Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 января 2022 года; проверки требуют 6 правок.
Электрическое сопротивление | |
---|---|
Размерность |
L2MT −3I −2 (СИ); TL −1 (СГСЭ, гауссова система); LT −1 (СГСМ) |
Единицы измерения | |
СИ | Ом |
СГСЭ | статом, с/см |
СГСМ | абом, см/с |
Классическая электродинамика |
---|
Электричество · Магнетизм |
Электростатика Закон Кулона |
Магнитостатика Закон Био — Савара — Лапласа |
Электродинамика Векторный потенциал |
Электрическая цепь Закон Ома |
Ковариантная формулировка Тензор электромагнитного поля |
См. также: Портал:Физика |
Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]
Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
где
- R — сопротивление, Ом (Ω);
- U — разность электрических потенциалов (напряжение) на концах проводника, Вольт (В);
- I — сила тока, протекающего между концами проводника под действием разности потенциалов, Ампер (А).
История[править | править код]
В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.
Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает.[2]
Единицы и размерности[править | править код]
Размерность электрического сопротивления в Международной системе величин: dim R = L2MT −3I −2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются[3]:
- статом (в СГСЭ и гауссовой системе, 1 statΩ = (109 c−2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер);
- абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер).
Размерность сопротивления в СГСЭ и гауссовой системе равна TL−1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT−1 (то есть совпадает с размерностью скорости, см/с)[4].
Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом−1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс[5].
Физика явления[править | править код]
Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².
Сопротивление однородного проводника также зависит от температуры.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Зависимость сопротивления от материала, длины и площади поперечного сечения проводника[править | править код]
В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.
Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.
Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.
Из формулы
видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.
Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.
Сопротивление тела человека[править | править код]
- Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Герц (Гц), сопротивление тела человека условно принимается равным 1 кОм[6] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых, меняется во времени, в-третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
- Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц[7].
Метрологические аспекты[править | править код]
Приборы для измерения сопротивления[править | править код]
- Омметр
- Измерительный мост
- Амперметр и вольтметр (сопротивление находится по формуле)
Средства воспроизведения сопротивления[править | править код]
- Магазин сопротивлений — набор резисторов
- Катушки электрического сопротивления
Государственный эталон сопротивления[править | править код]
- ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.
Статическое и динамическое сопротивление[править | править код]
В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно
малого приращения напряжения к соответствующему приращению тока.
См. также[править | править код]
- Сверхпроводимость
- Закон Ома
- Закон Барлоу
- Удельное электрическое сопротивление
- Электрическая проводимость
- Отрицательное сопротивление
- Внутреннее сопротивление
- Импеданс
- Волновое сопротивление
- Активное сопротивление
- Реактивное сопротивление
Примечания[править | править код]
- ↑ Электрическое сопротивление — статья из Большой советской энциклопедии.
- ↑ Василий Петров – основоположник отечественной электротехники // /infourok.ru.
- ↑ CRC Handbook of Chemistry and Physics, 92nd Edition. — Ed. William M. Haynes. — 2011. — ISBN 978-1-4398-5511-9
- ↑ Б. М. Яворский, А. А. Детлаф. — Справочник по физике для инженеров и студентов вузов. — М.: Наука, 1968. — 939 с.
- ↑ Иногда в англоязычной литературе сименс называют mho («перевёрнутое» название обратной единицы ohm), соответственно для СГСЭ и СГСМ — statmho (=statsiemens) и abmho (=absiemens).
- ↑ 1 кОм в модели, принятой в стандарте IEEE Std 80 Архивная копия от 23 августа 2011 на Wayback Machine
- ↑ Новиков С. Г. Действие электрического тока на человека. Московский энергетический институт. Дата обращения: 2013-25-04. Архивировано из оригинала 19 июня 2014 года.
Ссылки[править | править код]
- Таблица удельного сопротивления проводников
- Электрическое сопротивление проводников
Литература[править | править код]
- В. Г. Герасимов, Э. В. Кузнецов, О. В. Николаева. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.
Зависимость электрического сопротивления от сечения, длины и материала проводника
Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.
Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника
Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.
Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.
Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.
Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.
Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.
Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.
Удельные сопротивления материалов, наиболее часто применяемых в электротехнике
Материал | Удельное сопротивление, Ом*мм2/м |
Серебро | 0,016 |
Медь | 0,0175 |
Алюминий | 0,0295 |
Железо | 0,09-0,11 |
Сталь | 0,125-0,146 |
Свинец | 0,218-0,222 |
Константан | 0,4-0,51 |
Манганин | 0,4-0,52 |
Никелин | 0,43 |
Вольфрам | 0,503 |
Нихром | 1,02-1,12 |
Фехраль | 1,2 |
Уголь | 10-60 |
Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).
Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.
Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.
Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника
Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.
Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..
Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.
Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.
Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.
Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.
Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой
Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:
электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..
Математически эта зависимость выражается следующей формулой:
где R—сопротивление проводника в Ом;
ρ — удельное сопротивление материала в Ом*мм2/м;
l — длина проводника в м;
S—площадь поперечного сечения проводника в мм2.
Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле
где π—постоянная величина, равная 3,14;
d—диаметр проводника.
Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
Так, например, длина проводника определяется по формуле:
Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:
Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
На этой странице представлен самый простой онлайн калькулятор расчета сопротивления проводника по простой математической формуле в зависимости от длины, площади поперечного сечения и удельного сопротивления проводника. С помощью этой программы вы в пару кликов сможете рассчитать сопротивление проводника.
Вы так же можете воспользоваться калькулятором для расчета сечения кабеля по мощности и току.
Формула для расчета сопротивления провода: R=(ρ*l)/S
Где:
- R – сопротивление в Омах,
- ρ – удельное сопротивление,
- l – длина в м,
- S – площадь поперечного сечения провода в мм2.
Калькулятор расчета сопротивления проводника.
Калькулятор сопротивлений проводов
Движение электронов зависит от однородности вещества и его структуры, которые влияют на распределение
электронов в проводнике. При температурах жидкого гелия, которая равна (–273) градуса по Цельсию удельное
сопротивление металлов уменьшается почти до полного исчезновения. При таких условиях, возникает эффект
сверхпроводимости, структура металла не имеет тормозящего влияния на движение зарядов под действием
электрического поля. Наименьшим удельным сопротивлением обладает серебро и является лучшим проводником.
Сопротивление металлического проводника прямо пропорционально его длине,
удельному сопротивлению и обратно пропорционально площади его поперечного сечения.
ρ – удельное сопротивление (Ом × м),
L – длина проводника (м),
А – площадь поперечного сечения проводника (м2),
D – диаметр (м),
Расчёт сопротивлений проводов
Введите значение длины, материала а так же либо диаметр,
либо площадь поперечного сечения проводника
Справочные значения ρ-(удельного сопротивления) для основных металлов
Введите значения
Площадь поперечного сечения
А
Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.
Соблюдайте технику безопасности во время работы с электронными компонентами!