Как найти совместность систем уравнений

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы “Система линейных алгебраических уравнений. Основные термины. Матричная форма записи”. В частности, нужны такие понятия, как матрица системы и расширенная матрица системы, поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $rang A=rangwidetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $rang A=rangwidetilde{A}$, то решение есть; если $rang Aneqrangwidetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $rang Aneqrangwidetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $rang A=rangwidetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $rang A=rangwidetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют – то сколько.

Пример №1

Исследовать СЛАУ $
left {begin{aligned}
& -3x_1+9x_2-7x_3=17;\
& -x_1+2x_2-4x_3=9;\
& 4x_1-2x_2+19x_3=-42.
end{aligned}right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Решение

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $widetilde{A}$, запишем их:

$$
A=left( begin{array} {ccc}
-3 & 9 & -7 \ -1 & 2 & -4 \ 4 & -2 & 19
end{array} right);;

widetilde{A}=left( begin{array} {ccc|c}
-3 & 9 &-7 & 17 \ -1 & 2 & -4 & 9\ 4 & -2 & 19 & -42
end{array} right).
$$

Нужно найти $rang A$ и $rangwidetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе “Ранг матрицы”. Обычно для исследования таких систем применяют два метода: “Вычисление ранга матрицы по определению” или “Вычисление ранга матрицы методом элементарных преобразований”.

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг – это наивысший порядок миноров матрицы, среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ – это определитель матрицы $A$, т.е. $Delta A$. Для вычисления определителя применим формулу №2 из темы “Формулы для вычисления определителей второго и третьего порядков”:

$$
Delta A=left| begin{array} {ccc}
-3 & 9 & -7 \ -1 & 2 & -4 \ 4 & -2 & 19
end{array} right|=-21.
$$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $rang A=3$.

Нам требуется найти также и $rangwidetilde{A}$. Давайте посмотрим на структуру матрицы $widetilde{A}$. До черты в матрице $widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $Delta Aneq 0$. Следовательно, у матрицы $widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $widetilde{A}$ составить мы не можем, поэтому делаем вывод: $rangwidetilde{A}=3$.

Так как $rang A=rangwidetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $rang A=rangwidetilde{A}=n$, поэтому согласно пункту №3 следствия из теоремы Кронекера-Капелли, система является определённой, т.е. имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы.

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может – ни одного. Если $Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме. Мы станем вычислять ранг матрицы $widetilde{A}$. Почему именно матрицы $widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $widetilde{A}$, поэтому вычисляя ранг матрицы $widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

begin{aligned}

&widetilde{A} =left( begin{array} {ccc|c}
-3 & 9 &-7 & 17 \ -1 & 2 & -4 & 9\ 4 & -2 & 19 & -42
end{array} right) rightarrow left|text{меняем местами первую и вторую строки}right| rightarrow \

&rightarrow left( begin{array} {ccc|c}
-1 & 2 & -4 & 9 \
-3 & 9 &-7 & 17\
4 & -2 & 19 & -42
end{array} right)
begin{array} {l} phantom{0} \ r_2-3r_1\ r_3+4r_1 end{array} rightarrow

left( begin{array} {ccc|c}
-1 & 2 & -4 & 9 \
0 & 3 &5 & -10\
0 & 6 & 3 & -6
end{array} right)
begin{array} {l} phantom{0} \ phantom{0}\ r_3-2r_2 end{array}rightarrow\

&rightarrow left( begin{array} {ccc|c}
-1 & 2 & -4 & 9 \
0 & 3 &5 & -10\
0 & 0 & -7 & 14
end{array} right)

end{aligned}

Мы привели матрицу $widetilde{A}$ к ступенчатому виду. Полученная ступенчатая матрица имеет три ненулевых строки, поэтому её ранг равен 3. Следовательно, и ранг матрицы $widetilde{A}$ равен 3, т.е. $rangwidetilde{A}=3$. Делая преобразования с элементами матрицы $widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к ступенчатому виду: $left( begin{array} {ccc}
-1 & 2 & -4 \
0 & 3 &5 \
0 & 0 & -7
end{array} right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $rang A=3$.

Так как $rang A=rangwidetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $rang A=rangwidetilde{A}=n$, поэтому согласно пункту №3 следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество – это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса. Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор – это дело вкуса.

Ответ: Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ
$ left{ begin{aligned}
& x_1-x_2+2x_3=-1;\
& -x_1+2x_2-3x_3=3;\
& 2x_1-x_2+3x_3=2;\
& 3x_1-2x_2+5x_3=1;\
& 2x_1-3x_2+5x_3=-4.

end{aligned} right.$
на совместность.

Решение

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований. Расширенная матрица системы: $widetilde{A}=left( begin{array} {ccc|c} 1 & -1 & 2 & -1\ -1 & 2 & -3 & 3 \ 2 & -1 & 3 & 2 \ 3 & -2 & 5 & 1 \ 2 & -3 & 5 & -4 end{array} right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

$$
left( begin{array} {ccc|c}
1 & -1 & 2 & -1\
-1 & 2 & -3 & 3 \
2 & -3 & 5 & -4 \
3 & -2 & 5 & 1 \
2 & -1 & 3 & 2 end{array} right)
begin{array} {l} phantom{0}\r_2+r_1\r_3-2r_1\ r_4-3r_1\r_5-2r_1end{array}rightarrow

left( begin{array} {ccc|c}
1 & -1 & 2 & -1\
0 & 1 & -1 & 2 \
0 & -1 & 1 & -2 \
0 & 1 & -1 & 4 \
0 & 1 & -1 & 4 end{array} right)
begin{array} {l} phantom{0}\phantom{0}\r_3-r_2\ r_4-r_2\r_5+r_2end{array}rightarrow\
$$

$$
rightarrowleft( begin{array} {ccc|c}
1 & -1 & 2 & -1\
0 & 1 & -1 & 2 \
0 & 0 & 0 & 2 \
0 & 0 & 0 & 2 \
0 & 0 & 0 & 0 end{array} right)
begin{array} {l} phantom{0}\phantom{0}\phantom{0}\ r_4-r_3\phantom{0}end{array}rightarrow

left( begin{array} {ccc|c}
1 & -1 & 2 & -1\
0 & 1 & -1 & 2 \
0 & 0 & 0 & 2 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 end{array} right)
$$

Расширенная матрица системы приведена к ступенчатому виду. Ранг ступенчатой матрицы равен количеству её ненулевых строк, поэтому $rangwidetilde{A}=3$. Матрица $A$ (до черты) тоже приведена к ступенчатому виду, и ранг её равен 2, $rang{A}=2$.

Так как $rang Aneqrangwidetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ: система несовместна.

Пример №3

Исследовать СЛАУ

$$left{ begin{aligned}
& 2x_1+7x_3-5x_4+11x_5=42;\
& x_1-2x_2+3x_3+2x_5=17;\
& -3x_1+9x_2-11x_3-7x_5=-64;\
& -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\
& 7x_1-17x_2+23x_3+15x_5=132.
end{aligned} right.$$

на совместность.

Решение

Приводим расширенную матрицу системы к ступенчатому виду:

$$
left( begin{array}{ccccc|c}
2 & 0 & 7 & -5 & 11 & 42\
1 & -2 & 3 & 0 & 2 & 17 \
-3 & 9 & -11 & 0 & -7 & -64 \
-5 & 17 & -16 & -5 & -4 & -90 \
7 & -17 & 23 & 0 & 15 & 132 end{array} right)
overset{r_1leftrightarrow{r_3}}{rightarrow}
$$

$$
rightarrowleft( begin{array}{ccccc|c}
1 & -2 & 3 & 0 & 2 & 17\
2 & 0 & 7 & -5 & 11 & 42\
-3 & 9 & -11 & 0 & -7 & -64\
-5 & 17 & -16 & -5 & -4 & -90 \
7 & -17 & 23 & 0 & 15 & 132 end{array} right)
begin{array} {l} phantom{0}\ r_2-2r_1 \r_3+3r_1 \ r_4+5r_1 \ r_5-7r_1 end{array} rightarrow

left( begin{array}{ccccc|c}
1 & -2 & 3 & 0 & 2 & 17\
0 & 4 & 1 & -5 & 7 & 8\
0 & 3 & -2 & 0 & -1 & -13\
0 & 7 & -1 & -5 & 6 & -5 \
0 & -3 & 2 & 0 & 1 & 13 end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\4r_3+3r_2 \ 4r_4-7r_2 \ 4r_5+3r_2 end{array} rightarrow
$$

$$
rightarrowleft( begin{array}{ccccc|c}
1 & -2 & 3 & 0 & 2 & 17\
0 & 4 & 1 & -5 & 7 & 8\
0 & 0 & -11 & 15 & -25 & -76\
0 & 0 & -11 & 15 & -25 & -76 \
0 & 0 & 11 & -15 & 25 & 76 end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\phantom{0} \ r_4-r_3 \ r_5+r_2 end{array} rightarrow

left( begin{array}{ccccc|c}
1 & -2 & 3 & 0 & 2 & 17\
0 & 4 & 1 & -5 & 7 & 8\
0 & 0 & -11 & 15 & -25 & -76\
0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 end{array} right)
$$

Мы привели расширенную матрицу системы и саму матрицу системы к ступенчатому виду. Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $rangwidetilde{A}=rang{A}lt{n}$, то согласно пункту №2 следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ: система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Сначала исследуем совместность и установим количество решений, а затем найдём сами решения с помощью метода Гаусса. Записываем расширенную матрицу $$begin{pmatrix} 2&3&11&5 &|& 2 \ 1&1&5&2 &|& 1 \ 2&1&3&2 &|& -3 \ 1&1&3&4 &|& -3 end{pmatrix}.$$

Умножаем вторую строку на 2 и вычитаем из неё первую. Из третьей строки вычитаем первую. Умножаем четвертую строку на 2 и вычитаем от неё первую. $$begin{pmatrix} 2&3&11&5 &|& 2 \ 0&-1&-1&-1 &|& 0 \ 0&-2&-8&-3 &|& -5 \ 0&-1&-5&3 &|& -8 end{pmatrix}$$

Из третьей строки вычитаем вторую, умноженную на 2. Из четвертой строчки вычитаем вторую. $$begin{pmatrix} 2&3&11&5 &|& 2 \ 0&-1&-1&-1 &|& 0 \ 0&0&-6&-1 &|& -5 \ 0&0&-4&4 &|& -8 end{pmatrix}$$

Умножим четвертую строчку на 6 и вычтем из неё третью, умноженную на 4. $$begin{pmatrix} 2&3&11&5 &|& 2 \ 0&-1&-1&-1 &|& 0 \ 0&0&-6&-1 &|& -5 \ 0&0&0&28 &|& -28 end{pmatrix}$$ Разделим четвертую строку на 28 для дальнейшего удобства избавившись от крупных чисел.$$begin{pmatrix} 2&3&11&5 &|& 2 \ 0&-1&-1&-1 &|& 0 \ 0&0&-6&-1 &|& -5 \ 0&0&0&1 &|& -1 end{pmatrix}$$

Итак, матрица приведена к ступенчатой форме или как называют треугольный вид. Сделано это для того, чтобы определить ранг матрицы $A$ и её расширенной $(A|B)$. Подсчитываем количество ненулевых строк в обеих матрицах и получаем, что $rang A = rang (A|B) = 4$. Это означает по следствию теоремы Кронекера-Капелли, что СЛАУ совместна и имеет при этом одно решение.

По условию задачи требуется найти решение системы уравнений. Это означает, что нужно продолжить ход Гаусса в обратном направлении, чтобы найти $x_1,x_2,x_3, x_4$. Если бы в условии задачи это не было сказано, то это не потребовалось бы сделать и достаточно записать ответ о совместности системы. Продолжаем вычисления…

Из первой строки вычитаем четвертую, умноженную на 5. Ко второй строке прибавляем четвертую. К третьей строке прибавляем четвертую. $$begin{pmatrix} 2&3&11&0 &|& 7 \ 0&-1&-1&0 &|& -1 \ 0&0&-6&0 &|& -6 \ 0&0&0&1 &|& -1 end{pmatrix}$$Сразу делим третью строку на -6 для сокращения строки. $$begin{pmatrix} 2&3&11&0 &|& 7 \ 0&-1&-1&0 &|& -1 \ 0&0&1&0 &|& 1 \ 0&0&0&1 &|& -1 end{pmatrix}$$

Ко второй строке прибавляем третью. Из первой строки вычитаем третью, умноженную на 11. $$begin{pmatrix} 2&3&0&0 &|& -4 \ 0&-1&0&0 &|& 0 \ 0&0&1&0 &|& 1 \ 0&0&0&1 &|& -1 end{pmatrix}$$

К первой строке прибавляем вторую строчку, умноженную на 3. $$begin{pmatrix} 2&0&0&0 &|& -4 \ 0&-1&0&0 &|& 0 \ 0&0&1&0 &|& 1 \ 0&0&0&1 &|& -1 end{pmatrix}$$Делим первую строку на 2. Умножаем вторую строчку на (-1). $$begin{pmatrix} 1&0&0&0 &|& -2 \ 0&1&0&0 &|& 0 \ 0&0&1&0 &|& 1 \ 0&0&0&1 &|& -1 end{pmatrix}$$

Таким образом отсюда получаем решение системы линейных уравнений $$begin{bmatrix} x_1=-2 \ x_2=0 \ x_3=1 \ x_4=-1 end{bmatrix}.$$

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы “Система линейных алгебраических уравнений. Основные термины. Матричная форма записи”. В частности, нужны такие понятия, как матрица системы и расширенная матрица системы, поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde$.

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $rang A=rangwidetilde$.

Следствие из теоремы Кронекера-Капелли

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют – то сколько.

Исследовать СЛАУ $ left <begin& -3x_1+9x_2-7x_3=17;\ & -x_1+2x_2-4x_3=9;\ & 4x_1-2x_2+19x_3=-42. endright.$ на совместность. Если СЛАУ совместна, указать количество решений.

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $widetilde$, запишем их:

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг – это наивысший порядок миноров матрицы, среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ – это определитель матрицы $A$, т.е. $Delta A$. Для вычисления определителя применим формулу №2 из темы “Формулы для вычисления определителей второго и третьего порядков”:

$$ Delta A=left| begin -3 & 9 & -7 \ -1 & 2 & -4 \ 4 & -2 & 19 end right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $rang A=3$.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы.

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может – ни одного. Если $Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Какие преимущества второго способа? Главное преимущество – это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса. Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор – это дело вкуса.

Ответ: Заданная СЛАУ совместна и определена.

$$ left( begin 1 & -1 & 2 & -1\ -1 & 2 & -3 & 3 \ 2 & -3 & 5 & -4 \ 3 & -2 & 5 & 1 \ 2 & -1 & 3 & 2 end right) begin phantom<0>\r_2+r_1\r_3-2r_1\ r_4-3r_1\r_5-2r_1endrightarrow left( begin 1 & -1 & 2 & -1\ 0 & 1 & -1 & 2 \ 0 & -1 & 1 & -2 \ 0 & 1 & -1 & 4 \ 0 & 1 & -1 & 4 end right) begin phantom<0>\phantom<0>\r_3-r_2\ r_4-r_2\r_5+r_2endrightarrow\ $$ $$ rightarrowleft( begin 1 & -1 & 2 & -1\ 0 & 1 & -1 & 2 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 0 end right) begin phantom<0>\phantom<0>\phantom<0>\ r_4-r_3\phantom<0>endrightarrow left( begin 1 & -1 & 2 & -1\ 0 & 1 & -1 & 2 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 end right) $$

Расширенная матрица системы приведена к ступенчатому виду. Ранг ступенчатой матрицы равен количеству её ненулевых строк, поэтому $rangwidetilde=3$. Матрица $A$ (до черты) тоже приведена к ступенчатому виду, и ранг её равен 2, $rang=2$.

Ответ: система несовместна.

Приводим расширенную матрицу системы к ступенчатому виду:

$$ left( begin 2 & 0 & 7 & -5 & 11 & 42\ 1 & -2 & 3 & 0 & 2 & 17 \ -3 & 9 & -11 & 0 & -7 & -64 \ -5 & 17 & -16 & -5 & -4 & -90 \ 7 & -17 & 23 & 0 & 15 & 132 end right) overset> <rightarrow>$$ $$ rightarrowleft( begin 1 & -2 & 3 & 0 & 2 & 17\ 2 & 0 & 7 & -5 & 11 & 42\ -3 & 9 & -11 & 0 & -7 & -64\ -5 & 17 & -16 & -5 & -4 & -90 \ 7 & -17 & 23 & 0 & 15 & 132 end right) begin phantom<0>\ r_2-2r_1 \r_3+3r_1 \ r_4+5r_1 \ r_5-7r_1 end rightarrow left( begin 1 & -2 & 3 & 0 & 2 & 17\ 0 & 4 & 1 & -5 & 7 & 8\ 0 & 3 & -2 & 0 & -1 & -13\ 0 & 7 & -1 & -5 & 6 & -5 \ 0 & -3 & 2 & 0 & 1 & 13 end right) begin phantom<0>\ phantom<0>\4r_3+3r_2 \ 4r_4-7r_2 \ 4r_5+3r_2 end rightarrow $$ $$ rightarrowleft( begin 1 & -2 & 3 & 0 & 2 & 17\ 0 & 4 & 1 & -5 & 7 & 8\ 0 & 0 & -11 & 15 & -25 & -76\ 0 & 0 & -11 & 15 & -25 & -76 \ 0 & 0 & 11 & -15 & 25 & 76 end right) begin phantom<0>\ phantom<0>\phantom <0>\ r_4-r_3 \ r_5+r_2 end rightarrow left( begin 1 & -2 & 3 & 0 & 2 & 17\ 0 & 4 & 1 & -5 & 7 & 8\ 0 & 0 & -11 & 15 & -25 & -76\ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 end right) $$

Мы привели расширенную матрицу системы и саму матрицу системы к ступенчатому виду. Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $rangwidetilde=ranglt$, то согласно пункту №2 следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ: система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли), определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: ( -2<,>34 )

Ввод: -1,15
Результат: ( -1<,>15 )

Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -frac<2> <3>$$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5frac<8> <3>$$
Помните, что на ноль делить нельзя!

RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :

Немного теории.

Системы линейных алгебраических уравнений

Основные определения

Система (m) линейных алгебраических уравнений с (n) неизвестными (сокращенно СЛАУ) представляет собой систему вида
( left< begin a_<11>x_1 + a_<12>x_2 + cdots + a_<1n>x_n = b_1 \ a_<21>x_1 + a_<22>x_2 + cdots + a_<2n>x_n = b_2 \ cdots \ a_x_1 + a_x_2 + cdots + a_x_n = b_m end right. tag <1>)

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от (n) переменных ( x_1 , ldots x_n ), а линейными потому, что эти многочлены имеют первую степень.

Числа (a_ in mathbb ) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения (i) и номером неизвестного (j). Действительные числа ( b_1 , ldots b_m ) называют свободными членами уравнений.

СЛАУ называют однородной, если ( b_1 = b_2 = ldots = b_m = 0 ). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных ( x_1^circ, ldots , x_n^circ ), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При (m=n), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты (a_) СЛАУ при одном неизвестном (x_j) как элементы столбца, а (x_j) как коэффициент, на который умножается столбец, из (1) получаем новую форму записи СЛАУ:
( begin a_ <11>\ a_ <21>\ vdots \ a_ end x_1 + begin a_ <12>\ a_ <22>\ vdots \ a_ end x_2 + ldots + begin a_ <1n>\ a_ <2n>\ vdots \ a_ end x_n = begin b_1 \ b_2 \ vdots \ b_m end )
или, обозначая столбцы соответственно ( a_1 , ldots , a_n , b ),
( x_1 a_1 + x_2 a_2 + ldots + x_n a_n = b tag <2>)

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца (b) в виде линейной комбинации столбцов ( a_1, ldots, a_n ). Соотношение (2) называют векторной записью СЛАУ.

Поскольку (A ;,; X) и (B) являются матрицами, то запись СЛАУ (1) в виде (AX=B) называют матричной. Если (B=0), то СЛАУ является однородной и в матричной записи имеет вид (AX=0).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида (AX=B)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

“Триединство” форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
( A = begin a_ <11>& a_ <12>& cdots & a_ <1n>\ a_ <21>& a_ <22>& cdots & a_ <2n>\ vdots & vdots & ddots & vdots \ a_ & a_ & cdots & a_ end )
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
( (A|B) = left( begin a_ <11>& a_ <12>& cdots & a_ <1n>& b_1 \ a_ <21>& a_ <22>& cdots & a_ <2n>& b_2 \ vdots & vdots & ddots & vdots & vdots \ a_ & a_ & cdots & a_ & b_m end right) )
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно (если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ (AX=B) необходимо и достаточно, чтобы ранг её матрицы (A) был равен рангу её расширенной матрицы ( (A|B) ).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = frac<Delta_i> <|A|>;,quad i=overline <1,n>tag <3>$$
где (Delta_i) — определитель матрицы, получающейся из матрицы (A) заменой (i)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.

Однородные системы

Теорема. Если столбцы ( X^<(1)>, X^<(2)>, ldots , X^ <(s)>) — решения однородной СЛАУ (AX=0), то любая их линейная комбинация также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения ( X^<(1)>, ldots , X^ <(s)>) системы (AX=0), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из (k=n-r) линейно независимых столбцов, являющихся решениями однородной СЛАУ (AX=0), где (n) — количество неизвестных в системе, а (r) — ранг её матрицы (A), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице (A) однородной СЛАУ (AX=0) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.

Теорема. Пусть дана однородная СЛАУ (AX=0) с (n) неизвестными и ( textA = r ). Тогда существует набор из (k=n-r) решений ( X^<(1)>, ldots , X^ <(k)>) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ <(1)>+ ldots + c_kX^ <(k)>$$
где постоянные ( c_i ;, quad i=overline <1,k>), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ (AX=B). Заменив столбец (B) свободных членов нулевым, получим однородную СЛАУ (AX=0), соответствующую неоднородной СЛАУ (AX=B). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец (X^circ) — некоторое решение СЛАУ (AX=B). Произвольный столбец (X) является решением этой СЛАУ тогда и только тогда, когда он имеет представление (X = X^circ + Y ), где (Y) — решение соответствующей однородной СЛАУ (AY=0).

Следствие. Пусть (X’) и (X”) — решения неоднородной системы (AX=B). Тогда их разность ( Y = X’ – X” ) является решением соответствующей однородной системы (AY=0).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение (X^circ) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть (X^circ) — частное решение СЛАУ (AX=B) и известна фундаментальная система решений ( X^<(1)>, ldots , X^ <(k)>) соответствующей однородной системы (AX=0). Тогда любое решение СЛАУ (AX=B) можно представить в виде $$ X = X^circ + c_1 X^ <(1)>+ c_2 X^ <(2)>+ ldots + c_k X^ <(k)>$$
где ( c_i in mathbb ;, quad i=overline <1,k>).
Эту формулу называют общим решением СЛАУ.

[spoiler title=”источники:”]

http://math1.ru/education/sys_lin_eq/kapelli.html

http://www.math-solution.ru/math-task/slau

[/spoiler]

Прежде чем пытаться выполнить решение системы линейных уравнений следует исследовать ее на совместность. Предварительное исследование упрощает анализ описывающих логистические и производственные процессы СЛАУ. Если система линейных уравнений совместна, у нее есть решения.

Совместность СЛАУ оценивается через применение теоремы Кронекера–Капели. В ходе анализа определяется равны ли ранги основной и расширенной матрицы, если равны, можно утверждать о наличии совместности, несовместность наблюдается во всех других случаях.

Если система является определенной у нее всего одно решение, у неопределенной несколько. Определенность совместной СЛАУ наблюдается в случае равенства ранга основной матрицы числу неизвестных.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Пример решения задачи. Решение системы линейных уравнений

Условие задачи

Проверьте совместность системы линейных уравнений и в случае совместности
решите ее тремя способами:

  • по формулам Крамера;
  • матричным методом (с помощью обратной матрицы);
  • методом Гаусса.

Решение задачи

Проверка системы уравнений на совместность

Проверим систему уравнений на
совместность. Для этого приведем расширенную матрицу системы к диагональному
виду. Умножим 1-ю строку на 2, 2-ю строку на 6, 3-ю строку на 3. Вычтем 1-ю
строку из 2-й, 3-й.

Упростим строки, для этого 1-ю
строку разделим на 2, 2-ю строку разделим на 2. Умножим 2-ю строку на -2, 3-ю
строку на 5. Вычтем 2-ю строку из 3-й.

Упростим строки, для этого 2-ю строку
разделим на -2, 3-ю строку разделим на 39.

Минор 3-го порядка основной матрицы
системы не равен нулю. Ранг основной матрицы системы равен 3. Минор 3-го
порядка расширенной матрицы системы не равен нулю. Ранг расширенной матрицы
системы равен 3. Ранги основной и расширенной матрицы системы равны -по теореме
Кроннекера-Капели система уравнений совместна.

Решение системы уравнений методом Крамера

Решим систему уравнений методом Крамера:

Решение системы уравнений методом обратной матрицы

Решим систему уравнений при помощи обратной матрицы:

Алгебраические дополнения:

Обратная матрица:

Решение системы уравнений методом Гаусса

Решим систему уравнений методом Гаусса. Исходная система уравнений в соответствии с элементарными
преобразованиями эквивалента следующей системе:

Ответ:

.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная оплата переводом на карту СберБанка.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Добавить комментарий