Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 января 2022 года; проверки требуют 6 правок.
Электрическое сопротивление | |
---|---|
Размерность |
L2MT −3I −2 (СИ); TL −1 (СГСЭ, гауссова система); LT −1 (СГСМ) |
Единицы измерения | |
СИ | Ом |
СГСЭ | статом, с/см |
СГСМ | абом, см/с |
Классическая электродинамика |
---|
Электричество · Магнетизм |
Электростатика Закон Кулона |
Магнитостатика Закон Био — Савара — Лапласа |
Электродинамика Векторный потенциал |
Электрическая цепь Закон Ома |
Ковариантная формулировка Тензор электромагнитного поля |
См. также: Портал:Физика |
Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]
Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
где
- R — сопротивление, Ом (Ω);
- U — разность электрических потенциалов (напряжение) на концах проводника, Вольт (В);
- I — сила тока, протекающего между концами проводника под действием разности потенциалов, Ампер (А).
История[править | править код]
В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.
Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает.[2]
Единицы и размерности[править | править код]
Размерность электрического сопротивления в Международной системе величин: dim R = L2MT −3I −2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются[3]:
- статом (в СГСЭ и гауссовой системе, 1 statΩ = (109 c−2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер);
- абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер).
Размерность сопротивления в СГСЭ и гауссовой системе равна TL−1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT−1 (то есть совпадает с размерностью скорости, см/с)[4].
Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом−1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс[5].
Физика явления[править | править код]
Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².
Сопротивление однородного проводника также зависит от температуры.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Зависимость сопротивления от материала, длины и площади поперечного сечения проводника[править | править код]
В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.
Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.
Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.
Из формулы
видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.
Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.
Сопротивление тела человека[править | править код]
- Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Герц (Гц), сопротивление тела человека условно принимается равным 1 кОм[6] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых, меняется во времени, в-третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
- Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц[7].
Метрологические аспекты[править | править код]
Приборы для измерения сопротивления[править | править код]
- Омметр
- Измерительный мост
- Амперметр и вольтметр (сопротивление находится по формуле)
Средства воспроизведения сопротивления[править | править код]
- Магазин сопротивлений — набор резисторов
- Катушки электрического сопротивления
Государственный эталон сопротивления[править | править код]
- ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.
Статическое и динамическое сопротивление[править | править код]
В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно
малого приращения напряжения к соответствующему приращению тока.
См. также[править | править код]
- Сверхпроводимость
- Закон Ома
- Закон Барлоу
- Удельное электрическое сопротивление
- Электрическая проводимость
- Отрицательное сопротивление
- Внутреннее сопротивление
- Импеданс
- Волновое сопротивление
- Активное сопротивление
- Реактивное сопротивление
Примечания[править | править код]
- ↑ Электрическое сопротивление — статья из Большой советской энциклопедии.
- ↑ Василий Петров – основоположник отечественной электротехники // /infourok.ru.
- ↑ CRC Handbook of Chemistry and Physics, 92nd Edition. — Ed. William M. Haynes. — 2011. — ISBN 978-1-4398-5511-9
- ↑ Б. М. Яворский, А. А. Детлаф. — Справочник по физике для инженеров и студентов вузов. — М.: Наука, 1968. — 939 с.
- ↑ Иногда в англоязычной литературе сименс называют mho («перевёрнутое» название обратной единицы ohm), соответственно для СГСЭ и СГСМ — statmho (=statsiemens) и abmho (=absiemens).
- ↑ 1 кОм в модели, принятой в стандарте IEEE Std 80 Архивная копия от 23 августа 2011 на Wayback Machine
- ↑ Новиков С. Г. Действие электрического тока на человека. Московский энергетический институт. Дата обращения: 2013-25-04. Архивировано из оригинала 19 июня 2014 года.
Ссылки[править | править код]
- Таблица удельного сопротивления проводников
- Электрическое сопротивление проводников
Литература[править | править код]
- В. Г. Герасимов, Э. В. Кузнецов, О. В. Николаева. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.
Что такое сопротивление?
Сопротивление (электрическое сопротивление) — это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!
Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока — это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?
Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.
Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?
Разумеется, гофрированный. Вода будет «цепляться» за его стенки, что приведет к тому, что они будут мешать потоку воды.
Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?
Думаю тот, который длиннее. Ответ очевиден.
Сопротивление проводника
Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.
Поэтому, окончательная формула будет принимать вид
В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м. Чтобы перевести в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2.
Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.
Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.
Что такое сопротивление 1 Ом?
Проводник обладает сопротивлением 1 Ом, если на его концах напряжение составляет 1 Вольт при силе тока, проходящей через него в 1 Ампер.
Это самое простое объяснение, что такое 1 Ом. В электротехнике и электронике сопротивление обозначается буквой R .
Как найти сопротивление в цепи?
Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле
где
R — сопротивление, Ом
U — напряжение на концах проводника, Вольты
I — сила тока, текущая через проводник, Амперы
То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника. Давайте для закрепления решим простую задачу.
Задача
Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.
Решение
Используем формулу
В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току — резисторы. Более подробно про них можно прочитать в этой статье.
Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление
Близкие темы к этой статье
Электрический проводник
Напряжение
Сила тока
Резисторы
Закон Ома
Входное и выходное сопротивление
Здравствуйте. В интернете часто можно встретить вопросы как найти сопротивление тока или найти сопротивление силы тока, но на самом деле это сделать невозможно. Я уже писал в статье про мощность в цепи постоянного тока про закон Ома и три связанные им величины: напряжение, сопротивление и ток. Так вот, ток это — следствие приложенного напряжения к замкнутой цепи, имеющей сопротивление. Другими словами, у тока нет, и не может быть сопротивления. А вот как найти сопротивление цепи или участка цепи я вам сейчас расскажу.
Как найти сопротивление в цепях постоянного тока
В постоянном токе всё довольно просто. Как правило, сопротивление в таких цепях постоянно, то есть его можно принять за константу (дальше, когда будем рассматривать переменный ток, вы поймёте, про что я говорю). Следовательно, можно выделить два основных способа для вычисления сопротивления: аналитический и физический.
Как найти сопротивление с помощью омметра
Для этого вам потребуется любой прибор, способный измерить сопротивление. Сейчас для этой цели гораздо удобнее использовать мультиметр.
Если значение сопротивления не известно, то надо начинать с самого большого предела мультиметра. Если прибор показывает значение «0», нужно уменьшить предел, пока не появится какое-нибудь сопротивление. В принципе, такие приборы довольно точны и для домашнего применения их более, чем хватает. Если же говорить о точных значениях, то для измерения сопротивления потребуется специальный измерительный мост.
Измерительный мост — это откалиброванное устройство, которое позволяет вычислить значение сопротивления очень точно. Зачастую такие мосты измеряют несколько различных величин.
Аналитический метод поиска сопротивления. Здесь потребуется уже два прибора: амперметр и вольтметр, и чем они будут точнее, тем меньше будет погрешность вычислений.
Какие здесь нюансы? Амперметр всегда включается последовательно в цепь, а вот вольтметр нужно подсоединять как можно ближе к сопротивлению параллельно. Дело в том, что провода тоже имеют сопротивление (об этом расскажу чуть позже). Поэтому, если мы измерим напряжение в источнике питания, то мы получим сопротивление всей цепи, а именно: сопротивление проводов + сопротивление амперметра + само искомое сопротивление. Но даже это ещё не всё. Помните, мы говорили про параллельное и последовательное соединение сопротивлений. Так вот, вольтметр имеет сопротивление, поэтому после измерения напряжения нужно будет узнать сопротивление вольтметра и только тогда, можно точно высчитать номинал сопротивления с учётом места присоединения вольтметра.
Подведём итоги. В постоянном токе гораздо проще сделать вычисления с помощью омметра или функции измерения сопротивления в мультиметре. Если требуется высокая точность, то для вычисления номинала сопротивления нужно использовать измерительный мост.
Как вычислить сопротивление проводника
Как я уже говорил, провод тоже имеет сопротивление, а значит, его можно вычислить. Для этого используется формула:
p- удельное электрическое сопротивление при температуре 20°С, значение которого берётся из таблицы;
l- длина проводника в метрах
S – площадь поперечного сечения (школьный курс геометрии). Если это круг, то , если квадрат или прямоугольник, то одна сторона умножается на другую и т.д. Значение подставляется в мм².
Перейдём к практике. Допустим, у нас есть стальной круглый прут длиной 5 метров и диаметром 5 мм. Посчитаем его сопротивление. p стали составляет 0,15 Ом·мм²/м, длина известна – 5 метров, площадь поперечного сечения
(обратите внимание, что диаметр делим пополам, чтобы получить радиус и только потом вычисляем площадь). Осталось всё это подставить в формулу:
Где можно применить этот расчёт? Например, для изготовления предохранителей, когда нужно из подручных материалов в срочном порядке сделать новый или сделать мощное сопротивление. Под мощным подразумевается способность сопротивления выдерживать большие токи, то есть успевать отдавать тепло в окружающую среду без физического разрушения, а не значение. Таким образом, сопротивление может быть номиналом 1 Ом и мощностью 2000 ватт. Но чаще всего этот расчёт применяют для вычисления потери мощности на линии, однако это тема отдельной статьи, и касаться её мы пока не будем. Нужно так же обратить внимание, что при температурных условиях, отличных от 20°С необходимо применять поправочные коэффициенты, если требуется высокая точность.
Как найти сопротивление в цепях переменного тока
Вот здесь, товарищи, будет посложнее. Дело в том, что переменный ток вводит два понятия сопротивления: активное и реактивное. Активное сопротивление не зависит от частоты колебания напряжения, следовательно, и тока, а реактивное, наоборот, очень сильно зависит от этой частоты. Если очень просто, то к активному сопротивлению относят всё то, что не содержит индуктивности или емкости (отдельный провод, лампочка накаливания, спираль электрической плитки (хотя её нельзя назвать исключительно активным сопротивлением, однако реактивная составляющая там очень мала), лист железа и т.д.). Если вы заметили, то я указал отдельный провод, а не двух- и более жильный кабель. По сути, кабель или воздушная линия из нескольких проводов при большой длине превращается в конденсатор, где провода это обкладки конденсатора, а оболочка в кабеле или расстояние между проводами в воздушных линиях электропередачи выступают в роли диэлектрика между обкладками конденсатора. Таким образом, методы вычисления активного сопротивления для переменного и постоянного напряжения одинаковы, в то время, как реактивное сопротивление ведёт себя абсолютно по другому.
В общем, когда мы говорим о сопротивлении в переменном токе или напряжении, то мы говорим о полном электрическом сопротивлении:
Где: R – активное сопротивление;
L – индуктивность в генри;
С – ёмкость в фарадах;
f – частота колебаний сети в герцах.
Давайте посмотрим, почему вычислить сопротивление омметром для индуктивности и ёмкости будет сложнее. Заострим внимание на том, что при измерении сопротивления омметром используется постоянный ток, то есть его частота равна нулю. Смотрим, как меняется сопротивление ёмкости и индуктивности в этом случае:
Почему нельзя делить на ноль? Правильно, потому что получаем бесконечно большое число, то есть бесконечно большое сопротивление. Другими словами, конденсатор в цепи постоянного тока это всё равно, что выключатель. Вроде бы конденсатор в цепи, но он как бы разрывает её.
Здесь ситуация другая. Индуктивность в постоянном токе становится просто проводником, а поскольку мы видим из формулы, что полное сопротивление индуктивности это сумма активной и индуктивной (которой, к слову, гораздо больше, чем активной) частей, то мы не учитываем львиную долю сопротивления индуктивности. Именно по этой причине, если включить трансформатор в сеть постоянного напряжения вместо переменного, трансформатор очень быстро нагреется и сгорит – его полное сопротивление уменьшится в разы, а уменьшение сопротивления ведёт к увеличению силы тока, на которую трансформатор не рассчитан.
Где можно использовать эти знания? В основном, эти знания применяются в звукотехнике, где нужно отсечь постоянное напряжение или отсечь определенный звуковой диапазон. Сопротивление конденсатора возрастает с понижением частоты, а сопротивление индуктивности наоборот, с повышением частоты.
Вывод: как найти сопротивление в переменном токе? Для активного сопротивления, так же, как и в постоянном: с помощью омметра или измерительного моста, или амперметра с вольтметром. Для реактивного сопротивления использовать измерительные мосты для получения значений индуктивности или ёмкости, затем вычислять их сопротивления с учётом частоты, затем, если это конденсатор, то XC=R, а индуктивное сопротивление равно XL+R (то есть, у катушки есть еще активное сопротивление, хоть и небольшое), а затем, если требуется, вычислять полное сопротивление.
На этом можно закончить знакомство с темой, как найти сопротивление тока или как найти сопротивление и вы теперь знаете, что это неправильный вопрос и теперь знаете, что у тока нет сопротивления.
Электрическое сопротивление характеризует свойство проводника оказывать противодействие направленному движению заряженных частиц.
Влияние электрического сопротивления на электрический ток можно представить следующим образом:
- Движение свободных носителей электрического заряда внутри проводника приводит к тому, что свободные носители заряда сталкиваются с атомами и нарушают их поток.
- Этот эффект называется сопротивлением, которое обладает свойством ограничивать электрический ток в электрической цепи.
- Столкновение носителей электрического заряда с атомами также имеет тепловой эффект. Соответствующий элемент электрической цепи становится теплым или даже горячим. Если он перегреется, он может выйти из строя.
Электрическое сопротивление говорит о том, какое напряжение U необходимо, чтобы заставить электрический ток определенной силы тока I протекать через проводник. В физике для обозначения электрического сопротивления в формуле используется прописная буква R (от английского слова «Resistor» или «Resistance»).
Аналогия с потоком воды
Когда речь идет об электрическом сопротивлении в физике, необходимо различать два случая:
- Электрические сопротивления как элементы электрической цепи (см. пример на рисунке 2). То есть, если вы называете элемент в электротехнике резистором, то вы имеете в виду конкретный элемент, предназначенный для целей ограничения протекания электрического тока в электрической цепи.
- Электрическое сопротивление как физическая величина. Вы также можете спросить, насколько сильно тот или иной элемент препятствует протеканию электрического тока или вообще как можно рассчитать электрическое сопротивление. Здесь вы говорите об электрическом сопротивлении как о физической величине.
Примечание. Резистор — это прибор с постоянным сопротивлением. Если необходимо регулировать силу тока в электрической цепи, то используют для этой цели реостаты — приборы с переменным сопротивлением. В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь. Реостат используется, например, в регуляторах громкости радиоприёмников.
Вы можете проиллюстрировать работу резистора как элемента (т.е. случай 1) с помощью модели протекания воды в трубе.
Если представить поток электрического тока как поток воды через трубу, то резистор, имеющий электрическое сопротивление R, выполняет функцию сужения трубы. Сужение в трубе препятствует потоку воды, подобно тому, как резистор препятствует потоку электрического тока. Если вы сильнее сузите трубу, то сопротивление потоку воды увеличится. Тем самым труба будет больше препятствовать потоку воды.
Формулы для определения электрического сопротивления
Согласно закона Ома для участка электрической цепи следует, что если вы измеряете напряжение U на проводнике и через него течет ток силой I, то проводник имеет электрическое сопротивление R, равное U, деленное на I, т.е. R = U / I. Единицей измерения электрического сопротивления в СИ является Ом, которая названа в честь немецкого физика Георга Симона Ома. То есть, 1 Ом — это сопротивление проводника, в котором при напряжении 1 В проходит ток силой 1 А. Поэтому, иногда, электрическое сопротивление ещё могут называть «омическим сопротивлением».
Для очень малых или очень больших сопротивлений используются такие дополнения, как милли-, кило- или мегаом. Применяются следующие отношения:
- 1 Миллиом = 1 мОм = 1*10-3 Ом;
- 1 Килоом = 1 кОм = 1*103 Ом;
- 1 Мегаом = 1 МОм = 1*106 Ом.
Интересный факт! Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.
Также вы можете рассчитать электрическое сопротивление проводников с помощью их геометрических характеристик. Формула для этого следующая (см. также рисунок 3):
R = (ρ * l) / S, где
- R — электрическое сопротивление проводника;
- l — длина проводника;
- S — площадь поперечного сечения проводника;
- ρ — удельное сопротивление вещества проводника (выбирается по таблицам).
Другими словами, чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Весомое значение имеет также материал, из которого изготовлен проводник.
Как измерять электрического сопротивление?
Для измерения электрического сопротивления необходимо придерживаться следующих правил:
- Измерение проводить нужно параллельно элементу электрического цепи;
- Элемент должен быть обесточен;
- Элемент не должен быть подключен к электрической цепи;
- Измерение имеет смысл только для обычного резистора.
Значение омического сопротивления лучше всего определять с помощью цифрового мультиметра, чтобы избежать ошибок и неточностей в показаниях.
При измерении с помощью измерительного прибора измеряемый элемент не должен быть подключен к источнику напряжения во время измерения. Измеряемый элемент должен быть отпаян от электрической цепи, по крайней мере, с одной стороны. В противном случае расположенные параллельно элементы будут влиять на результат измерения.
Download Article
Download Article
There are two ways to hook together electrical components. Series circuits use components connected one after the other, while parallel circuits connect components along parallel branches. The way resistors are hooked up determines how they contribute to the total resistance of the circuit.
-
1
Identify a series circuit. A series circuit is a single loop, with no branching paths. All the resistors or other components are arranged in a line.
-
2
Add all resistances together. In a series circuit, the total resistance is equal to the sum of all resistances.[1]
The same current passes through each resistor, so each resistor does its job as you would expect.- For example, a series circuit has a 2 Ω (ohm) resistor, a 5 Ω resistor, and a 7 Ω resistor. The total resistance of the circuit is 2 + 5 + 7 = 14 Ω.
Advertisement
-
3
Start with current and voltage instead. If you don’t know the individual resistance values, you can rely on Ohm’s Law instead: V = IR, or voltage = current x resistance. The first step is to find the circuit’s current and total voltage:
- The current of a series circuit is the same at all points on the circuit.[2]
If you know the current at any point, you can use that value in this equation. - The total voltage is equal to the voltage of the supply (the battery). It is not equal to the voltage across one component.[3]
- The current of a series circuit is the same at all points on the circuit.[2]
-
4
Insert these values into Ohm’s Law. Rearrange V = IR to solve for resistance: R = V / I (resistance = voltage / current). Plug the values you found into this formula to solve for total resistance.
- For example, a series circuit is powered by a 12 volt battery, and the current is measured at 8 amps. The total resistance across the circuit must be RT = 12 volts / 8 amps = 1.5 ohms.
Advertisement
-
1
Understand parallel circuits. A parallel circuit branches into multiple paths, which then join back together. Current flows through each branch of the circuit.
- If your circuit has resistors on the main path (before or after the branched area), or if there are two or more resistors on a single branch, Skip down to the combination circuit instructions instead.
-
2
Calculate the total resistance from the resistance of each branch. Since each resistor only slows current passing through one branch, it only has a small effect on the total resistance of the circuit. The formula for total resistance RT is , where R1 is the resistance of the first branch, R2 is the resistance of the second branch, and so on up to the last branch Rn.
-
3
Begin with total current and voltage instead. If you don’t know the individual resistances, you’ll need the current and voltage instead:
- In a parallel circuit, the voltage across one branch is the same as the total voltage across the circuit.[4]
As long as you know the voltage across one branch, you’re good to go. The total voltage is also equal to the voltage of the circuit’s power source, such as a battery. - In a parallel circuit, the current may be different along each branch. You need to know the total current, or you won’t be able to solve for total resistance.
- In a parallel circuit, the voltage across one branch is the same as the total voltage across the circuit.[4]
-
4
Use these values in Ohm’s Law. If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm’s Law: R = V / I.
- For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω.
-
5
Watch out for branches with zero resistance. If a branch on the parallel circuit has no resistance, all of the current will flow through that branch. The resistance of the circuit is zero ohms.
- In practical applications, this usually means a resistor has failed or been bypassed (short-circuited), and the high current could damage other parts of the circuit.[5]
- In practical applications, this usually means a resistor has failed or been bypassed (short-circuited), and the high current could damage other parts of the circuit.[5]
Advertisement
-
1
Break down your circuit into series sections and parallel sections. A combination circuit has some components linked together in series (one after the other), and others in parallel (on different branches). Look for areas of your diagram that simplify to a single series or parallel section.[6]
Circle each one to help you keep track of them.- For example, a circuit has a 1 Ω resistor and a 1.5 Ω resistor connected in series. After the second resistor, the circuit splits into two parallel branches, one with a 5 Ω resistor and the other with a 3 Ω resistor.
Circle the two parallel branches to separate them from the rest of the circuit.
- For example, a circuit has a 1 Ω resistor and a 1.5 Ω resistor connected in series. After the second resistor, the circuit splits into two parallel branches, one with a 5 Ω resistor and the other with a 3 Ω resistor.
-
2
Find the resistance of each parallel section. Use the parallel resistance formula to find the total resistance of a single parallel section of the circuit.[7]
-
3
Simplify your diagram. Once you’ve found the total resistance of a parallel section, you can cross out that whole section on your diagram. Treat that area as a single wire with resistance equal to the value you found.
- In the example above, you can ignore the two branches and treat them as one resistor with resistance 1.875Ω.
-
4
Add up resistances in series. Once you’ve replaced each parallel section with a single resistance, your diagram should be a single loop: a series circuit. The total resistance of a series circuit is equal to the sum of all individual resistances, so just add them up to get your answer.
- The simplified diagram has a 1 Ω resistor, 1.5 Ω resistor, and the section with 1.875 Ω you just calculated. These are all connected in series, so Ω.
-
5
Use Ohm’s Law to find unknown values. If you do not know the resistance in one component of your circuit, look for ways to calculate it. If you know the voltage V and current I across that component, find its resistance using Ohm’s Law: R = V / I.
Advertisement
-
1
Learn the formula for power. Power is the rate that the circuit consumes energy, and the rate it delivers energy to whatever the circuit is powering (such as a light bulb).[8]
The total power of a circuit is equal to the product of the total voltage and the total current. Or in equation form: P = VI.[9]
- Remember, when solving for total resistance, you need to know the total power of the circuit. It’s not enough to know the power flowing through one component.
-
2
Solve for resistance using power and current. If you know these two values, you can combine two formulas to solve for resistance:
- P = VI (power = voltage x current)
- Ohm’s Law tells us that V = IR.
- Substitute IR for V in the first formula: P = (IR)I = I2R.
- Rearrange to solve for resistance: R = P / I2.
- In a series circuit, the current across one component is the same as the total current. This is not true for a parallel circuit.
-
3
Find resistance from power and voltage. If you only know the power and voltage, you can use a similar approach to find resistance. Remember to use the total voltage across the circuit, or the voltage of the battery powering the circuit:
- P = VI
- Rearrange Ohm’s Law in terms of I: I = V / R.
- Substitute V / R for I in the power formula: P = V(V/R) = V2/R.
- Rearrange to solve for resistance: R = V2/P.
- In a parallel circuit, the voltage across one branch is the same as the total voltage. This is not true for a series circuit: the voltage across one component is not the same as the total voltage.
- Alternatively, you can isolate the circuit and physically test resistance using a multimeter. [10]
Advertisement
Calculator, Practice Problems, and Answers
Add New Question
-
Question
How do I calculate the resistance of 2 resistors when I know the sum of the resistors?
Assuming you mean total resistance, you first need to determine if they are in series or parallel. In series the total resistance simply equals the sum of the resistors. In parallel, the inverse of the total resistance equals the sum of the inverse of each individual resistor. Therefore, you will not be able to calculate total resistance in a parallel circuit if you only know the sum.
-
Question
If V = IR, how do I calculate if one cell = 2V and the resistor is 4 ohm?
I = V/R . This is derived from the equation V =I R. In the question the value of potential difference (v) is mentioned as 2V, i.e, 2 volts. The value of resistance of the resistor is given as 4 ohms. Substitute these values in the first equation; i.e, l = V/R, so, I = 2/4. Therefore, I = 0.5 amps.
-
Question
Can I use frequency to calculate resistance?
Resistance does not change with frequency. However, AC circuits do have a similar quality called reactance which does change with frequency. Learn more here.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
-
The power value P used in these formulas refers to instantaneous power, or power at a specific moment in time. If the circuit uses AC power, the power is changing constantly. Electricians calculate the average power for AC circuits using the formula Paverage = VIcosθ, where cosθ is the power factor of the circuit.[11]
-
Power is measured in watts (W).
-
Voltage is measured in volts (V).
Show More Tips
Advertisement
About This Article
Article SummaryX
To calculate total resistance in series circuits, look for a single loop with no branching paths. Add all of the resistances across the circuit together to calculate the total resistance. If you don’t know the individual values, use the Ohm’s Law equation, where resistance = voltage divided by current. Plug in the values for voltage and current and solve for R to get the total resistance in a circuit. Keep reading the article if you want to learn how to calculate the resistance on a parallel or combination circuit!
Did this summary help you?
Thanks to all authors for creating a page that has been read 1,787,504 times.