Как найти совокупность вероятностей

Содержание:

Формула полной вероятности:

Пусть событие А может произойти в результате появления одного и только одного события Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

События этой группы обычно называются гипотезами.

Теорема: Вероятность события А равна сумме парных произведений вероятностей всех гипотез, образующих полную группу, на соответствующие условные вероятности данного события А, т. е.

Формула полной вероятности - определение и вычисление с примерами решения

(формула полной вероятности), причем здесь

Формула полной вероятности - определение и вычисление с примерами решения

Доказательство. Так как

Формула полной вероятности - определение и вычисление с примерами решения

причем, ввиду несовместности событий Формула полной вероятности - определение и вычисление с примерами решения события Формула полной вероятности - определение и вычисление с примерами решения также несовместны, то на основании теорем сложения и умножения вероятностей имеем

Формула полной вероятности - определение и вычисление с примерами решения

что и требовалось доказать.

Пример:

В магазин для продажи поступает продукция трех фабрик, относительные доли которых есть: I — 50%, II — 30%, III — 20%. Для продукции фабрик брак соответственно составляет: I — 2%, II — 3%, III — 5%. Какова вероятность того, что изделие этой продукции, случайно приобретенное в магазине, окажется доброкачественным (событие А)?

Решение:

Здесь возможны следующие три гипотезы: Формула полной вероятности - определение и вычисление с примерами решения — приобретенная вещь выработана соответственно на I, II и III фабриках; очевидно, система этих гипотез полная, причем их вероятности

Формула полной вероятности - определение и вычисление с примерами решения

Соответствующие условные вероятности события А равны

Формула полной вероятности - определение и вычисление с примерами решения

По формуле полной вероятности имеем

Формула полной вероятности - определение и вычисление с примерами решения

Формула Бейеса:

Пример:

Имеется полная группа несовместных гипотез

Формула полной вероятности - определение и вычисление с примерами решения

вероятности которых Формула полной вероятности - определение и вычисление с примерами решения известны до опыта (вероятности априори). Производится опыт (испытание), в результате которого зарегистрировано появление события А, причем известно, что этому событию наши гипотезы приписывали определенные вероятности Формула полной вероятности - определение и вычисление с примерами решения. Спрашивается, каковы будут вероятности этих гипотез после опыта (вероятности апостериори).

Например, очевидно, следует отбросить гипотезы, отрицающие появление события А. Вообще, проблема состоит в том, что, имея новую информацию, мы должны переоценить вероятности наших гипотез.

Иными словами, нам нужно определить условные вероятности

Формула полной вероятности - определение и вычисление с примерами решения

На основании теоремы умножения вероятностей имеем

Формула полной вероятности - определение и вычисление с примерами решения

отсюда

Формула полной вероятности - определение и вычисление с примерами решения

Для нахождения вероятности Р(А) можно использовать формулу полной вероятности

Формула полной вероятности - определение и вычисление с примерами решения

Отсюда имеем формулу вероятностей гипотез после опыта (<формулу Бейеса)

Формула полной вероятности - определение и вычисление с примерами решения

Пример:

Вероятность поражения самолета при одиночном выстреле для 1-го ракетного расчета (событие А) равна 0,2, а для 2-го (событие В) — 0,1. Каждое из орудий производит по одному выстрелу, причем зарегистрировано одно попадание в самолет (событие С). Какова вероятность, что удачный выстрел принадлежит первому расчету?

Решение:

До опыта возможны четыре гипотезы: Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения; эти гипотезы образуют полную группу событий.

Вероятности их, при независимом действии расчетов, соответственно равны

Формула полной вероятности - определение и вычисление с примерами решения

причем Формула полной вероятности - определение и вычисление с примерами решения

Условные вероятности для наблюдаемого события С при данных гипотезах будут

Формула полной вероятности - определение и вычисление с примерами решения

Следовательно, гипотезы Формула полной вероятности - определение и вычисление с примерами решения отпадают, а вероятности гипотез Формула полной вероятности - определение и вычисление с примерами решения вычисляются по формуле Бейеса:

Формула полной вероятности - определение и вычисление с примерами решения

Таким образом, с вероятностью приблизительно 0,7 можно утверждать, что удачный выстрел принадлежит 1-му расчету,

Формула полной вероятности

Пусть событие А еще не произошло, но вскоре должно произойти. Событие А может протекать в различных условиях, относительно характера которых сделано Формула полной вероятности - определение и вычисление с примерами решения гипотез Формула полной вероятности - определение и вычисление с примерами решения, образующих полную группу несовместных событий. Вероятности гипотез известны. Тогда вероятность события А равна сумме произведений вероятности каждой гипотезы на вероятность события при этой гипотезе:

Формула полной вероятности - определение и вычисление с примерами решения – формула полной вероятности.

Доказательство.

По условию теоремы гипотезы Формула полной вероятности - определение и вычисление с примерами решения образуют полную группу несовместных событий, следовательно, событие А может произойти с одной и только с одной гипотезой:

Формула полной вероятности - определение и вычисление с примерами решения.

Т.к. гипотезы несовместны, то и комбинации Формула полной вероятности - определение и вычисление с примерами решения – несовместны. Применим теорему 1:

Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения(события А и Формула полной вероятности - определение и вычисление с примерами решения – зависимы, т.е. надо применить теорему 3) = Формула полной вероятности - определение и вычисление с примерами решения.    (что и треб, доказать)

Пример:

Имеется пять урн:

2 урны состава Формула полной вероятности - определение и вычисление с примерами решения – по 2 белых шара и 1 черному,

1 урна состава Формула полной вероятности - определение и вычисление с примерами решения – 10 черных шаров,

2 урны состава Формула полной вероятности - определение и вычисление с примерами решения — по 3 белых и 1 черному шару.

Наудачу выбирается урна, и из нее наудачу выбирается шар. Чему равна вероятность события А = {будет вынут белый шар}?

Решение.

Событие А еще не произошло. Шар может быть вынут из урн разных составов, следовательно, в алгебре событий событие А запишется в виде: Формула полной вероятности - определение и вычисление с примерами решения. Тогда по формуле полной вероятности:

Формула полной вероятности - определение и вычисление с примерами решения (*).

Найдем отдельно вероятности событий:

Формула полной вероятности - определение и вычисление с примерами решения (две урны состава Формула полной вероятности - определение и вычисление с примерами решения из пяти), Формула полной вероятности - определение и вычисление с примерами решения,

Формула полной вероятности - определение и вычисление с примерами решения (в каждой урне состава Формула полной вероятности - определение и вычисление с примерами решения 2 белых шара из трех),

Формула полной вероятности - определение и вычисление с примерами решения ( в урне состава Формула полной вероятности - определение и вычисление с примерами решения белых шаров нет),

Формула полной вероятности - определение и вычисление с примерами решения.

Подставим найденные вероятности в формулу (*): Формула полной вероятности - определение и вычисление с примерами решения.

Формула полной вероятности и решение задач

Пример:

В двух одинаковых коробках имеется по 100 резисторов. В 1-й – 60 резисторов по 100 КОм, во 2-й 30 – резисторов по 100 КОм. Определить вероятность того, что взятый наугад из какой-либо коробки резистор будет 100 КОм.

Решение:

Пусть событие Формула полной вероятности - определение и вычисление с примерами решения – достали резистор 100 КОм, гипотезы: Формула полной вероятности - определение и вычисление с примерами решения – выбрали 1-ю коробку, Формула полной вероятности - определение и вычисление с примерами решения – выбрали 2-ю коробку. Так как коробки выбирали произвольно, то Формула полной вероятности - определение и вычисление с примерами решения Условная вероятность того, что взяли резистор 100 КОм, при условии, что выбрана 1-я коробка – Формула полной вероятности - определение и вычисление с примерами решения соответственно Формула полной вероятности - определение и вычисление с примерами решения Тогда, применяя формулу (1.14) для Формула полной вероятности - определение и вычисление с примерами решения получаем Формула полной вероятности - определение и вычисление с примерами решения

Пример №1

В первой коробке находится 20 деталей, из них 18 стандартных, во второй коробке – 10 деталей, из них 9 стандартных. Из второй коробки наудачу взята одна деталь и переложена в первую коробку.
Какова вероятность  того, что деталь, наудачу извлечённая после этого из первой коробки, окажется стандартной?
 

Решение. Обозначим события:

Формула полной вероятности - определение и вычисление с примерами решения – из первой коробки извлечена стандартная деталь.

Формула полной вероятности - определение и вычисление с примерами решения− из второй коробки в первую переложена стандартная деталь.

Формула полной вероятности - определение и вычисление с примерами решения − из второй коробки в первую переложена нестандартная деталь.
Событие А может наступить при условии наступления одного из событий Формула полной вероятности - определение и вычисление с примерами решения Эти события несовместны и образуют полную группу, т. е. являются гипотезами в формуле полной вероятности. Вероятность того, что из второй коробки извлечена стандартная деталь, Формула полной вероятности - определение и вычисление с примерами решения
Вероятность того, что из второй коробки извлечена нестандартная деталь Формула полной вероятности - определение и вычисление с примерами решения
Условная вероятность того, что из первой коробки извлечена стандартная деталь, при условии, что из второй коробки в первую была переложена стандартная деталь, Формула полной вероятности - определение и вычисление с примерами решения
Условная вероятность того, что из первой коробки извлечена стандартная деталь, при условии, что из второй коробки в первую была переложена нестандартная деталь, Формула полной вероятности - определение и вычисление с примерами решения
Искомая вероятность того, что из первой коробки будет извлечена стандартная деталь, по формуле полной вероятности равна:

Формула полной вероятности - определение и вычисление с примерами решения.
Ответ: 0,9.

Пример №2

Два станка производят одинаковые детали, которые поступают на общий конвейер. Производительность первого станка в два раза больше производительности второго станка. Первый производит 60 % деталей высшего сорта, а второй – 84 %. Наудачу взятая с конвейера деталь оказалась высшего сорта. Какова вероятность того, что эта деталь произведена на первом станке?
 

Решение. Обозначим события:

А – деталь, взятая с конвейера, оказалась высшего сорта.
Это событие наступит с одним из двух событий (гипотез):

Формула полной вероятности - определение и вычисление с примерами решения – эта деталь произведена на первом станке,

Формула полной вероятности - определение и вычисление с примерами решения – эта деталь произведена на втором станке.
Поскольку производительность первого станка в два раза больше производительности второго станка, вероятности гипотез равны: Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения
Условные вероятности события А даны: Формула полной вероятности - определение и вычисление с примерами решения
По формуле полной вероятности находим:

Формула полной вероятности - определение и вычисление с примерами решения

По формуле Байеса найдём условную вероятность того, что взятая наудачу деталь высшего сорта произведена на первом станке:
Формула полной вероятности - определение и вычисление с примерами решения
Ответ: Формула полной вероятности - определение и вычисление с примерами решения

Пример №3

В ящике 20 белых и 10 чёрных шаров. Поочерёдно извлекают 4 шара, причём каждый извлечённый шар возвращают в ящик перед извлечением следующего. Какова вероятность того, что среди четырёх извлечённых шаров окажется два белых?
 

Решение. Вероятность извлечения белого шара одна и та же во всех четырёх испытаниях, так как каждый извлечённый шар возвращается в ящик:   Формула полной вероятности - определение и вычисление с примерами решения
Тогда вероятность извлечения чёрного шара во всех четырёх испытаниях равна Формула полной вероятности - определение и вычисление с примерами решения
Используя формулу Бернулли, находим вероятность того, что из четырёх извлечённых шаров два шара будут белыми:
Формула полной вероятности - определение и вычисление с примерами решения
Ответ: Формула полной вероятности - определение и вычисление с примерами решения

Пример №4

Вероятность поражения мишени при одном выстреле равна 0,8. Какова вероятность того, что при 100 выстрелах мишень будет поражена 75 раз?
 

Решение. По условию задачи Формула полной вероятности - определение и вычисление с примерами решения
Так как n – достаточно большое число, воспользуемся локальной формулой Лапласа:
Формула полной вероятности - определение и вычисление с примерами решения
В таблице значений функции  Формула полной вероятности - определение и вычисление с примерами решения находим φ(1,25) =
0,1826.
Следовательно, Формула полной вероятности - определение и вычисление с примерами решения
Ответ: 0,04565.

Пример №5

Вероятность поражения мишени при одном выстреле равна 0,8. Какова вероятность того, что при 100 выстрелах мишень будет поражена

а) не менее 75 раз и не более 90 раз?

б) не менее 75 раз?

в) не более 74 раз?
 

Решение.

Воспользуемся интегральной формулой Лапласа:
Формула полной вероятности - определение и вычисление с примерами решения
где Формула полной вероятности - определение и вычисление с примерами решения – функция Лапласа.

а) По условию задачи Формула полной вероятности - определение и вычисление с примерами решения Тогда, воспользовавшись таблицей значений функции Ф(х), получаем:
Формула полной вероятности - определение и вычисление с примерами решения

б) Требование того, чтобы событие наступило не менее 75 раз, означает следующее: число появлений события может быть равно либо 75, либо 76, … , либо 100.
Тогда следует принять  Формула полной вероятности - определение и вычисление с примерами решения Воспользовавшись таблицей значений функции Лапласа Ф(х), получаем: Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

в)  Событие “мишень поражена не более 74 раз”  и событие “мишень поражена не менее 75 раз” являются противоположными. Поэтому сумма их вероятностей равна 1. Следовательно, искомая вероятность Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения
Ответ: а) 0,8882; б) 0,8944; в) 0,1056.

Пример №6

Учебник издан тиражом 100000 экземпляров.
Вероятность того, что один учебник сброшюрован неправильно, равна 0,0001. Какова вероятность того, что тираж содержит 5 бракованных книг?
 

Решение. По условию задачи  n = 100000,  p = 0,0001.

События “из n книг ровно m книг сброшюрованы неправильно”,  где m = 0,1,2, … ,100000, являются независимыми. Так как число n велико, а вероятность p мала, вероятность Формула полной вероятности - определение и вычисление с примерами решенияможно вычислить по формуле Пуассона:  Формула полной вероятности - определение и вычисление с примерами решения

В рассматриваемой задаче Формула полной вероятности - определение и вычисление с примерами решения = 100000 ∙ 0,0001 = 10. Поэтому искомая вероятность Формула полной вероятности - определение и вычисление с примерами решения определяется равенством:
Формула полной вероятности - определение и вычисление с примерами решения

Ответ: 0,0375.

Формула Байеса (Бейеса)

Пусть событие А произошло, причем А могло протекать в различных условиях, относительно характера которых было сделано Формула полной вероятности - определение и вычисление с примерами решения гипотез Формула полной вероятности - определение и вычисление с примерами решения, образующих полную группу несовместных событий. Вероятности гипотез известны. Требуется узнать, как изменятся вероятности гипотез в связи с появлением события А. Т.е. надо найти условную вероятность Формула полной вероятности - определение и вычисление с примерами решения.

Решение:

По условию теоремы гипотезы Формула полной вероятности - определение и вычисление с примерами решения, образуют полную группу несовместных событий, следовательно событие .А произошло с одной и только с одной гипотезой:

Формула полной вероятности - определение и вычисление с примерами решения, причем события А и Формула полной вероятности - определение и вычисление с примерами решения – зависимы, поэтому найдем вероятность произведения Формула полной вероятности - определение и вычисление с примерами решения, воспользовавшись теоремой 3:

Формула полной вероятности - определение и вычисление с примерами решения — (или, что то же самое) = Формула полной вероятности - определение и вычисление с примерами решения = Формула полной вероятности - определение и вычисление с примерами решения, отсюда

Формула полной вероятности - определение и вычисление с примерами решения.

Выразим Р(А) с помощью формулы полной вероятности:

Формула полной вероятности - определение и вычисление с примерами решения – формула Байеса.

Пример №7

Имеется пять урн:

2 урны состава Формула полной вероятности - определение и вычисление с примерами решения – по 2 белых шара и 3 черных шара,

2 урны состава Формула полной вероятности - определение и вычисление с примерами решения – по 1 белому и 4 черных шара,

1 урна состава Формула полной вероятности - определение и вычисление с примерами решения – 4 белых и 1 черный шар.

Из одной наудачу выбранной урны взят шар. Он оказался белым (событие А). Чему равна после опыта вероятность события, что шар вынут из урны третьего состава.

Решение.

Событие А произошло. Шар мог быть вынут из урн разных составов, следовательно, в алгебре событий событие А запишется в виде: Формула полной вероятности - определение и вычисление с примерами решения.

Найдем вероятности событий:

Формула полной вероятности - определение и вычисление с примерами решения (две урны состава Формула полной вероятности - определение и вычисление с примерами решения из пяти), Формула полной вероятности - определение и вычисление с примерами решения,

Формула полной вероятности - определение и вычисление с примерами решения (в каждой урне состава Формула полной вероятности - определение и вычисление с примерами решения 2 белых шара из пяти),

Формула полной вероятности - определение и вычисление с примерами решения.

По формуле Байеса найдем условную вероятность Формула полной вероятности - определение и вычисление с примерами решения:

Формула полной вероятности - определение и вычисление с примерами решения.

Пример №8

Вероятность дождливого дня в городе равна 0,2. Известно, что вероятность выиграть футбольный матч команде этого города в дождливый день равна 0,4, а в сухой – 0,7. Известно, что команда выиграла матч. Определить, что в этот день шел дождь.

Решение:

Событие Формула полной вероятности - определение и вычисление с примерами решения состоит в том, что команда выиграла матч. Гипотезы: Формула полной вероятности - определение и вычисление с примерами решения – шел дождь, Формула полной вероятности - определение и вычисление с примерами решения – дождя не было.

Формула полной вероятности - определение и вычисление с примерами решения

 Чтобы ответить на вопрос, пересмотрим вероятность 1-й гипотезы с учетом результата опыта-появилось событие Формула полной вероятности - определение и вычисление с примерами решения Определим апостериорную вероятность гипотезы Формула полной вероятности - определение и вычисление с примерами решения с учетом результата опыта (появилось событие Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

Из полученного результата видим, что с учетом события Формула полной вероятности - определение и вычисление с примерами решения вероятность дождя в городе уменьшилась Формула полной вероятности - определение и вычисление с примерами решения значит скорее всего дождя не было.

Независимые испытания

Под испытанием станем понимать осуществление определенного комплекса условий, в результате которого может произойти то или иное элементарное событие пространства Формула полной вероятности - определение и вычисление с примерами решения элементарных событий.

Определение 26. Если производятся испытания, при которых вероятность появления события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называются независимыми относительно события А.

В каждом испытании вероятность появления события А одинакова.

Ряд задач связан с экспериментом, в котором проводятся последовательные независимые испытания, и наблюдается результат совместного осуществления тех или иных исходов каждого испытания.

Рассматривается последовательность п независимых испытаний, под которой будем понимать дискретное новое пространство Формула полной вероятности - определение и вычисление с примерами решения элементарных исходов, состоящее из точек Формула полной вероятности - определение и вычисление с примерами решения, где Формула полной вероятности - определение и вычисление с примерами решения – произвольная точка пространства, отвечающая испытанию с номером s. В каждом испытании может произойти один из Формула полной вероятности - определение и вычисление с примерами решения исходов: Формула полной вероятности - определение и вычисление с примерами решения или Формула полной вероятности - определение и вычисление с примерами решения или …. Формула полной вероятности - определение и вычисление с примерами решения.

Формула полной вероятности - определение и вычисление с примерами решения -тый исход в s-том испытании, где Формула полной вероятности - определение и вычисление с примерами решения= 1, 2,…, Формула полной вероятности - определение и вычисление с примерами решения; s = 1,2,…, Формула полной вероятности - определение и вычисление с примерами решения.

Пример №9

Пусть испытание состоит в подбрасывании игральной кости. Пространство элементарных событий Формула полной вероятности - определение и вычисление с примерами решения состоит из шести точек: Формула полной вероятности - определение и вычисление с примерами решения, т.е. шесть исходов. Если провести три испытания, то пространство Формула полной вероятности - определение и вычисление с примерами решения состоит из 216 точек.

Обычно исходы обозначали большими заглавными буквами. Переобозначим! Пусть происходит Формула полной вероятности - определение и вычисление с примерами решения независимых испытаний: 1, 2,…, s,…, Формула полной вероятности - определение и вычисление с примерами решения. В каждом испытании может произойти к исходов: 1-ый, 2, 3,…, Формула полной вероятности - определение и вычисление с примерами решения,…, Формула полной вероятности - определение и вычисление с примерами решения-ый.

Обозначим событие Формула полной вероятности - определение и вычисление с примерами решения-тый исход в s-том испытании, где Формула полной вероятности - определение и вычисление с примерами решения= 1,2,…,Формула полной вероятности - определение и вычисление с примерами решения; s = 1,2,…,Формула полной вероятности - определение и вычисление с примерами решения. Эти к исходов – несовместные случайные события. Тогда для s-ого испытания можем записать:

Формула полной вероятности - определение и вычисление с примерами решения, причем Формула полной вероятности - определение и вычисление с примерами решения.

Обозначим вероятность Формула полной вероятности - определение и вычисление с примерами решения -ого исхода при s-том испытании через Формула полной вероятности - определение и вычисление с примерами решения.

Пусть при первом испытании произошло событие под номером Формула полной вероятности - определение и вычисление с примерами решения, при 2-ом – событие под номером Формула полной вероятности - определение и вычисление с примерами решения, …, при Формула полной вероятности - определение и вычисление с примерами решения-ом – событие под номером Формула полной вероятности - определение и вычисление с примерами решения. Результат сразу Формула полной вероятности - определение и вычисление с примерами решения испытаний – событие, которое обозначим через произведение событий Формула полной вероятности - определение и вычисление с примерами решенияцепочка результатов отдельных испытаний.

Формула полной вероятности - определение и вычисление с примерами решения. Данное событие – цепочка состоит из всех точек Формула полной вероятности - определение и вычисление с примерами решения пространства Формула полной вероятности - определение и вычисление с примерами решения, для которых Формула полной вероятности - определение и вычисление с примерами решения.

Испытания – независимые, следовательно, по теореме 4, имеет место равенство:

Формула полной вероятности - определение и вычисление с примерами решения

В случае, когда вероятности событий Формула полной вероятности - определение и вычисление с примерами решения не зависят от номера испытаний, Формула полной вероятности - определение и вычисление с примерами решения.

В силу несовместности и единственной возможности исходов, очевидно, что Формула полной вероятности - определение и вычисление с примерами решения, так как Формула полной вероятности - определение и вычисление с примерами решения.

Теорема. Если данные Формула полной вероятности - определение и вычисление с примерами решения испытаний независимы, то любые Формула полной вероятности - определение и вычисление с примерами решения из них также независимы.

Теорема. Для того, чтобы Формула полной вероятности - определение и вычисление с примерами решения испытаний были независимы, необходимо и достаточно выполнения условия:

Формула полной вероятности - определение и вычисление с примерами решения,

для любой группы чисел Формула полной вероятности - определение и вычисление с примерами решения и Формула полной вероятности - определение и вычисление с примерами решения, Формула полной вероятности - определение и вычисление с примерами решения.

Формулы Бернулли

Пусть проводятся последовательные независимые испытания, и наблюдается результат совместного осуществления тех или иных исходов каждого испытания.

Схема независимых испытаний является математической моделью серии испытаний, повторяющихся при неизменных условиях. Такая схема называется полиномиальной.

Простейшим классом повторяющихся независимых испытаний является последовательность независимых испытаний с двумя исходами (Формула полной вероятности - определение и вычисление с примерами решения = 2): «успех», «неудача» и с неизменными вероятностями успеха – р и неудачи – q, где q = 1 – р, в каждом испытании. Такая схема называется биномиальной.

Определение 27. Независимые испытания при двух исходах называются испытаниями Бернулли.

Пример №10

Определить вероятность того, что в результате проведения Формула полной вероятности - определение и вычисление с примерами решения независимых испытаний некоторое событие А – успех (У) наступит ровно Формула полной вероятности - определение и вычисление с примерами решения раз, если в каждом из этих испытаний данное событие наступает с постоянной вероятностью Формула полной вероятности - определение и вычисление с примерами решения.

Решение.

Искомую вероятность обозначим Формула полной вероятности - определение и вычисление с примерами решения.

Событие А в данных испытаниях может появиться ровно Формула полной вероятности - определение и вычисление с примерами решения раз, причем, в разных последовательностях или комбинациях. Следовательно, остальные Формула полной вероятности - определение и вычисление с примерами решения раз наступает противоположное событие Формула полной вероятности - определение и вычисление с примерами решения — неудача (Н), вероятность которого Формула полной вероятности - определение и вычисление с примерами решения.

Сначала найдем вероятность того, что события У наступают при определенных Формула полной вероятности - определение и вычисление с примерами решения испытаниях. Элементарные события в этом случае естественно обозначать цепочками вида: УУУННУНН…УН (где У-Формула полной вероятности - определение и вычисление с примерами решения штук, Н – Формула полной вероятности - определение и вычисление с примерами решения штук).

По условию данные события – независимые, следовательно, по теореме 4 для произведения независимых событий можем записать, что

Формула полной вероятности - определение и вычисление с примерами решения.

Число успехов и неудач задано. Можно менять только их расположения в цепочках, которое однозначно определяется выбором из Формула полной вероятности - определение и вычисление с примерами решения мест Формула полной вероятности - определение и вычисление с примерами решения мест для успехов. Это можно сделать Формула полной вероятности - определение и вычисление с примерами решения способами. Следовательно,

Формула полной вероятности - определение и вычисление с примерами решения.

В данной задаче мы доказали теорему Бернулли.

Теорема Бернулли. Если Формула полной вероятности - определение и вычисление с примерами решения – число успехов в Формула полной вероятности - определение и вычисление с примерами решения независимых испытаниях Бернулли, то вероятность того, что в результате проведения этих испытаний некоторое событие А наступит ровно Формула полной вероятности - определение и вычисление с примерами решения раз, находится по формуле: Формула полной вероятности - определение и вычисление с примерами решения, которая называется формулой Бернулли.

Следствие. Формула полной вероятности - определение и вычисление с примерами решения -так как события, состоящие в различном числе появления события А в серии Формула полной вероятности - определение и вычисление с примерами решения испытаний несовместны и образуют полную группу. Или можно было данное равенство объяснить так: Формула полной вероятности - определение и вычисление с примерами решения.

Пример №11

Пусть монета брошена 5 раз. Требуется найти вероятность того, что выпало ровно 3 орла.

Решение.

В каждом из 5 независимых испытаниях (Формула полной вероятности - определение и вычисление с примерами решения = 5) – бросании монеты – два исхода (Формула полной вероятности - определение и вычисление с примерами решения = 2: орел, решка), следовательно, это схема Бернулли с вероятностью успеха (выпал орел) и неудачи (выпала решка) Формула полной вероятности - определение и вычисление с примерами решения. Количество успехов: Формула полной вероятности - определение и вычисление с примерами решения = 3.

По формуле Бернулли Формула полной вероятности - определение и вычисление с примерами решения найдем искомую вероятность: Формула полной вероятности - определение и вычисление с примерами решения.

Замечания.

Замечание 1. Вероятность Формула полной вероятности - определение и вычисление с примерами решения равна коэффициенту при Формула полной вероятности - определение и вычисление с примерами решения в разложении бинома Формула полной вероятности - определение и вычисление с примерами решения по степеням Формула полной вероятности - определение и вычисление с примерами решения. В силу этого свойства совокупность вероятностей Формула полной вероятности - определение и вычисление с примерами решения называют биномиальным законом распределения вероятностей, (будем изучать позднее)

Замечание 2. Рассмотрим схему испытаний с произвольным количеством исходов. Пусть каждое из Формула полной вероятности - определение и вычисление с примерами решения независимых испытаний имеет Формула полной вероятности - определение и вычисление с примерами решения взаимно исключающих друг друга исходов, т.е. в каждом испытании может появиться одно из Формула полной вероятности - определение и вычисление с примерами решения несовместных событий: Формула полной вероятности - определение и вычисление с примерами решения с вероятностями Формула полной вероятности - определение и вычисление с примерами решения, не меняющимися от испытания к испытанию. Найдем вероятность появления в течении этих Формула полной вероятности - определение и вычисление с примерами решения испытаний Формула полной вероятности - определение и вычисление с примерами решения раз события Формула полной вероятности - определение и вычисление с примерами решения раза события Формула полной вероятности - определение и вычисление с примерами решения раз события Формула полной вероятности - определение и вычисление с примерами решения. Формула полной вероятности - определение и вычисление с примерами решения. Данная вероятность находится по формуле:

Формула полной вероятности - определение и вычисление с примерами решения.

Эта совокупность вероятностей является коэффициентом при Формула полной вероятности - определение и вычисление с примерами решения в разложении полинома Формула полной вероятности - определение и вычисление с примерами решения по степеням Формула полной вероятности - определение и вычисление с примерами решения. Поэтому эту схему называют полиномиальной.

Например. При Формула полной вероятности - определение и вычисление с примерами решения подбрасываниях игральной кости получается полиномиальная схема с шестью исходами ( Формула полной вероятности - определение и вычисление с примерами решения= 6) и вероятностями Формула полной вероятности - определение и вычисление с примерами решения.

Если различать только «6» и «не 6», то получим схему Бернулли с двумя исходами (Формула полной вероятности - определение и вычисление с примерами решения = 2) и вероятностями успеха Формула полной вероятности - определение и вычисление с примерами решения и неудачи Формула полной вероятности - определение и вычисление с примерами решения.

Замечание 3. При вычислении вероятности события, состоящего в том, что число успехов m лежит, например, между а и b, приходится находить числовые значения сумм вероятностей вида: Формула полной вероятности - определение и вычисление с примерами решения.

Например, вероятность того, что событие наступит а) менее Формула полной вероятности - определение и вычисление с примерами решения раз, b) более Формула полной вероятности - определение и вычисление с примерами решения раз, с) не менее Формула полной вероятности - определение и вычисление с примерами решения раз, d) не более Формула полной вероятности - определение и вычисление с примерами решения раз находятся соответственно по формулам:

a) Формула полной вероятности - определение и вычисление с примерами решения.

b) Формула полной вероятности - определение и вычисление с примерами решения.

c) Формула полной вероятности - определение и вычисление с примерами решения.

d) Формула полной вероятности - определение и вычисление с примерами решения.

В некоторых случаях удобнее перейти к противоположному событию, например, Формула полной вероятности - определение и вычисление с примерами решения.

Пример №12

Пусть монета брошена 5 раз. Требуется найти вероятность того, что 1) менее двух раз выпал орел, 2) не менее двух раз выпал орел.

Решение.

Два исхода (Формула полной вероятности - определение и вычисление с примерами решения = 2: орел, решка) при 5 независимых испытаниях (n = 5) – схема Бернулли с вероятностью успеха и неудачи Формула полной вероятности - определение и вычисление с примерами решения.

1) Орел выпал менее двух раз, значит, не выпал или выпал раз.

Формула полной вероятности - определение и вычисление с примерами решения = (вероятности найдем по формуле Бернулли) =

Формула полной вероятности - определение и вычисление с примерами решения

2)    Орел выпал не менее двух раз, т.е. выпал два раза или три или четыре или пять:

Формула полной вероятности - определение и вычисление с примерами решения =(удобнее перейти к противоположному событию, т.е. «не менее двух», значит, противоположное событие: меньше двух, т.е. орел не выпал совсем или выпал один раз) = Формула полной вероятности - определение и вычисление с примерами решения.

Замечание 4. В примере на формулу Бернулли вычисления проводятся очень легко, однако часто приходится вычислять вероятности при очень больших значениях n и m, например, при n = 1000, m = 500. Также затруднения при вычислении возникают при малых значениях р или q.

В этих случаях удается заменить формулу Бернулли какой-нибудь приближенной асимптотической формулой. Существуют три предельные теоремы, содержащие такие формулы.

Предельные теоремы в схеме Бернулли

Теорема Пуассона (асимптотическая формула для случая малых значений р)

Если вероятность наступления некоторого события А в n независимых испытаниях постоянна и равна р, причем Формула полной вероятности - определение и вычисление с примерами решения при Формула полной вероятности - определение и вычисление с примерами решения так, что Формула полной вероятности - определение и вычисление с примерами решения, где Формула полной вероятности - определение и вычисление с примерами решения – среднее число появления события А в n испытаниях, Формула полной вероятности - определение и вычисление с примерами решения, то вероятность Формула полной вероятности - определение и вычисление с примерами решения того, что в этих испытаниях событие А наступит ровно m раз, удовлетворяет при Формула полной вероятности - определение и вычисление с примерами решения соотношению (или приближенно равна):

Формула полной вероятности - определение и вычисление с примерами решения

Замечания.

1. Часто формула Пуассона записывается в виде равенства, но надо помнить при этом, что оно верно при Формула полной вероятности - определение и вычисление с примерами решения:

Формула полной вероятности - определение и вычисление с примерами решения, при этом Формула полной вероятности - определение и вычисление с примерами решения.

2. Формулой пользуются при больших n и малых р. Например, при n > 100, Формула полной вероятности - определение и вычисление с примерами решения.

3. Теорема имеет место и в том случае, когда вероятность события А в каждом испытании равна нулю. В этом случае Формула полной вероятности - определение и вычисление с примерами решения.

4. Существуют таблицы значений данной вероятности (стр. 410, 411 в задачнике Ефимова -Демидовича).

Пример №13

Вероятность попадания в цель при каждом выстреле равна 0,001. Найти вероятность попадания в цель двумя и более пулями, если число выстрелов равно 5000.

Решение.

Считаем каждый выстрел за испытание и попадание в цель за событие. Количество испытаний n = 5000 (велико), р = 0,001 (мало). По формуле Бернулли считать сложно. Поэтому применим формулу Пуассона.

Найдем среднее число попаданий: Формула полной вероятности - определение и вычисление с примерами решения. Найдем заданную вероятность:

Формула полной вероятности - определение и вычисление с примерами решения = (перейдем к противоположному событию: m < 2) = Формула полной вероятности - определение и вычисление с примерами решения.

По точной формуле (формуле Бернулли) Формула полной вероятности - определение и вычисление с примерами решения, т.е. ошибка невелика.

Локальная предельная теорема Муавра – Лапласа (асимптотическая формула для случая больших значений n и m)

Если вероятность наступления некоторого события А в n независимых испытаниях постоянна и равна р, (0 < р < 1), то вероятность Формула полной вероятности - определение и вычисление с примерами решения того, что в этих испытаниях событие А наступит ровно m раз, удовлетворяет при Формула полной вероятности - определение и вычисление с примерами решения соотношению (или приближенно равна):

Формула полной вероятности - определение и вычисление с примерами решения,

где Формула полной вероятности - определение и вычисление с примерами решения, Формула полной вероятности - определение и вычисление с примерами решения.

Замечания.

1. Часто формула Пуассона записывается в виде равенства, но надо помнить при этом, что оно верно при Формула полной вероятности - определение и вычисление с примерами решения:

Формула полной вероятности - определение и вычисление с примерами решения

2. Формулой пользуются при больших n и m. Например, при п > 100, Формула полной вероятности - определение и вычисление с примерами решения.

3. Из того, что Формула полной вероятности - определение и вычисление с примерами решения следует, что Формула полной вероятности - определение и вычисление с примерами решения. Это означает, что n и m должны отличаться друг от друга не очень сильно. Например, для случая m = 0, теорема дает плохое приближение.

4. Существуют таблицы значений функции Формула полной вероятности - определение и вычисление с примерами решения для положительных значений х (стр. 408 в задачнике Ефимова – Дсмидовича). Для отрицательных значений х используется та же таблица, так как Формула полной вероятности - определение и вычисление с примерами решения – четная функция: Формула полной вероятности - определение и вычисление с примерами решения. Функцию Формула полной вероятности - определение и вычисление с примерами решения называют плотностью нормального распределения.

Пример №14

Найти вероятность того, что событие А наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.

Решение.

Количество испытаний n = 243, количество успехов m = 70, вероятность успеха р = 0,25, вероятность неудачи q = 1 – 0,25 = 0,75.

По формуле Бернулли считать сложно. Так как n и m велики, поэтому применим формулу Муавра – Лапласа.

Найдем сначала х и Формула полной вероятности - определение и вычисление с примерами решения:

Формула полной вероятности - определение и вычисление с примерами решения, тогда Формула полной вероятности - определение и вычисление с примерами решения.

Можно было не считать значение Формула полной вероятности - определение и вычисление с примерами решения напрямую, а обратиться к таблице в учебнике.

Подставим найденное значение Формула полной вероятности - определение и вычисление с примерами решения в формулу:

Формула полной вероятности - определение и вычисление с примерами решения.

Предельная интегральная теорема Муавра – Лапласа (асимптотическая формула для случая, когда число успехов m лежит в некоторых пределах)

Теорема 1. Если m – число наступлений события А в n независимых испытаниях, в каждом из которых вероятность этого события равна р (0 < р < 1), то равномерно относительно а и b Формула полной вероятности - определение и вычисление с примерами решения при Формула полной вероятности - определение и вычисление с примерами решения имеет место соотношение:

Формула полной вероятности - определение и вычисление с примерами решения.

В некоторых источниках Формула полной вероятности - определение и вычисление с примерами решения или Формула полной вероятности - определение и вычисление с примерами решения.

Ранее вывели, что Формула полной вероятности - определение и вычисление с примерами решения. Численное значение нашего интеграла можно найти с помощью таблиц (стр. 406 в задачнике Ефимова – Демидовича) для функции Лапласа Ф(х):

Формула полной вероятности - определение и вычисление с примерами решения, где Формула полной вероятности - определение и вычисление с примерами решения. Для тех значений х, которых нет в таблице, т.е для Формула полной вероятности - определение и вычисление с примерами решения

Либо, функция Лапласа может быть в виде: Формула полной вероятности - определение и вычисление с примерами решения, где Формула полной вероятности - определение и вычисление с примерами решения, для тех значений х, которых нет в таблице, т.е. для Формула полной вероятности - определение и вычисление с примерами решения.

Теорема 2. (Теорема Муавра-Лапласа) Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < р < 1), событие А наступит не менее Формула полной вероятности - определение и вычисление с примерами решения раза и не более Формула полной вероятности - определение и вычисление с примерами решения раз приближенно равна: Формула полной вероятности - определение и вычисление с примерами решения,

где Ф(х) – функция Лапласа, значения Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения.

Теорема 3. (Закон больших чисел или теорема Бернулли).

При неограниченном увеличении числа однородных независимых опытов частота события будет сколь угодно мало отличаться от вероятности события в отдельном опыте.

Иначе, вероятность того, что отклонение относительной частоты наступления события Формула полной вероятности - определение и вычисление с примерами решения от постоянной вероятности события А (p) очень мало при Формула полной вероятности - определение и вычисление с примерами решенияп —> оо стремится к 1. 

Формула полной вероятности - определение и вычисление с примерами решения

Доказательство.

Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения= (разделим все части неравенства на положительное число Формула полной вероятности - определение и вычисление с примерами решения)Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения.

Пример №15

Вероятность появления события А в каждом из 100 независимых испытаний постоянна и равна 0,8. Найти вероятность того, что событие появиться не менее 75 раз и не более 90 раз.

Решение.

Количество испытаний n = 100, вероятность успеха р = 0,8, вероятность неудачи q = 1 – 0,8 = 0,2 , Формула полной вероятности - определение и вычисление с примерами решения = 75, Формула полной вероятности - определение и вычисление с примерами решения – 90.

Найдем Формула полной вероятности - определение и вычисление с примерами решения:

Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения.

По теореме 2:

Формула полной вероятности - определение и вычисление с примерами решения(по таблице для функции Лапласа) = Формула полной вероятности - определение и вычисление с примерами решения.

Наивероятнейшее число появления события в независимых испытаниях

Определение 28. Число Формула полной вероятности - определение и вычисление с примерами решения наступления события в независимых испытаниях, в каждом из которых вероятность появления события А равна р, называется наивероятнейшим, если вероятность того, что событие наступит в этих испытаниях Формула полной вероятности - определение и вычисление с примерами решения раз превышает или, по крайней мере, не меньше вероятности остальных возможных исходов испытаний.

Наивероятнейшее число Формула полной вероятности - определение и вычисление с примерами решения определяется из двойного неравенства:

Формула полной вероятности - определение и вычисление с примерами решения,

причем 1) если (np – q) -дробное, то существует одно Формула полной вероятности - определение и вычисление с примерами решения, 2) если (nр- q) – целое, то существует два наивероятнейших числа, 3) если nр – целое, то Формула полной вероятности - определение и вычисление с примерами решения = nр.

Пример №16

Испытывается каждый из 15 элементов некоторого устройства. Вероятность того, что элемент выдержит испытание, равна 0,9. Найти наивероятнейшее число элементов, которые выдержат испытание и вероятность этого числа.

Решение.

Количество испытаний n = 15, вероятность успеха р = 0,9, вероятность неудачи q = 0,1.

Формула полной вероятности - определение и вычисление с примерами решения,   Формула полной вероятности - определение и вычисление с примерами решения.

Т.к. Формула полной вероятности - определение и вычисление с примерами решения — целое число, то Формула полной вероятности - определение и вычисление с примерами решения = 14— наивероятнейшее число элементов, выдержавших испытание. Вероятность этого числа найдем по формуле Бернулли:

Формула полной вероятности - определение и вычисление с примерами решения. (Удобнее было по локальной формуле Муавра – Лапласа).

Всё о формуле полной вероятности

Пусть событие Формула полной вероятности - определение и вычисление с примерами решения может произойти с одним и только с одним из несовместимых событий Формула полной вероятности - определение и вычисление с примерами решения образующих полную группу. Иными словами, событие Формула полной вероятности - определение и вычисление с примерами решения появится, если произойдет событие B1 и при этом появится событие Формула полной вероятности - определение и вычисление с примерами решения, или произойдет событие B2 и при этом появится событие Формула полной вероятности - определение и вычисление с примерами решения и т.д. Символическая запись этой фразы имеет вид

Формула полной вероятности - определение и вычисление с примерами решения

В силу несовместимости событий можно записать Формула полной вероятности - определение и вычисление с примерами решения

Используя теорему умножения вероятностей, получаем формулу Формула полной вероятности - определение и вычисление с примерами решения

которая и называется формулой полной вероятности.

Обычно ее записывают кратко:

Формула полной вероятности - определение и вычисление с примерами решения

Пример №17

Имеется две коробки деталей, в каждой из которых по 10 деталей. В первой коробке среди деталей две низкого сорта, а во второй четыре низкосортных детали. Из первой коробки для нужд производства взяли наугад половину деталей, а оставшиеся высыпали во вторую коробку. Через некоторое время из второй коробки взяли наугад деталь. Какова вероятность того, что это деталь низкого сорта?

Решение. Обозначим через A событие, состоящее в выборе из второй коробки детали низкого сорта. Возможность этого выбора зависит от того, какие именно детали были добавлены во вторую коробку. На этот счет можно выдвинуть следующие предположения: B1 – во вторую коробку добавили пять годных деталей; B2 – добавили одну деталь низкого сорта и четыре доброкачественные; B3 – добавили две детали низкого сорта и три доброкачественные. Пять деталей во вторую коробку можно переложить Формула полной вероятности - определение и вычисление с примерами решения способами. Из них событию B1 благоприятствует Формула полной вероятности - определение и вычисление с примерами решения событию B2Формула полной вероятности - определение и вычисление с примерами решенияа событию B3Формула полной вероятности - определение и вычисление с примерами решения способов. Событие A произойдет, если появится событие B1 и после этого произойдет событие A или появится событие B2 и после этого произойдет событие A или появится B3 и после этого произойдет A. Символически: Формула полной вероятности - определение и вычисление с примерами решения Учитывая несовместность событий Формула полной вероятности - определение и вычисление с примерами решения, имеем Формула полной вероятности - определение и вычисление с примерами решения

Ответ. 1/ 3.

Всё о Формуле Байеса

Пусть событие A может наступить только при появлении одного из несовместных событий Формула полной вероятности - определение и вычисление с примерами решения В этих условиях вероятность события A можно вычислить по формуле полной вероятности (2.4.1). События Формула полной вероятности - определение и вычисление с примерами решения иногда называют «гипотезами», поскольку можно лишь предполагать какое именно из них произойдет. Предположим, что известны вероятности Формула полной вероятности - определение и вычисление с примерами решения Формула полной вероятности - определение и вычисление с примерами решения

Проделан опыт, в результате которого событие A произошло. Тогда вероятности событийФормула полной вероятности - определение и вычисление с примерами решения при условии появления события A определяются по формулам Байеса

Формула полной вероятности - определение и вычисление с примерами решения

Формулы Байеса позволяют переоценивать вероятности гипотез (событий Формула полной вероятности - определение и вычисление с примерами решения) с учетом информации, которую содержит в себе факт появления события A.

Пример №18

По каналу связи передается одна из последовательностей букв Формула полной вероятности - определение и вычисление с примерами решения с вероятностями соответственно 0,5; 0,4; 0,1. Каждая передаваемая буква принимается правильно с вероятностью 0,8 и с вероятностями 0,1 и 0,1 за любую из двух других букв. Предполагается, что искажаются буквы при передаче независимо друг от друга. Найти вероятность того, что передано Формула полной вероятности - определение и вычисление с примерами решения если принято Формула полной вероятности - определение и вычисление с примерами решения

Решение. Для краткости записи формулы обозначим Формула полной вероятности - определение и вычисление с примерами решения через Формула полной вероятности - определение и вычисление с примерами решения Формула полной вероятности - определение и вычисление с примерами решения через Формула полной вероятности - определение и вычисление с примерами решения через Формула полной вероятности - определение и вычисление с примерами решения Тогда по формулам Байеса (2.5.1) 

Формула полной вероятности - определение и вычисление с примерами решения

Ответ. 8/9.

Пример №19

Три стрелка производят по одному выстрелу в одну и ту же мишень. Вероятности попадания в мишень при одном выстреле для этих стрелков соответственно равны 0,8; 0,7; 0,6. Какова вероятность того, что третий стрелок промахнулся, если в мишени оказалось две пробоины?

Решение. Обозначим через А событие, состоящее в появлении двух пробоин в мишени. В отношении двух пробоин могут быть три предположения: В1 – попали первый и второй стрелки, а третий не попал, вероятность чего равна Формула полной вероятности - определение и вычисление с примерами решения В2 – попали первый и третий, а второй не попал, вероятность чего равна Формула полной вероятности - определение и вычисление с примерами решения В3 – попали второй и третий, а первый не попал, вероятность чего равна Формула полной вероятности - определение и вычисление с примерами решения

Заметим, что Формула полной вероятности - определение и вычисление с примерами решения Тогда по формулам Байеса (2.5.1)

Формула полной вероятности - определение и вычисление с примерами решения

Ответ. Формула полной вероятности - определение и вычисление с примерами решения

Пример №20

В партии из 10 изделий с равными шансами может оказаться от нуля до трех бракованных. Наугад взяли и проверили три изделия. Они оказались годными. Какова вероятность того, что остальные изделия в партии тоже годные?

Решение. Насчет содержания в партии бракованных изделий по условиям задачи может быть четыре предположения Формула полной вероятности - определение и вычисление с примерами решения где Формула полной вероятности - определение и вычисление с примерами решения означает, что в партии Формула полной вероятности - определение и вычисление с примерами решениябракованных изделий. По условиям задачи все эти предположения равновозможны и поэтому имеют вероятности Формула полной вероятности - определение и вычисление с примерами решения каждое. Обозначим через A факт проверки трех годных изделий. Требуется найти Формула полной вероятности - определение и вычисление с примерами решения

Заметим, что Формула полной вероятности - определение и вычисление с примерами решения Формула полной вероятности - определение и вычисление с примерами решенияПоэтому по формулам Байеса (2.5.1)

Формула полной вероятности - определение и вычисление с примерами решения

Ответ. Формула полной вероятности - определение и вычисление с примерами решения

Пример №21

Вероятность того, событие B произойдет в течение часа, равна 0,9. Оказалось, что в течение первых 40 мин. событие B не произошло. Какова вероятность того, что это событие появится в оставшиеся 20 мин. времени?

Решение. В отношении события Формула полной вероятности - определение и вычисление с примерами решения могут быть два предположения: либо оно появится Формула полной вероятности - определение и вычисление с примерами решения либо оно не появится Формула полной вероятности - определение и вычисление с примерами решения Обозначим через Формула полной вероятности - определение и вычисление с примерами решения тот факт, что событие Формула полной вероятности - определение и вычисление с примерами решения не появилось в течение первых 40 мин. Нас интересует вероятность Формула полной вероятности - определение и вычисление с примерами решения По формулам Байеса (2.5.1) получим

Формула полной вероятности - определение и вычисление с примерами решения

В задаче по умолчанию предполагается, что событие Формула полной вероятности - определение и вычисление с примерами решения если оно происходит, то равновозможно его появление в любой момент данного часа. Поэтому по геометрическому определению вероятности Формула полной вероятности - определение и вычисление с примерами решения В итоге получаем, что 

Формула полной вероятности - определение и вычисление с примерами решения

Ответ. 3/4.

Пример №22

В кошельке лежат четыре монеты. Три монеты обычных, а у четвертой на той и другой стороне изображен герб. Наугад взяли монету и подбросили три раза. Все три раза выпал герб. Какова вероятность того, что и при четвертом подбрасывании выпадет герб?

Решение. Обозначим через B1 – выбор монеты с одним гербом, через B2 – выбор монеты с двумя гербами. Априорные вероятности этих событий равны: Формула полной вероятности - определение и вычисление с примерами решения и Формула полной вероятности - определение и вычисление с примерами решения

Обозначим через A – выпадение трех гербов подряд. Апостериорные вероятности по формулам Байеса равны: Формула полной вероятности - определение и вычисление с примерами решения

Тогда по формуле полной вероятности (2.4.1):

P(выпадения герба в четвертый раз)Формула полной вероятности - определение и вычисление с примерами решения

Ответ. Формула полной вероятности - определение и вычисление с примерами решения

Подробное объяснение формулы полной вероятности

Постановка задачи: Пусть Формула полной вероятности - определение и вычисление с примерами решения – полная система (группа) попарно несовместных событий (в дальнейшем эти события Формула полной вероятности - определение и вычисление с примерами решениябудем называть гипотезами) т. е. Формула полной вероятности - определение и вычисление с примерами решенияили что то же самое Формула полной вероятности - определение и вычисление с примерами решенияи пусть событие A может произойти лишь совместно с каким-либо одним из этих событий (гипотез).

Требуется найти вероятность события A.

Выведем формулу решения этой задачи. Имеем

Формула полной вероятности - определение и вычисление с примерами решения

маршрутов (схема дорог). Какова вероятность того, что он попадет в пункт А ?
 

Решение. Как видим из схемы дорог, путь туриста обязательно проходит через один из пунктов Формула полной вероятности - определение и вычисление с примерами решения ТогдаФормула полной вероятности - определение и вычисление с примерами решения – гипотеза (предположение) которая состоит в том, что турист попал в пункт Формула полной вероятности - определение и вычисление с примерами решения .

Формула полной вероятности - определение и вычисление с примерами решения

Заметим, что события (гипотезы)Формула полной вероятности - определение и вычисление с примерами решения попарно несовместны и равновероятны, т.е., очевидно, образуют полную группу событий: во-первых,Формула полной вероятности - определение и вычисление с примерами решения, во-вторых Формула полной вероятности - определение и вычисление с примерами решенияСобытие A- турист попал в пункт А. Тогда, нетрудно
видеть (см. схему), что Формула полной вероятности - определение и вычисление с примерами решенияЗначит, по формуле полной вероятности, получаем:Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

Пример №23 (о мудреце и властелине).

Властелин, разгневавшись на мудреца, приказал отрубить ему голову. Но затем, смягчившись, дал мудрецу возможность попытаться спастись. Итак, властелин взял 2 белых и 2 черных шара и предложил мудрецу распределить их по своему усмотрению по двум одинаковым урнам. После чего, палач сначала наугад выберет одну из урн, а затем также наугад, не глядя, вытащит из неё один шар. Мудрец будет помилован, если вытянутый шар оказался белым. Какую стратегию распределения шаров по урнам должен
выбрать мудрец, чтобы быть помилованным? Какова максимальная вероятность спастись мудрецу? Какая стратегия наименее выгодна для него?
 

Решение. Выдвинем гипотезы (предположения) Формула полной вероятности - определение и вычисление с примерами решениякоторые состоят в том, что палач вытащит шар из i – ой урны Формула полной вероятности - определение и вычисление с примерами решенияОчевидно, что эти события Формула полной вероятности - определение и вычисление с примерами решениянесовместны и их сумма является достоверным событием Формула полной вероятности - определение и вычисление с примерами решеният.е. образуют полную группу (систему) событий. И пусть A- это событие состоящее в том, что
палачом вытянут белый шар. Далее, рассмотрим следующие варианты распределения мудрецом шаров по
урнам:
1). В первой урне 2 белых, а во второй 2 черных шара. Тогда Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения

2 Хотим заметить, что далеко не всегда властелины были глупыми людьми, не знающими математики. Так, например, Наполеон был немного математиком, интересовался, в частности, геометрией. Он вёл дискуссии с Лагранжем и Лапласом, когда ещё не был правителем Франции.

Как-то в одной из таких дискуссий Лаплас резко оборвал Бонапарта: «Менее всего мы хотим от Вас, генерал, урока геометрии». В дальнейшем Лаплас стал его главным военным инженером. Наполеону приписывают теорему: «Если на сторонах произвольного треугольника во внешнюю сторону построены равносторонние треугольники, то их центры образуют равносторонний треугольник» – это так называемый вешний треугольник Наполеона.Так же ему приписывают один из знаменитых палиндромов (читается в обе стороны одинаково): «ABLE WAS I ERE I SAW ELBA» – я был силён, пока не увидел Эльбу.

2). В первой и во второй урнах по 1 белому и 1 черному шару. Тогда Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения

3). В первой урне 1 белый, а во второй 1 белый и 2 черных шара. Тогда Формула полной вероятности - определение и вычисление с примерами решения

4). В первой урне 1 черный, а во второй 2 белых и 1 черный шары. Тогда Формула полной вероятности - определение и вычисление с примерами решения

5). Первая урна оказалась пустой, т.е. все шары во второй урне. Тогда Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения

Как видим, наиболее предпочтительной является 3-я стратегия, ей соответствует вероятность быть помилованным равнаяФормула полной вероятности - определение и вычисление с примерами решения– действительно мудрое решение; наименее выгодна – последняя, 5 – я стратегия, где вероятность спастись равна Формула полной вероятности - определение и вычисление с примерами решения
 

Вероятность гипотез. Формула Байеса

Постановка задачи: Пусть Формула полной вероятности - определение и вычисление с примерами решения – полная система (группа) попарно несовместных событий (гипотез) т. е.Формула полной вероятности - определение и вычисление с примерами решения

и пусть событие A может произойти лишь совместно с каким – либо одним из этих событий (гипотез) – ситуация аналогичная той, которая была ранее. И пустьФормула полной вероятности - определение и вычисление с примерами решенияТребуется найти условную вероятность k – ой гипотезы при условии, что событие A произошло, т.е.Формула полной вероятности - определение и вычисление с примерами решения– переоценка гипотез.
По теореме об умножении вероятностей

Формула полной вероятности - определение и вычисление с примерами решенияСледовательно Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

Полученная формула называется формулой Байеса (Бейеса) для переоценки гипотез. Другими словами: вероятность Формула полной вероятности - определение и вычисление с примерами решения гипотезы после испытания равна произведению вероятности Формула полной вероятности - определение и вычисление с примерами решениягипотезы до испытания на соответствующую ей условную вероятность Формула полной вероятности - определение и вычисление с примерами решениясобытия, происшедшего при испытании, деленному на полную вероятностьФормула полной вероятности - определение и вычисление с примерами решения этого события.

Пример №24

При обследовании больного имеется подозрение (т.е. делаются предположения или, что то же самое, выдвигаются гипотезы)
на одно из двух заболеваний Формула полной вероятности - определение и вычисление с примерами решения. Их вероятности в данных условиях равны Формула полной вероятности - определение и вычисление с примерами решения соответственно. Для уточнения диагноза назначается обследование, результатом которого будет отрицательная или положительная реакция. В случае болезни  вероятность положительной реакции равна 0,9 , а в случае болезниФормула полной вероятности - определение и вычисление с примерами решения эта вероятность равна 0,5. Обследования проведены дважды и оба раза реакция оказалась отрицательной. Найти вероятность каждого заболевания.

Формула полной вероятности - определение и вычисление с примерами решения
 

Решение. Во – первых, очевидно, что событияФормула полной вероятности - определение и вычисление с примерами решения образуют полную группу событий. Действительно, эти события несовместны, так как у больного имеется подозрение только лишь на одно из двух заболеваний и сумма событий – есть достоверное событие (обследуемый болен):  Формула полной вероятности - определение и вычисление с примерами решения.Формула полной вероятности - определение и вычисление с примерами решения Во – вторых, если обозначить через A событие, которое состоит в том, что оба обследования дали отрицательный результат, тоФормула полной вероятности - определение и вычисление с примерами решения Таким образом, нетрудно видеть, что

Формула полной вероятности - определение и вычисление с примерами решения

Как видим, при данных результатах обследования следует предполагать болезнь Формула полной вероятности - определение и вычисление с примерами решения
 

Повторение испытаний

Формула Бернулли (схема повторения опытов)

Опыты называются независимыми , если вероятность того или иного исхода каждого опыта не зависит от того, какие исходы имели другие опыты. Независимые опыты могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления какого – либо события A во всех опытах одна и та же, во втором случае – она меняется от опыта к опыту. Ниже мы воспользуемся понятием сложного события, понимая под ним совмещение нескольких отдельных событий, которые называют простыми. Итак, пусть производится n независимых опытов в одинаковых условиях, в каждом из которых некоторое событие A может произойти с одной и той же вероятностью Формула полной вероятности - определение и вычисление с примерами решения. Причём, каждый опыт (испытание) имеет лишь два исхода: событие A может появиться (произойти), либо не появиться. Условно, появление события A будем рассматривать как успех, а его не наступление (т.е. событие Формула полной вероятности - определение и вычисление с примерами решения– как неудачу. Следовательно, вероятность не наступления события A в каждом испытании также постоянна и равнаФормула полной вероятности - определение и вычисление с примерами решения. Данная ситуация, или данная схема проведения опытов называется схемой Бернулли.

Итак, еще раз: схемой Бернулли называется последовательность n независимых испытаний, проводимых при одних и тех же условиях, в каждом из которых событие A либо происходит с постоянной вероятностью p , не зависящей от номера испытания, либо не происходит с вероятностью Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения
 

Ставятся задачи:

Задача №1. Найти вероятность Формула полной вероятности - определение и вычисление с примерами решения того, что в схеме Бернулли из n испытаний событие A произойдет ровно k разФормула полной вероятности - определение и вычисление с примерами решения и, следовательно, не осуществится Формула полной вероятности - определение и вычисление с примерами решения раз.
 

Задача № 2. Найти вероятность Формула полной вероятности - определение и вычисление с примерами решения того, что в схеме Бернулли из n испытаний событие A произойдет не менее Формула полной вероятности - определение и вычисление с примерами решения и не более Формула полной вероятности - определение и вычисление с примерами решения раз 
Формула полной вероятности - определение и вычисление с примерами решениягдеФормула полной вероятности - определение и вычисление с примерами решения заданы.
 

Задача № 3. Найти наивероятнейшее число Формула полной вероятности - определение и вычисление с примерами решения появления события A в схеме Бернулли из n испытаний, при которомФормула полной вероятности - определение и вычисление с примерами решения достигает наибольшего значения.

Решение №1.

ВероятностьФормула полной вероятности - определение и вычисление с примерами решенияне зависит от номера испытания и, что также важно, не требуется чтобы событие A повторилось ровно k раз в определенной последовательности. Предположим, для определенности, что событие A произойдет подряд k раз, а в остальных Формула полной вероятности - определение и вычисление с примерами решенияиспытаниях – не произойдет. Используя теорему об умножении вероятностей, можем в этом случае записать:

Формула полной вероятности - определение и вычисление с примерами решения

Таких несовместных событий столько, сколько сочетаний из n элементов по k элементов в каждом. Поэтому по теореме о вероятности суммы несовместных событий получим формулу, называемую формулой Бернулли:

Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения Легко видеть, что вероятностьФормула полной вероятности - определение и вычисление с примерами решения, вычисленная по формуле Бернулли, является коэффициентом при Формула полной вероятности - определение и вычисление с примерами решения в разложении бинома Формула полной вероятности - определение и вычисление с примерами решения поэтому вероятность Формула полной вероятности - определение и вычисление с примерами решения называется биномиальной, а функция Формула полной вероятности - определение и вычисление с примерами решенияпроизводящей функцией для распределения вероятностей в схеме Бернулли из n испытаний. Разложение бинома Ньютона Формула полной вероятности - определение и вычисление с примерами решения имеет вид:

Формула полной вероятности - определение и вычисление с примерами решения

которую называют биномиальным законом распределения вероятностей события A в n испытаниях схемы Бернулли.

Заметим, что вероятность хотя бы одного появления события A в n испытаниях схемы Бернулли равна: Формула полной вероятности - определение и вычисление с примерами решения. Кстати, подумайте над
следующим вопросом
: честное ли пари вам предлагают, если вы выиграете в том случае, когда при 24-х кратном бросании двух игральных костей хотя бы один раз одновременно появятся две шестёрки? Ответ дайте в конце пары.

Формула полной вероятности - определение и вычисление с примерами решения

(РЕШЕНИЕ. Вероятность одновременного выпадения двух шестерок при одном подбрасывании равна Формула полной вероятности - определение и вычисление с примерами решения , следовательно – не выпадения равна Формула полной вероятности - определение и вычисление с примерами решения . Нетрудно видеть, что испытания, т.е. подбрасывания двух игральных костей 24 раза, удовлетворяют схеме Бернулли, следовательно вероятность одновременного появления двух шестерок хотя бы один раз равна Формула полной вероятности - определение и вычисление с примерами решения .То есть, пари нечестное.)

Другие примеры на применение формулы Бернулли, рассмотрим немного позднее, а именно после того, как решим задачи № 2 и № 3

Решение № 2.

Нетрудно показать, что вероятность Формула полной вероятности - определение и вычисление с примерами решениятого, что в схеме Бернулли из n испытаний событие A произойдет не менее Формула полной вероятности - определение и вычисление с примерами решения и не более Формула полной вероятности - определение и вычисление с примерами решения разФормула полной вероятности - определение и вычисление с примерами решения заданы, может быть вычислена по формуле:Формула полной вероятности - определение и вычисление с примерами решения

Решение № 3

Важной является задача № 3 о наивероятнейшем числе Формула полной вероятности - определение и вычисление с примерами решения появления события A в схеме Бернулли из n испытаний.
Рассмотрим отношение:

Формула полной вероятности - определение и вычисление с примерами решения

Из полученного следует, что:
1) если Формула полной вероятности - определение и вычисление с примерами решеният.е. существует
два максимума;
2) еслиФормула полной вероятности - определение и вычисление с примерами решенияцелая часть числаФормула полной вероятности - определение и вычисление с примерами решениятогда Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

Пример №25

При некоторых условиях стрельбы вероятность p попадания в цель при одном выстреле равна
Формула полной вероятности - определение и вычисление с примерами решения ПроизведеноФормула полной вероятности - определение и вычисление с примерами решения выстрела.

  • а). Каково наивероятнейшее число попаданий в цель?
  • б). Какова его вероятность?
  • в). Какова вероятность двух попаданий?
  • г). Какова вероятность хотя бы одного попадания?

Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения

Пример №26

Некто Сэмюэль Пепайс обратился к Исааку Ньютону с вопросом: какое из событий наиболее вероятно –

  • появление по крайней мере одной «шестерки» при подбрасывании 6-ти игральных костей;
  • хотя бы двух «шестерок» при подбрасывании 12-ти;
  • хотя бы трех «шестерок» при подбрасывании 18-ти?

Решение.
Вероятность q непоявления «шестерки» при одном подбрасывании, как известно, равна Формула полной вероятности - определение и вычисление с примерами решения , следовательно, при шести подбрасываниях равна Формула полной вероятности - определение и вычисление с примерами решения
5 . Таким образом, вероятность появления по крайней мере одной «шестерки» при подбрасывании 6-ти игральных костей может быть найдена по формуле:

Формула полной вероятности - определение и вычисление с примерами решения

Событие «хотя бы две» противоположно событию «либо ни разу, либо один раз», т.е. Формула полной вероятности - определение и вычисление с примерами решения

Событие «хотя бы три» противоположно событию «либо ни разу, либо один раз, либо два раза», т.е.Формула полной вероятности - определение и вычисление с примерами решения

Таким образом, как видим, предпочтительнее первая стратегия – таким и был ответ Ньютона.

Замечу, что при больших значениях числа n испытаний в схеме Бернулли формула для подсчетаФормула полной вероятности - определение и вычисление с примерами решения становится громоздкой для вычислений. В этих случаях пользуются асимптотическими формулами. Рассмотрим асимптотическую формулу Пуассона, которая справедлива при малых p и больших n (распределение редких событий в схеме Бернулли). Другими словамиФормула полной вероятности - определение и вычисление с примерами решениярассматривается как функция трех переменных n,k , p , при условии, что k – фиксировано, а n и p меняютсяФормула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения
 

ТЕОРЕМА Пуассона 3. ПустьФормула полной вероятности - определение и вычисление с примерами решенияТогда в схеме Бернулли Формула полной вероятности - определение и вычисление с примерами решенияили то же самое Формула полной вероятности - определение и вычисление с примерами решения

Доказательство 

Формула полной вероятности - определение и вычисление с примерами решения

Что и требовалось доказать.

При доказательстве можно воспользоваться приближенной формулой Стирлинга.

Следствие: при указанных выше условиях, т.е. при Формула полной вероятности - определение и вычисление с примерами решенияи Формула полной вероятности - определение и вычисление с примерами решения справедлива приближенная формула Пуассона:

Формула полной вероятности - определение и вычисление с примерами решения

Пример №27

Телефонная станция обслуживает 800 абонентов. Для каждого абонента вероятность того, что в течении часа он позвонит на станцию равна p =0,01. Найти вероятность того, что четыре абонента позвонят на станцию в течении часа.

Решение Формула полной вероятности - определение и вычисление с примерами решения

Теорема Муавра – Лапласа (локальная)

Остановлюсь еще на двух предельных теоремах в схеме Бернулли – локальной теореме Муавра – Лапласа (её доказательство получим как частный случай закона больших чисел – предельной теоремы Ляпунова, доказательство которой нам ещё предстоит провести) и интегральной теореме Муавра – Лапласа. Итак:

Формула полной вероятности - определение и вычисление с примерами решения

причем, во-первых, погрешность этой формулы есть величина порядкаФормула полной вероятности - определение и вычисление с примерами решенияво-вторых, для функцииФормула полной вероятности - определение и вычисление с примерами решения составлена таблица её значений. Для отрицательных значений аргумента пользуются той же таблицей, так как, очевидно, Формула полной вероятности - определение и вычисление с примерами решения, то есть функция Формула полной вероятности - определение и вычисление с примерами решения четная. Заметим также, что график функцииФормула полной вероятности - определение и вычисление с примерами решенияназывается кривой Гаусса (см. рис.).

Формула полной вероятности - определение и вычисление с примерами решения

интегральная приближенная формула Лапласа ( при большихФормула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения

Для функцииФормула полной вероятности - определение и вычисление с примерами решения также есть табличные значения, когда Формула полной вероятности - определение и вычисление с примерами решения справедливо неравенство Формула полной вероятности - определение и вычисление с примерами решения
равносильно условию Формула полной вероятности - определение и вычисление с примерами решения (график функции Формула полной вероятности - определение и вычисление с примерами решения см. на рис.). Отметим, что точность растет с ростом произведения npq, и, обычно, пользуются этими формулами в случае, когда Формула полной вероятности - определение и вычисление с примерами решения

Формула полной вероятности - определение и вычисление с примерами решения
Замечание: если функция Лапласа записана в виде Формула полной вероятности - определение и вычисление с примерами решенияИногда функция Лапласа может быть записана в виде

Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решенияОтметим, что в схеме Бернулли рассматривались независимые испытания. Если же вероятность наступления события в k -ом опыте зависит от результата только предыдущего, Формула полной вероятности - определение и вычисление с примерами решения – ого опыта, то такая схема называется цепью Маркова.

Формула полной вероятности и сложные задачи

В данном разделе мы рассмотрим более сложные задачи, имеющие большое практическое значение. Эти задачи встречается на практике в случае, если имеются несколько возможных сценариев развития событий (несколько вероятных гипотез). Известны как величины вероятности реализации каждого из сценариев, так и вероятность наступления интересующего нас события для любого из этих сценариев, а нас интересует, какова полная (совокупная) вероятность наступления интересующего нас события.

Предположим, что в результате опыта может произойти одно из n несовместных событий (гипотез) Формула полной вероятности - определение и вычисление с примерами решения Пусть также имеется некоторое событие А и известны Формула полной вероятности - определение и вычисление с примерами решения – вероятность гипотезы, Формула полной вероятности - определение и вычисление с примерами решения – условная вероятность события А при этой гипотезе). Тогда вероятность события А вычисляется по формуле полной вероятности: Формула полной вероятности - определение и вычисление с примерами решения

Пример №28

Из 40 деталей 10 изготовлены в первом цехе, 25 – во втором, а остальные – в третьем. Первый и третий цехи дают продукцию отличного качества с вероятностью 0,9, второй цех – с вероятностью 0,7. Какова вероятность того, что взятая наудачу деталь будет отличного качества?

Решение:

Обозначим событие А = {выбрана деталь отличного качества}, Hi= {выбранная деталь изготовлена в i цехе}, i = 1, 2, 3. Тогда Формула полной вероятности - определение и вычисление с примерами решения

По условию задачи Формула полной вероятности - определение и вычисление с примерами решения. По формуле полной вероятности находим искомую вероятность: Формула полной вероятности - определение и вычисление с примерами решения

Пример №29

На рисунке изображена схема дорог. Найти вероятность того, что турист, вышедший из пункта А, попадет в пункт В, если на развилке он наугад выбирает любую дорогу (кроме обратной).

Решение:

Обозначим Нi = {приход туриста в пункт Hi}, i = 1, 2, 3, 4. Поскольку, выйдя из пункта А, он выбирает любую дорогу наугад, то Формула полной вероятности - определение и вычисление с примерами решения Формула полной вероятности - определение и вычисление с примерами решения

Исходя из схемы дорог, определяем, что Формула полной вероятности - определение и вычисление с примерами решенияФормула полной вероятности - определение и вычисление с примерами решения

Таким образом, по формуле полной вероятности Формула полной вероятности - определение и вычисление с примерами решения

Пример №30

Из двенадцати лотерейных билетов пять выигрышных. Билеты вытягиваются по одному без возвращения. Какова вероятность того, что во второй раз вытянут выигрышный билет?

Формула полной вероятности - определение и вычисление с примерами решения

Решение:

Как обычно, вдоль каждой ветви “дерева вероятностей” значения вероятностей перемножаются, а затем значения на концах нужных веток между собой складываются. В результате получаем ответ: Формула полной вероятности - определение и вычисление с примерами решения

Случайные события независимые в совокупности

Следует различать попарно независимые случайные события и случайные события независимые в совокупности.

Определение: События называются попарно независимыми событиями, если любые два из них независимы.

Определение: События Формула полной вероятности - определение и вычисление с примерами решения называются независимыми в совокупности, если каждое из них независимо от произведения любого числа остальных событий.

Замечание: Из определений видно, что из попарной независимости еще не следует, что эти события независимы в совокупности. Это означает, что условие независимости в совокупности является более сильным, чем условие попарной независимости случайных событий.

Теорема: Вероятность наступления хотя бы одного из событий Формула полной вероятности - определение и вычисление с примерами решения независимых в совокупности выражается формулой:

Формула полной вероятности - определение и вычисление с примерами решения.

Доказательство: Обозначим через А событие, состоящее в том, что наступит хотя бы одно из событий Формула полной вероятности - определение и вычисление с примерами решения Очевидно, что противоположные события Формула полной вероятности - определение и вычисление с примерами решения к событиям Формула полной вероятности - определение и вычисление с примерами решения также будут независимы в совокупности. При этом событие Формула полной вероятности - определение и вычисление с примерами решения состоит в том, что в результате опыта не наступает ни одно из случайных событий Формула полной вероятности - определение и вычисление с примерами решения следовательно, Формула полной вероятности - определение и вычисление с примерами решения Так как события Формула полной вероятности - определение и вычисление с примерами решения независимы в совокупности, то Формула полной вероятности - определение и вычисление с примерами решения В силу того, что Формула полной вероятности - определение и вычисление с примерами решениято Формула полной вероятности - определение и вычисление с примерами решения

Пример №31

Пусть прибор содержит N последовательно соединенных блоков. Определить вероятность того, что цепь будет разорвана, если вероятность работы каждого блока равна р и она не зависит от работы других блоков.

Решение:

Пусть А – событие, которое состоит в том, что данная цепь разорвана. Это событие происходит, если выходит из строя хотя бы один из блоков, так как блоки включены последовательно. Противоположное событие состоит в том, что все блоки работают, т.е. Формула полной вероятности - определение и вычисление с примерами решения– событие, заключающееся в работе блока i. По условию задачи Формула полной вероятности - определение и вычисление с примерами решения следовательно, Формула полной вероятности - определение и вычисление с примерами решения Таким образом, вероятность того, что цепь будет разорвана, равна Формула полной вероятности - определение и вычисление с примерами решения

Теорема сложения вероятностей для совместных событий

Если случайные события одновременно появляются в условиях опыта, то имеет место следующая теорема.

Теорема: Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их произведения:

Формула полной вероятности - определение и вычисление с примерами решения

Доказательство: Пусть в результате опыта возможно n равно возможных, несовместных, элементарных исходов. При этом в Формула полной вероятности - определение и вычисление с примерами решения случаях наступает событие А, в Формула полной вероятности - определение и вычисление с примерами решения случаях – событие В, а в m случаях наступает и событие А, и событие B, т.е. событие Формула полной вероятности - определение и вычисление с примерами решения Таким образом, число исходов, в которых наступает или событие А , или событие В (т.е. событие А + В), равно Формула полной вероятности - определение и вычисление с примерами решения Согласно классическому определению вероятности вероятность суммы случайных, совместных событий А и В равна

Формула полной вероятности - определение и вычисление с примерами решения

Замечание: Методом математической индукции вышеприведенная теорема может быть обобщена на любое число совместных событий, например, в случае 3 совместных событий А, В и С теорема принимает вид:

Формула полной вероятности - определение и вычисление с примерами решения

Пример №32

Найти вероятность того, что взятое наугад число из чисел от 10 до 20 делится или на 2, или на 3.

Решение:

Всего равновозможных, элементарных исходов 11 (числа от 10 включительно до 20 включительно). В 6 случаях (10, 12, 14, 16, 18, 20) число кратно 2; в 3 случаях (12, 15, 18) число кратно 3; в 2 случаях (12, 18) число кратно и 2, и 3. Пусть событие А состоит в том, что наугад взятое число кратно 2, а событие В состоит в том, что наугад взятое число кратно 3. Сложное событие С состоит в том, что наугад взятое число делится или на 2, или на 3, т.е. С = А + В. Следовательно, вероятность этого события равна:

Формула полной вероятности - определение и вычисление с примерами решения

Все вышерассмотренные теоремы объединяются в теории вероятностей общим названием “основные теоремы теории вероятностей”.

Формула полной вероятности и события

Формула полной вероятности является следствием основных теорем теории вероятностей: теорем сложения и умножения вероятностей событий.

Пусть некоторое случайное событие А наступает с одним и только с одним из несовместных событий Формула полной вероятности - определение и вычисление с примерами решения

Определение: СобытияФормула полной вероятности - определение и вычисление с примерами решения называются гипотезами, так как заранее неизвестно, какое из этих событий произойдет.

Теорема: Формула полной вероятности определяет вероятность случайного

события л, как сумму произведений вероятности каждой гипотезы Формула полной вероятности - определение и вычисление с примерами решения на условную вероятность события А при условии реализации гипотезы Формула полной вероятности - определение и вычисление с примерами решения, т.е. Формула полной вероятности - определение и вычисление с примерами решения

Доказательство: Событие А наступает с одним и только с одним из несовместных событий Формула полной вероятности - определение и вычисление с примерами решения В силу того, что события Формула полной вероятности - определение и вычисление с примерами решения несовместны, то по теореме сложения вероятностей для несовместных событий имеем: Формула полной вероятности - определение и вычисление с примерами решения Используя теорему об умножении вероятностей зависимых событий, получаем искомую формулу: Формула полной вероятности - определение и вычисление с примерами решения

Пример №33

Пусть на сборку поступают детали с двух автоматических станков. Первый станок дает в среднем 0.3 % брака, а второй – 0.15 % брака. Производительность второго станка в два раза выше, чем первого станка. Найти вероятность того, что наугад взятая деталь окажется бракованной.

Решение:

Пусть событие А состоит в том, что наугад взятая деталь окажется бракованной. Тогда гипотеза Формула полной вероятности - определение и вычисление с примерами решения заключается в том, что эта деталь изготовлена на первом станке, а гипотеза Формула полной вероятности - определение и вычисление с примерами решения заключается в том, что эта деталь изготовлена на втором станке. Очевидно, что эти гипотезы являются несовместными событиями. В виду различной производительности станков обозначим через х количество деталей, изготовленных на первом станке, тогда на втором станке изготавливается 2х деталей. Общее число деталей, которые были изготовлены на обоих станках равна Зх. Следовательно, вероятности гипотез равны: Формула полной вероятности - определение и вычисление с примерами решения— для первой гипотезы и Формула полной вероятности - определение и вычисление с примерами решения – для второй гипотезы.

Вероятности события А при условии реализации первой и второй гипотез равны: Формула полной вероятности - определение и вычисление с примерами решения соответственно. Согласно формуле полной вероятности вероятность того, что наугад взятая деталь окажется бракованной, равна:

Формула полной вероятности - определение и вычисление с примерами решения

Формула вероятностей гипотез (формула Байеса)

Ниже будет получена формула, которая является следствием основных теорем теории вероятностей и формулы полной вероятности. Эта формула применяется для решения задач следующего типа. Пусть проводится эксперимент, в результате которого может появиться или не появиться событие л, которое наступает с одним и только с одним из несовместных событий Формула полной вероятности - определение и вычисление с примерами решения (Формула полной вероятности - определение и вычисление с примерами решения). Предположим, что события Формула полной вероятности - определение и вычисление с примерами решения образуют полную группу и вероятности их появления Формула полной вероятности - определение и вычисление с примерами решения известны до проведения опыта. В результате проведения эксперимента событие А произошло. Используя этот факт, необходимо определить, какая из гипотез была ближе к истине, т.е. определить вероятность каждой гипотезы при условии реализации события А. Ответ на поставленный вопрос дает следующая теорема.

Теорема: Вероятность гипотезы Формула полной вероятности - определение и вычисление с примерами решения при условии реализации события А равна отношению произведения вероятности гипотезы на условную вероятность события А к паз ной вероятности события А:

Формула полной вероятности - определение и вычисление с примерами решения

Доказательство: Событие А наступает с одним и только с одним из несовместных событий Формула полной вероятности - определение и вычисление с примерами решения т.е. в каждом опыте происходит событие Формула полной вероятности - определение и вычисление с примерами решения По теореме умножения вероятностей для зависимых событий:Формула полной вероятности - определение и вычисление с примерами решения

Следовательно, Формула полной вероятности - определение и вычисление с примерами решения Воспользовавшись формулой полной вероятности, получим формулу Байеса: Формула полной вероятности - определение и вычисление с примерами решения

Пример №34

Однотипные пластмассовые детали изготавливаются на 3 прессах. Первый пресс выпускает 50 % всех деталей, второй – 40 %, третий – 10 % . При этом с первого пресса сходит в среднем 0.025 нестандартных деталей, со второго – 0.02 и с третьего – 0.015. Все детали поступают на сборку. Взятая наудачу деталь оказалась нестандартной. Какова вероятность того, что она изготовлена на первом прессе.

Решение:

Событие А состоит в том, что наудачу взятая деталь изготовлена на первом прессе. Гипотеза Формула полной вероятности - определение и вычисление с примерами решения заключается в том, что эта деталь изготовлена на первом прессе, гипотеза Формула полной вероятности - определение и вычисление с примерами решения – на втором прессе, а гипотеза Формула полной вероятности - определение и вычисление с примерами решения – на третьем прессе.

По условию задачи Формула полной вероятности - определение и вычисление с примерами решения – для первой гипотезы, Формула полной вероятности - определение и вычисление с примерами решения – для второй гипотезы и Формула полной вероятности - определение и вычисление с примерами решения – для третьей гипотезы. Вероятности события А при условии реализации первой, второй и третьей гипотез, соответственно, равны: Формула полной вероятности - определение и вычисление с примерами решения Согласно фор- муле пал ной вероятности вероятность того, что наугад взятая деталь окажется нестандартной, равна: Формула полной вероятности - определение и вычисление с примерами решения

Используя формулу Байеса, получим Формула полной вероятности - определение и вычисление с примерами решения

Независимые испытания и формула Бернулли

Пусть испытания повторяются n раз, причем событие А появляется в каждом опыте с одной и той же вероятностью р или не появляется с одной и той же вероятностью Формула полной вероятности - определение и вычисление с примерами решения

Определение: Испытания называются независимыми, если вероятность события А не зависит от того, какие события появились в предыдущих опытах, или появятся в последующих экспериментах.

Пример:

Независимы ли следующие испытания: а) многократное бросание кубика; б) извлечение карты из колоды без ее возвращения в колоду (выяснить самостоятельно).

Формула Бернулли

Теорема: Пусть проводится серия из n независимых испытаний, в каждом из которых событие А появляется с постоянной вероятностью Формула полной вероятности - определение и вычисление с примерами решения или не появляется с постоянной вероятностью Формула полной вероятности - определение и вычисление с примерами решения Тогда вероятность появления со- бытия А ровно m раз в серии из n независимых испытаний равна: Формула полной вероятности - определение и вычисление с примерами решения

Доказательство: Пусть Формула полной вероятности - определение и вычисление с примерами решения событие, состоящее в том, что в серии из n независимых испытаний событие А появится ровно m раз. Пусть Формула полной вероятности - определение и вычисление с примерами решения событие, описывающее появление события А в опыте i, а ему противоположное событие обозначим через Формула полной вероятности - определение и вычисление с примерами решения Так как вероятность появления события А в опыте i равна Формула полной вероятности - определение и вычисление с примерами решения то вероятность появления противоположного события Формула полной вероятности - определение и вычисление с примерами решения Формула полной вероятности - определение и вычисление с примерами решения Для наступления события Формула полной вероятности - определение и вычисление с примерами решения безразлично, в каких опытах произойдет событие A, а в каких – событие Формула полной вероятности - определение и вычисление с примерами решения важно, чтобы число появлений события A в данной серии равнялось числу m. В качестве одного из вариантов чередования событий Формула полной вероятности - определение и вычисление с примерами решения благоприятствующих появлению события Формула полной вероятности - определение и вычисление с примерами решения рассмотрим такое событие Формула полной вероятности - определение и вычисление с примерами решения для которого событие А появится в m первых опытах и не появится в (n-m) последующих экспериментах, т.е.

Формула полной вероятности - определение и вычисление с примерами решения

Воспользуемся теоремой умножения вероятностей для независимых событий, получим: Формула полной вероятности - определение и вычисление с примерами решения Аналогичные к Формула полной вероятности - определение и вычисление с примерами решения события отличаются от него только чередованием событий Формула полной вероятности - определение и вычисление с примерами решения Все эти события равновероятны и их число равно количеству сочетаний из n элементов по m элементов, т.е. Формула полной вероятности - определение и вычисление с примерами решенияТаким образом, интересующее нас событие можно записать в виде Формула полной вероятности - определение и вычисление с примерами решения причем события Формула полной вероятности - определение и вычисление с примерами решения несовместны. По теореме сложения вероятностей несовместных событий вероятность изучаемого события равна Формула полной вероятности - определение и вычисление с примерами решения В правой части равенства суммируется Формула полной вероятности - определение и вычисление с примерами решения одинаковых слагаемых, следовательно, Формула полной вероятности - определение и вычисление с примерами решения O5. Формула Формула полной вероятности - определение и вычисление с примерами решения называется биномиальной или формулой Бернулли.

Пример №35

Монета подбрасывается 6 раз. Определить вероятность того, что герб выпадет а) 5 раз; б) от 2 до 4 раз.

Решение:

Вероятность выпадения герба не изменяется от опыта к опыту и равна Формула полной вероятности - определение и вычисление с примерами решения а, следовательно, вероятность выпадения решки равна Формула полной вероятности - определение и вычисление с примерами решения Для определения вероятности выпадения герба 5 раз в серии из 6 испытаний воспользуемся формулой Бернулли: Формула полной вероятности - определение и вычисление с примерами решения Событие, состоящее в том, что герб выпадет от 2 до 4 раз, соответствует события, которое состоит в том, что герб выпадет или 2 раза, или 3 раза, или 4 раза. Следовательно, вероятность Формула полной вероятности - определение и вычисление с примерами решения Вычислим соответствующие вероятности: Формула полной вероятности - определение и вычисление с примерами решения Таким образом, искомая вероятность равна Формула полной вероятности - определение и вычисление с примерами решения

При больших значениях чисел m и n применение формулы Бернулли затруднительно, так как вычисление коэффициентов Формула полной вероятности - определение и вычисление с примерами решения становится достаточно сложным. Поэтому при фиксированном значении т и в случае, когда вероятность появления события р<0.1, применяется формула Пуассона, а при р>0.1 – дифференциальная формула Муавра-Лапласа. Если Формула полной вероятности - определение и вычисление с примерами решения, то применяют интегральную формулу Муавра-Лапласа.

Формула Пуассона

Если при проведении серии испытаний по схеме Бернулли вероятность появления события А мала (Формула полной вероятности - определение и вычисление с примерами решения), то при больших значениях чисел m и n применяют приближенную формулу Пуассона: Формула полной вероятности - определение и вычисление с примерами решения

Формулы Муавра-Лапласа

Если при проведении серии испытаний по схеме Бернулли вероятность появления события А р>0.1, то при больших значениях чисел m и n применяют дифференциальную формулу Муавра-Лапласа: Формула полной вероятности - определение и вычисление с примерами решения дифференциальная функция Муавра-Лапласа Формула полной вероятности - определение и вычисление с примерами решения

Замечание: В общем случае дифференциальная формула Муавра-Лапласа применяется при выполнении неравенств Формула полной вероятности - определение и вычисление с примерами решения

Если при проведении серии испытаний по схеме Бернулли числа m и n принимают большие значения, причем число m принимает значения от Формула полной вероятности - определение и вычисление с примерами решения до Формула полной вероятности - определение и вычисление с примерами решения то применяют интегральную формулу Муавра-Лапласа:

Формула полной вероятности - определение и вычисление с примерами решения где Формула полной вероятности - определение и вычисление с примерами решения– интегральная функция Муавра-Лапласа и Формула полной вероятности - определение и вычисление с примерами решения

  • Повторные независимые испытания
  • Простейший (пуассоновский) поток событий
  • Случайные величины
  • Числовые характеристики случайных величин
  • Комбинаторика – правила, формулы и примеры
  • Классическое определение вероятности
  • Геометрические вероятности
  • Теоремы сложения и умножения вероятностей

Понравилось? Добавьте в закладки

Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записывается как $A subset B$.

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

$$P(A+B)=P(A)+P(B).$$

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

$$Pleft(sum_{i=1}^{n}A_i right)=sum_{i=1}^{n} P(A_i).$$

Если случайные события $A_1, A_2, …, A_n$ образуют полную группу несовместных событий, то имеет место равенство
$P(A_1)+P(A_2)+…+P(A_n)=1.$ Такие события (гипотезы) используются при решении задач на полную вероятность.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

$$P(A+B)=P(A)+P(B)-P(Acdot B).$$

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

$$P(Acdot B)=P(A)cdot P(B).$$

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.

Примеры решений задач с событиями

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

– вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

– черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда – промах первого, ;

– промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А+В – хотя бы одно попадание,

.

г) – одно попадание,

.

См. обучающую статью “решение задач о стрелках”

Пример. Решить задачу, применяя теоремы сложения и умножения. Мастер обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что первый станок потребует внимания рабочего в течение смены, равна 0,4, второй – 0,6, третий – 0,3. Найти вероятность того, что в течение смены: а) ни один станок не потребует внимания мастера, б) ровно 1 станок потребует внимания мастера.

Решение.

Вводим базовые независимые события $A_i$ = (Станок $i$ потребовал внимания рабочего в течение смены), $i=1, 2, 3$. По условию выписываем вероятности: $p_1=0,4$, $p_2=0,6$, $p_3=0,3$. Тогда $q_1=0,6$, $q_2=0,4$, $q_3=0,7$.

Найдем вероятность события $X$=(Ни один станок не потребует внимания в течение смены):

$$
P(X)=Pleft(overline{A_1} cdot overline{A_2} cdot overline{A_3}right)= q_1 cdot q_2 cdot q_3 =
0,6cdot 0,4 cdot 0,7 = 0,168.
$$

Найдем вероятность события $Z$= (Ровно один станок потребует внимания в течение смены):

$$
P(Z)= \ = P(A_1) cdot Pleft(overline{A_2} right) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1}right) cdot P(A_2) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1} right) cdot Pleft(overline{A_2} right) cdot P(A_3)=\
= p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3 =\ =
0,4cdot 0,4 cdot 0,7+0,6cdot 0,6 cdot 0,7+0,6cdot 0,4 cdot 0,3 = 0,436.
$$

См. обучающую статью “решение задач о станках”

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

2. .

3.

Вероятность наступления хотя бы одного события

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?

Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий $A_1, A_2, …, A_n$, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

$$
P(A)=1-Pleft(overline{A_1}right)cdot Pleft(overline{A_2}right)cdot … cdot Pleft(overline{A_n}right)= 1-q_1 cdot q_2 cdot … cdot q_n.
$$

Если события $A_1, A_2, …, A_n$ имеют одинаковую вероятность $p$, то формула принимает простой вид:

$$
P(A)=1-(1-p)^n=1-q^n.
$$

Примеры решений на эту тему

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События “машина работает” и “машина не работает” (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие “при n выстрелах стрелок попадает в цель хотя бы один раз”. События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

См. обучающую статью “решение задач с хотя бы один…”

Зависимые и независимые случайные события.
Основные формулы сложения и умножения вероятностей

Понятия зависимости и независимости случайных событий. Условная вероятность. Формулы сложения и умножения вероятностей для зависимых и независимых случайных событий. Формула полной вероятности и формула Байеса.

Теоремы сложения вероятностей

Найдем вероятность суммы событий A и B (в предположении их совместности либо несовместности).

Теорема 2.1. Вероятность суммы конечного числа несовместных событий равна сумме их вероятностей:

P{A+B+ldots+N}=P{A}+P{B}+ldots+P{N}.

Пример 1. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12; 45-го — 0,04; 46-го и большего — 0,01. Найти вероятность того, что будет продана пара мужской обуви не меньше 44-го размера.

Решение. Искомое событие D произойдет, если будет продана пара обуви 44-го размера (событие A) или 45-го (событие B), или не меньше 46-го (событие C), т. е. событие D есть сумма событий A,B,C. События A, B и C несовместны. Поэтому согласно теореме о сумме вероятностей получаем

P{D}=P{A+B+C}=P{A}+P{B}+P{C}=0,!12+0,!04+0,!01 =0,!17.

Пример 2. При условиях примера 1 найти вероятность того, что очередной будет продана пара обуви меньше 44-го размера.

Решение. События “очередной будет продана пара обуви меньше 44-го размера” и “будет продана пара обуви размера не меньше 44-го” противоположные. Поэтому по формуле (1.2) вероятность наступления искомого события

P{overline{D}}=1-P{D}=1-0,!17=0,!83.

поскольку P{D}=0,!17, как это было найдено в примере 1.

Теорема 2.1 сложения вероятностей справедлива только для несовместных событий. Использование ее для нахождения вероятности совместных событий может привести к неправильным, а иногда и абсурдным выводам, что наглядно видно на следующем примере. Пусть выполнение заказа в срок фирмой “Electra Ltd” оценивается вероятностью 0,7. Какова вероятность того, что из трех заказов фирма выполнит в срок хотя бы какой-нибудь один? События, состоящие в том, что фирма выполнит в срок первый, второй, третий заказы обозначим соответственно A,B,C. Если для отыскания искомой вероятности применить теорему 2.1 сложения вероятностей, то получим P{A+B+C}=0,!7+0,!7+0,!7=2,!1. Вероятность события оказалась больше единицы, что невозможно. Это объясняется тем, что события A,B,C являются совместными. Действительно, выполнение в срок первого заказа не исключает выполнения в срок двух других.

Сформулируем теорему сложения вероятностей в случае двух совместных событий (будет учитываться вероятность их совместного появления).

Теорема 2.2. Вероятность суммы двух совместных событий равна сумме вероятностей этих двух событий без вероятности их совместного появления:

P{A+B}=P{A}+P{B}-P{AB}.


Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Пример 3. Монета брошена два раза. Вероятность появления “герба” в первом испытании (событие A) не зависит от появления или не появления “герба” во втором испытании (событие B). В свою очередь, вероятность появления “герба” во втором испытании не зависит от результата первого испытания. Таким образом, события A и B независимые.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события B и обозначается P{B|A}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости — в виде P{B|A}ne{P{B}}. Рассмотрим пример вычисления условной вероятности события.


Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.

Решение. Обозначим A извлечение изношенного резца в первом случае, а overline{A} — извлечение нового. Тогда P{A}=frac{2}{5},~P{overline{A}}=1-frac{2}{5}=frac{3}{5}. Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.

Обозначим B событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:

P{B|A}=frac{1}{4},~~~P{B|overline{A}}=frac{2}{4}=frac{1}{2}.

Следовательно, вероятность события B зависит от того, произошло или нет событие A.


Формулы умножения вероятностей

Пусть события A и B независимые, причем вероятности этих событий известны. Найдем вероятность совмещения событий A и B.

Теорема 2.3. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

P{AB}=P{A}cdot P{B}.

Следствие 2.1. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

P{A_1A_2ldots{A_n}}=P{A_1}P{A_2}ldots{P{A_n}}.


Пример 5. Три ящика содержат по 10 деталей. В первом ящике — 8 стандартных деталей, во втором — 7, в третьем — 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие A), P{A}=frac{8}{10}=frac{4}{5}. Вероятность того, что из второго ящика взята стандартная деталь (событие B), P{B}=frac{7}{10}. Вероятность того, что из третьего ящика взята стандартная деталь (событие C), P{C}=frac{9}{10}. Так как события A, B и C независимые в совокупности, то искомая вероятность (по теореме умножения)

P{ABC}=P{A}P{B}P{C}=frac{4}{5}frac{7}{10}frac{9}{10}=0,!504.

Пусть события A и B зависимые, причем вероятности P{A} и P{B|A} известны. Найдем вероятность произведения этих событий, т. е. вероятность того, что появится и событие A, и событие B.

Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

P{AB}=P{A}cdot P{B|A};qquad P{AB}=P{B}cdot P{A|B}

Следствие 2.2. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.


Пример 6. В урне находятся 5 белых шаров, 4 черных и 3 синих. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в урну. Найти вероятность того, что при первом испытании появится белый шар (событие A), при втором — черный (событие B) и при третьем — синий (событие C).

Решение. Вероятность появления белого шара при первом испытании P{A}=frac{5}{12}. Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, т. е. условная вероятность P{B|A}=frac{4}{11}. Вероятность появления синего шара при третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором — черный, P{C|AB}=frac{3}{10}. Искомая вероятность

P{ABC}=P{A}P{B|A}P{C|AB}=frac{5}{12}frac{4}{11}frac{3}{10}.


Формула полной вероятности

Теорема 2.5. Если событие A наступает только при условии появления одного из событий B_1,B_2,ldots{B_n}, образующих полную группу несовместных событий, то вероятность события A равна сумме произведений вероятностей каждого из событий B_1,B_2,ldots{B_n} на соответствующую условную вероятность события B_1,B_2,ldots{B_n}:

P{A}=sumlimits_{i=1}^{n}P{B_i}P{A|B_i}.

(2.1)

При этом события B_i,~i=1,ldots,n называются гипотезами, а вероятности P{B_i} — априорными. Эта формула называется формулой полной вероятности.

Пример 7. На сборочный конвейер поступают детали с трех станков. Производительность станков не одинакова. На первом станке изготовляют 50% всех деталей, на втором — 30%, на третьем — 20%. Вероятность качественной сборки при использовании детали, изготовленной на первом, втором и третьем станке, соответственно 0,98, 0,95 и 0,8, Определить вероятность того, что узел, сходящий с конвейера, качественный.

Решение. Обозначим A событие, означающее годность собранного узла; B_1, B_2 и B_3 — события, означающие, что детали сделаны соответственно на первом, втором и третьем станке. Тогда

P{B_1}=0,!5;~~~~~P{B_2}=0,!3;~~~~~P{B_3}=0,!2;
P{A|B_1}=0,!98;~~~P{A|B_2}=0,!95;~~~P{A|B_3}=0,!8.

Искомая вероятность

begin{gathered}P{A}=P{B_1}P{A|B_1}+P{B_2}P{A|B_2}+P{B_3}P{A|B_3}=hfill\=0,!5cdot0,!98+0,!3cdot0,!95+0,!2cdot0,!8=0,!935.end{gathered}


Формула Байеса

Эта формула применяется при решении практических задач, когда событие A, появляющееся совместно с каким-либо из событий B_1,B_2,ldots{B_n}, образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез B_1,B_2,ldots{B_n}. Априорные (до опыта) вероятности P{B_1},P{B_2},ldots{P{B_n}} известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности P{B_1|A},P{B_2|A},ldots{P{B_n|A}}. Для гипотезы B_j формула Байеса выглядит так:

P{B_j|A}=frac{P{B_j} P{A|B_j}}{P{A}}.

Раскрывая в этом равенстве P{A} по формуле полной вероятности (2.1), получаем

P{B_j|A}=dfrac{P{B_j}P{A|B_j}}{sumlimits_{i=1}^{n}P{B_i}P{A|B_i}}.


Пример 8. При условиях примера 7 рассчитать вероятности того, что в сборку попала деталь, изготовленная соответственно на первом, втором и третьем станке, если узел, сходящий с конвейера, качественный.

Решение. Рассчитаем условные вероятности по формуле Байеса:

для первого станка

P{B_1|A}=dfrac{P{B_1}P{A|B_1}}{P{A}}=frac{0,!5cdot0,!98}{0,!935}approx0,!525;

для второго станка

P{B_2|A}=dfrac{P{B_2}P{A|B_2}}{P{A}}=frac{0,!3cdot0,!95}{0,!935}approx0,!304;

для третьего станка

P{B_3|A}=dfrac{P{B_3}P{A|B_3}}{P{A}}=frac{0,!2cdot0,!8}{0,!935}approx0,!171.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Совокупность – вероятность

Cтраница 1

Совокупность вероятностей ( 3) носит название гипергеомет-рического распределения.
 [1]

Совокупность вероятностей (18.28) называется биномиальным распределением вероятностей.
 [2]

Совокупность вероятностей Рт п называется биномиальным законом распределения.
 [3]

Совокупность вероятностей Рг называется условным распределением числа точек пересечения G с прямой.
 [4]

Для некоторой заданной совокупности вероятностей и для некоторых заданных каналов, кодирующей и декодирующей систем существует поддающаяся вычислению вероятность ошибки Ре, которая является вероятностью того, что некоторое сообщение будет закодировано и принято таким образом, что функция Л даст на выходе сообщение, отличное от переданного.
 [5]

Отметим, что совокупность вероятностей, состоящую из п 1 биномиальных вероятностей, называют биномиальным законом распределения вероятностей.
 [6]

Вероятность безотказной работы всего устройства в целом состоит из совокупности вероятностей безотказной работы узлов и систем, входящих в него. При этом необходимо иметь в виду, как в любом узле или системе соединены друг с другом детали: последовательно или параллельно. Последовательным считают такое соединение, когда отказ любой детали вызывает отказ всего узла или системы, а параллельным – когда отказ узла или системы наступает после выхода из строя всех параллельно соединенных деталей, входящих в них. Системы или узлы с параллельным соединением деталей называют резервированными.
 [7]

Двусторонний дискретный канал без памяти с конечными алфавитами был определен с помощью совокупности вероятностей перехода P yi, yz xit х2, где х и хг являются входными буквами соответственно первого и второго конца канала, а z / i и у2 соответствующие буквы на его выходах. Каждая из этих букв принимает значение из соответствующего конечного алфавита.
 [8]

Легко заметить, что вероятность Рп ( т) равна коэффициенту при хп в разложении бинома ( д – – рх) по степеням х; в силу этого свойства совокупность вероятностей Рп ( т) называют биномиальным законом распределения вероятностей.
 [9]

Стандартная модель включает схему Кобаяши-Маскавы ( см. 8.4), согласно которой слабые взаимодействия между кварками с зарядами 2 / 3 и – 1 / 3 должны приводить к СР-несохранению, величина которого жестко связана с совокупностью вероятностей этих взаимодействий.
 [10]

Показатели свойств, обуславливающих надежность, включая ремонтопригодность трубопровода, имеют вероятностный характер и характеризуются случайными величинами. Совокупность вероятностей всех значений, которые может принимать случайная величина, называется распределением вероятностей.
 [11]

Полученная формула носит наименование формулы Бернулли. В силу этого свойства совокупность вероятностей Р ( т) называют биномиальным законом распределения вероятностей.
 [12]

Иначе говоря, первоначальная вероятность величины / увеличивается или уменьшается в esl раз и образованные величины нормируются так, чтобы дать в сумме единицу. Для больших положительных значений s эта отклоненная совокупность вероятностей Qs ( Г) увеличивает вероятности Рг ( /) для положительных / и уменьшает их для / отрицательных.
 [13]

На практике оказалось проще искать предельные доверительные интервалы, соответствующие абсолютному ( 100 %) уровню надежности. После этого поиск доверительных интервалов для всей совокупности вероятностей сводится к последовательному решению не более чем 2т х задач линейного программирования. В каждой из них ищется либо наибольшее, либо наименьшее возможное значение оценки ptj для одной выбранной субъективной вероятности. Нетрудно показать, что найденным таким образом границам доверительного интервала соответствует 100 % – ный уровень доверительной вероятности, трактуемой в обычном понимании.
 [14]

Неравенство рх р2 остается справедливым и в том случае, когда разность р2 – pi близка к 1 и когда она близка к нулю. Но как это не парадоксально в принятых допущениях, на помощь нам приходит размерность решаемых задач: с ростом числа рассматриваемых следствий и альтернатив неопределенность числовой интерпретации отношений между величинами, задаваемых знаком или, в целом для совокупности вероятностей р / имеет тенденцию к снижению.
 [15]

Страницы:  

   1

   2

ВВЕДЕНИЕ

Многие вещи нам непонятны не потому, что
наши понятия слабы;
но потому, что сии вещи не входят в круг наших
понятий.
Козьма Прутков

Основная цель изучения математики в средних
специальных учебных заведениях состоит в том,
чтобы дать студентам набор математических
знаний и навыков, необходимых для изучения
других программных дисциплин, использующих в той
или иной мере математику, для умения выполнять
практические расчеты, для формирования и
развития логического мышления.

В данной работе последовательно вводятся все
базовые понятия раздела математики “Основы
теории вероятностей и математической
статистики”, предусмотренные программой и
Государственными образовательными стандартами
среднего профессионального образования
(Министерство образования Российской Федерации.
М., 2002г.), формулируются основные теоремы, большая
часть которых не доказывается. Рассматриваются
основные задачи и методы их решения и технологии
применения этих методов к решению практических
задач. Изложение сопровождается подробными
комментариями и многочисленными примерами.

Методические указания могут быть использованы
для первичного ознакомления с изучаемым
материалом, при конспектировании лекций, для
подготовки к практическим занятиям, для
закрепления полученных знаний, умений и навыков.
Кроме того, пособие будет полезно и студентам-
старшекурсникам как справочное пособие,
позволяющее быстро восстановить в памяти то, что
было изучено ранее.

В конце работы приведены примеры и задания,
которые студенты могут выполнять в режиме
самоконтроля.

Методические указания предназначены для
студентов заочной и дневной форм обучения.

ОСНОВНЫЕ ПОНЯТИЯ

Теория вероятностей изучает объективные
закономерности массовых случайных событий. Она
является теоретической базой для математической
статистики, занимающейся разработкой методов
сбора, описания и обработки результатов
наблюдений. Путем наблюдений (испытаний,
экспериментов), т.е. опыта в широком смысле слова,
происходит познание явлений действительного
мира.

В своей практической деятельности мы часто
встречаемся с явлениями, исход которых
невозможно предсказать, результат которых
зависит от случая.

Случайное явление можно охарактеризовать
отношением числа его наступлений к числу
испытаний, в каждом из которых при одинаковых
условиях всех испытаний оно могло наступить или
не наступить.

Теория вероятностей есть раздел математики, в
котором изучаются случайные явления (события) и
выявляются закономерности при массовом их
повторении.

Математическая статистика – это раздел
математики, который имеет своим предметом
изучения методов сбора, систематизации,
обработки и использования статистических данных
для получения научно обоснованных выводов и
принятия решений.

При этом под статистическими данными
понимается совокупность чисел, которые
представляют количественные характеристики
интересующих нас признаков изучаемых объектов.
Статистические данные получаются в результате
специально поставленных опытов, наблюдений.

Статистические данные по своей сущности
зависят от многих случайных факторов, поэтому
математическая статистика тесно связана с
теорией вероятностей, которая является ее
теоретической основой.

I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И
УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

1.1. Основные понятия комбинаторики

В разделе математики, который называется
комбинаторикой, решаются некоторые задачи,
связанные с рассмотрением множеств и
составлением различных комбинаций из элементов
этих множеств. Например, если взять 10 различных
цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то
будем получать различные числа, например 143, 431,
5671, 1207, 43 и т.п.

Мы видим, что некоторые из таких комбинаций
отличаются только порядком цифр (например, 143 и
431), другие – входящими в них цифрами (например, 5671
и 1207), третьи различаются и числом цифр (например,
143 и 43).

Таким образом, полученные комбинации
удовлетворяют различным условиям.

В зависимости от правил составления можно
выделить три типа комбинаций: перестановки,
размещения, сочетания
.

Предварительно познакомимся с понятием факториала.

Произведение всех натуральных чисел от 1 до n
включительно называют n-факториалом и
пишут .

Пример 1.

Вычислить: а) ; б) ; в) .

Решение. а) .

б) Так как и
, то можно
вынести за скобки

Тогда получим

.

в) .

Перестановки.

Комбинация из n элементов, которые отличаются
друг от друга только порядком элементов,
называются перестановками.

Перестановки обозначаются символом Рn,
где n- число элементов, входящих в каждую
перестановку. (Р – первая буква французского
слова permutation– перестановка).

Число перестановок можно вычислить по формуле

или с помощью факториала:

Запомним, что 0!=1 и 1!=1.

Пример 2. Сколькими способами можно
расставлять на одной полке шесть различных книг?

Решение. Искомое число способов равно числу
перестановок из 6 элементов, т.е.

.

Размещения.

Размещениями из m элементов в n в каждом
называются такие соединения, которые отличаются
друг от друга либо самими элементами (хотя бы
одним), либо порядком из расположения.

Размещения обозначаются символом , где m
число всех имеющихся элементов, n– число
элементов в каждой комбинации. (А-первая
буква французского слова arrangement, что означает
“размещение, приведение в порядок”).

При этом полагают, что nm.

Число размещений можно вычислить по формуле

,

т.е. число всех возможных размещений из m
элементов по n равно произведению n последовательных
целых чисел, из которых большее есть m.

Запишем эту формулу в факториальной форме:

.

Пример 3. Сколько вариантов распределения
трех путевок в санатории различного профиля
можно составить для пяти претендентов?

Решение. Искомое число вариантов равно числу
размещений из 5 элементов по 3 элемента, т.е.

.

Сочетания.

Сочетаниями называются все возможные
комбинации из m элементов по n, которые
отличаются друг от друга по крайней мере хотя бы
одним элементом (здесь m и n-натуральные
числа, причем n m).

Число сочетаний из m элементов по n
обозначаются
(С-первая буква французского слова combination
– сочетание).

В общем случае число из m элементов по n
равно числу размещений из m элементов по n,
деленному на число перестановок из n
элементов:

Используя для чисел размещений и перестановок
факториальные формулы, получим:

Пример 4. В бригаде из 25 человек нужно
выделить четырех для работы на определенном
участке. Сколькими способами это можно сделать?

Решение. Так как порядок выбранных четырех
человек не имеет значения, то это можно сделать способами.

Находим по первой формуле

.

Кроме того, при решении задач используются
следующие формулы, выражающие основные свойства
сочетаний:

(по определению полагают и );

.

1.2. Решение комбинаторных задач

Задача 1. На факультете изучается 16 предметов.
На понедельник нужно в расписание поставить 3
предмета. Сколькими способами можно это сделать?

Решение. Способов постановки в расписание трех
предметов из 16 столько, сколько можно составить
размещений из 16 элементов по 3.

.

Задача 2. Из 15 объектов нужно отобрать 10
объектов. Сколькими способами это можно сделать?

Решение.

Задача 3. В соревнованиях участвовало четыре
команды. Сколько вариантов распределения мест
между ними возможно?

Решение.

.

Задача 4. Сколькими способами можно составить
дозор из трех солдат и одного офицера, если
имеется 80 солдат и 3 офицера?

Решение. Солдат в дозор можно выбрать

способами, а офицеров способами. Так как с каждой командой
из солдат может пойти любой офицер, то всего
имеется
способов.

Задача 5. Найти , если известно, что .

Решение.

Так как , то
получим

,

,

,

, .

По определению сочетания следует, что , . Т.о. .

Ответ: 9

1.3. Понятие о случайном событии. Виды
событий. Вероятность события

Всякое действие, явление, наблюдение с
несколькими различными исходами, реализуемое
при данном комплексе условий, будем называть испытанием.

Результат этого действия или наблюдения
называется событием.

Если событие при заданных условиях может
произойти или не произойти, то оно называется случайным.
В том случае, когда событие должно непременно
произойти, его называют достоверным, а в
том случае, когда оно заведомо не может
произойти,- невозможным.

События называются несовместными, если
каждый раз возможно появление только одного из
них.

События называются совместными, если в
данных условиях появление одного из этих событий
не исключает появление другого при том же
испытании.

События называются противоположными,
если в условиях испытания они, являясь
единственными его исходами, несовместны.

События принято обозначать заглавными буквами
латинского алфавита: А, В, С, Д, : .

Полной системой событий А1, А2, А3,
: , Аn называется совокупность
несовместных событий, наступление хотя бы одного
из которых обязательно при данном испытании.

Если полная система состоит из двух
несовместных событий, то такие события
называются противоположными и обозначаются А и .

Пример. В коробке находится 30
пронумерованных шаров. Установить, какие из
следующих событий являются невозможными,
достоверными, противоположными:

достали пронумерованный шар (А);

достали шар с четным номером (В);

достали шар с нечетным номером (С);

достали шар без номера (Д).

Какие из них образуют полную группу?

Решение. А – достоверное событие; Д
невозможное событие;

В и С – противоположные события.

Полную группу событий составляют А и Д, В
и С.

Вероятность события, рассматривается как
мера объективной возможности появления
случайного события.

1.4. Классическое определение вероятности

Число, являющееся выражением меры объективной
возможности наступления события, называется вероятностью
этого события и обозначается символом Р(А).

Определение. Вероятностью события А
называется отношение числа исходов m,
благоприятствующих наступлению данного события А,
к числу n всех исходов (несовместных,
единственно возможных и равновозможных), т.е. .

Следовательно, для нахождения вероятности
события необходимо, рассмотрев различные исходы
испытания, подсчитать все возможные
несовместные исходы n, выбрать число
интересующих нас исходов m и вычислить отношение
m
к n.

Из этого определения вытекают следующие
свойства:

Вероятность любого испытания есть
неотрицательное число, не превосходящее единицы.

Действительно, число m искомых событий
заключено в пределах . Разделив обе части на n, получим

.

2. Вероятность достоверного события равна
единице, т.к. .

3. Вероятность невозможного события равна нулю,
поскольку .

Задача 1. В лотерее из 1000 билетов имеются 200
выигрышных. Вынимают наугад один билет. Чему
равна вероятность того, что этот билет
выигрышный?

Решение. Общее число различных исходов есть n=1000.
Число исходов, благоприятствующих получению
выигрыша, составляет m=200. Согласно формуле,
получим

.

Задача 2. В партии из 18 деталей находятся 4
бракованных. Наугад выбирают 5 деталей. Найти
вероятность того, что из этих 5 деталей две
окажутся бракованными.

Решение. Число всех равновозможных независимых
исходов n равно числу сочетаний из 18 по 5 т.е.

Подсчитаем число m, благоприятствующих событию
А. Среди 5 взятых наугад деталей должно быть 3
качественных и 2 бракованных. Число способов
выборки двух бракованных деталей из 4 имеющихся
бракованных равно числу сочетаний из 4 по 2:

.

Число способов выборки трех качественных
деталей из 14 имеющихся качественных равно

.

Любая группа качественных деталей может
комбинироваться с любой группой бракованных
деталей, поэтому общее число комбинаций m
составляет

.

Искомая вероятность события А равна отношению
числа исходов m, благоприятствующих этому
событию, к числу n всех равновозможных
независимых исходов:

.

1.5. Теорема сложения вероятностей
несовместных событий

Суммой конечного числа событий называется
событие, состоящее в наступлении хотя бы одного
из них.

Сумму двух событий обозначают символом А+В, а
сумму n событий символом А12+ : +Аn.

Теорема сложения вероятностей.

Вероятность суммы двух несовместных событий
равна сумме вероятностей этих событий.

или

Следствие 1. Если событие А1, А2, :
n образуют полную систему, то сумма
вероятностей этих событий равна единице.

.

Следствие 2. Сумма вероятностей
противоположных событий и равна единице.

.

Задача 1. Имеется 100 лотерейных билетов.
Известно, что на 5 билетов попадает выигрыш по 20000
руб., на 10 – по 15000 руб, на 15 – по 10000 руб., на 25 – по 2000
руб. и на остальные ничего. Найти вероятность
того, что на купленный билет будет получен
выигрыш не менее 10000 руб.

Решение. Пусть А, В, и С- события, состоящие в том,
что на купленный билет падает выигрыш, равный
соответственно 20000, 15000 и 10000 руб. так как события
А, В и С несовместны, то

.

Задача 2. На заочное отделение техникума
поступают контрольные работы по математике из
городов А, В и С. Вероятность поступления
контрольной работы из города А равна 0,6, из
города В – 0,1. Найти вероятность того, что
очередная контрольная работа поступит из города С.

Решение. События “контрольная работа
поступила из города А“, “контрольная работа
поступила из города В” и “контрольная работа
поступила из города С” образуют полную систему,
поэтому сумма их вероятностей равна единице:

, т.е. .

Задача 3. Вероятность того, что день будет
ясным, . Найти
вероятность
того, что день будет облачным.

Решение. События “день ясный” и “день
облачный” противоположные, поэтому

, т.е .

1.6. Теорема умножения вероятностей
независимых событий

При совместном рассмотрении двух случайных
событий А и В возникает вопрос:

Как связаны события А и В друг с другом,
как наступление одного из них влияет на
возможность наступления другого?

Простейшим примером связи между двумя
событиями служит причинная связь, когда
наступление одного из событий обязательно
приводит к наступлению другого, или наоборот,
когда наступление одного исключает возможность
наступления другого.

Для характеристики зависимости одних событий
от других вводится понятие условной
вероятности.

Определение. Пусть А и В – два
случайных события одного и того же испытания.
Тогда условной вероятностью события А или
вероятностью события А при условии, что
наступило событие В, называется число .

Обозначив условную вероятность , получим формулу

, .

Задача 1. Вычислить вероятность того, что в
семье, где есть один ребенок- мальчик, родится
второй мальчик.

Решение. Пусть событие А состоит в том, что в
семье два мальчика, а событие В – что один
мальчик.

Рассмотрим все возможные исходы: мальчик и
мальчик; мальчик и девочка; девочка и мальчик;
девочка и девочка.

Тогда , и по формуле находим

.

Событие А называется независимым от
события В, если наступление события В не
оказывает никакого влияния на вероятность
наступления события А.

Теорема умножения вероятностей

Вероятность одновременного появления двух
независимых событий равна произведению
вероятностей этих событий:

.

Вероятность появления нескольких событий,
независимых в совокупности, вычисляется по
формуле

.

Задача 2. В первой урне находится 6 черных и 4
белых шара, во второй- 5 черных и 7 белых шаров. Из
каждой урны извлекают по одному шару. Какова
вероятность того, что оба шара окажутся белыми.

Решение. Пусть – из первой урны извлечен белый шар; – из второй урны извлечен
белый шар. Очевидно, что события и независимы.

Так как , , то по формуле
находим

.

Задача 3. Прибор состоит из двух элементов,
работающих независимо. Вероятность выхода из
строя первого элемента равна 0,2; вероятность
выхода из строя второго элемента равна 0,3. Найти
вероятность того, что: а) оба элемента выйдут из
строя; б) оба элемента будут работать.

Решение. Пусть событие А– выход из строя
первого элемента, событие В– выход их строя
второго элемента. Эти события независимы (по
условию).

а) Одновременное появление А и В есть
событие АВ. Следовательно,

.

б) Если работает первый элемент, то имеет место
событие
(противоположное событию А– выходу этого
элемента из строя); если работает второй элемент-
событие В. Найдем вероятности событий и :

;

.

Тогда событие, состоящее в том, что будут
работать оба элемента, есть и, значит,

.

Полный вариант статьи.

Добавить комментарий