираем вектор плотности тока |
Push | Дублируем |
Number > Scalar > Value 58000000 | Вводим величину удельной проводимости меди |
/ | Делим плотность тока на проводимость |
Dot | Перемножаем |
Geometry > Volume > Coil | Выбираем объём катушки (вместо Coil выбрать название катушки) |
Интегрируем выражение по объёму. |
В строке выражений получится:
Scl : Integrate(Volume(Coil), Dot(<Jx,Jy,Jz>, /(<Jx,Jy,Jz>, 58000000)))
Получившееся выражение сохраняем в качестве переменной (Named Expression): PowerLoss (кнопка Add..)
Разделим получившиеся потери на квадрат тока ( I = 1 А ) в проводнике (выбираем PowerLoss в списке переменных > Copy to Stack > Eval > Number > Scalar > 1 > / (операция деления).
Получим результат: R = 0,022687 Ом.
Сравним с теоретическим результатом: R = 0,02244 Ом, погрешность составила: 0,1%.
Примечание: Нельзя забывать, что сечение электропроводящего материала в катушках, намотанных проводником круглого сечения, не будет соответствовать реальному сечению катушки. Поэтому нельзя в модели строить сечение катушек по реальным данным, т.к. это приведёт к уменьшению активного сопротивление катушки. В модели сечение катушки должно совпадать с сечением электропроводящего материала (медь, алюминий). Это сечение можно рассчитать, перемножив сечение провода на число витков в катушке.
Автор материалов: Drakon (С) 2014. Редактор: Админ
Достаточно большое количество электрических устройств имеет в своем составе катушки в виде намотки медной изолированной проволоки. Главным свойством, которым обладает электрическая катушка является взаимодействие с электромагнитным полем. Для одних устройств катушка выступает в роли электромагнита, притягивающая либо отталкивающая металлические части или другие катушки. В иных же устройствах электрическая катушка может служить генератором электрической энергии, по средствам электромагнитной индукции (если на катушку воздействовать внешним электромагнитным полем).
Любая электрическая катушка имеет свое внутреннее сопротивление. Причем, это сопротивление можно разделить на два типа, это активное и реактивное. Активным сопротивлением обладают катушки, через которые протекает только постоянный ток. Активное сопротивление катушки зависит от материала провода катушки, его сечения, длины. При протекании через катушку переменного тока мы уже будет иметь дело с реактивным сопротивлением, величина которого уже будет зависеть ещё и от частоты протекающего переменного тока (чем частота выше, тем больше реактивное сопротивление).
На практике, в большинстве случаев, приходится сталкиваться именно с активным электрическим сопротивлением катушек. Это сопротивление обусловлено внутренней структурой атомов, из которых состоит вещество проводника. У различных проводников внутреннее сопротивление имеет разные значения (при одной и той же длине и сечении). Это ещё называется удельным сопротивлением проводника (его обычно берут из справочников). Для нахождения сопротивления определенного проводника можно воспользоваться простой формулой: сопротивление равно удельное сопротивление материала проводника умноженное на его длину и это всё деленное на площадь поперечного сечения.
Более простым способом нахождения сопротивления обмоток, широко используемом на практике, является метод обычного измерения. Берём мультиметр, омметр, выставляем нужный диапазон измерения (Омы, килоОмы, мегаОмы) и прикасаемся щупами измерителя прямо к катушке, обмотке. Наш тестер с достаточно большой точность покажет имеющееся сопротивление. Как правило, обмотка катушек, рассчитанных на низкое напряжение имеет достаточно малое сопротивление (в районе единицы-сотни Ом). Обмотки под напряжение 220, 380 и выше уже имеют сопротивление в пределах от сотен Ом до десятков килоОм.
Зная сопротивление обмотки, как минимум можно судить о её работоспособности (если в ней нет короткозамкнутых витков), а как максимум её величину можно использовать в различных формулах. Наиболее известной и широко используемой является формула закона Ома, которая позволяет найти любую одну неизвестную величину (из трех – напряжение, ток, сопротивление) из двух известных. Учтите, в формулах нужно использовать основные единицы измерения физических величин. В законе Ома таковыми являются: для силы тока это ампер, для напряжения это вольт и для сопротивления это Ом.
Если при измерении сопротивления обмотки прибор ничего не показывает (пробник не реагирует), значит в этой катушке имеется обрыв. В этом случае катушку следует разобрать, хорошо визуально осмотреть (возможно обрыв произошел возле самих выводов катушки, что происходит достаточно часто), при необходимости её перемотать. Но бывают случаи, когда обрыва нет, тестер показывает какое-то сопротивление, сама же катушка не работает как надо. В этом случае, если вы уверены надёжности проводов и цепей, по которым подводится к обмотке напряжение, возможен вариант короткозамкнутых витков.
Короткозамкнутые витки – это витки обмоточного провода катушки, которые были накоротко замкнуты внутри самой обмотке между собой. Естественно, участок обмотки с короткозамкнутыми витками является нерабочим, более того, он является причиной возникновения дополнительного нагрева самой катушки (по причине самоиндукции, в цепях переменного тока). Причиной возникновения такого явления может послужить полое качество изоляции обмоточного провода, температурный удар (возникший сильный перегрев катушки), который был прежде, чрезмерное динамическое воздействие на катушку (удары, тряски и т.д.). Сопротивление обмотки, что имеет короткозамкнутые витки, будет меньше номинального значения, а это ведёт к ненормальной работе самой этой катушки.
Короткозамкнутые витки выявляются не просто. Для проверки обмотки якоря электродвигателя существует специальное устройство (можно сделать и самому, это трансформатор со специальным распилом на своем магнитопроводе, куда и ложится якорь для проверки). Если катушка до этого работала нормально, при этом особо не нагревалась, а потом вдруг начала, то скорее всего у неё появились эти самые бракованные витки. Хорошо если вы изначально знаете номинальное сопротивление своей катушки, будет с чем сравнить при измерении и выявлении неисправности обмотки. Либо же нужно сравнивать сопротивление с заведомо рабочей обмоткой другого устройства. Или же прибегнуть в вычислением сопротивления по формуле, если известны: мощность, сила тока, напряжение.
P.S. Далеко не во всех случаях при неисправности катушки виновата сама обмотка. Достаточно часто бывает так, что те провода, которые питают эту самую катушку находятся в плохом состоянии. Окисленные контакты соединяющие концы обмотки и питающие клеммы, провода, место спая значительно увеличивают сопротивление электрической цепи. Достаточно хорошо почистить подобные места, как тут же работоспособность катушки того или иного устройства полностью восстановится.
lindoutrirev151
Вопрос по физике:
Как можно определить сопротивление катушки, на которой намотан провод, не измеряя длины и сечения намотанной части провода?
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 1
lkedrthe870
Померить напряжение и ток, затем подставить в формулу – закон ОМА
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Физика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.