Как найти среднеарифметическое число одного числа

Как найти среднее арифметическое

Это пригодится не только для решения школьных задачек, но и при различных подсчётах в обычной жизни.

Как найти среднее арифметическое

Что такое среднее арифметическое

Среднее арифметическое — это сумма всех чисел в ряду, разделённая на количество слагаемых.

Как найти среднее арифметическое

Например, перед вами ряд чисел «1, 2, 3, 4, 5, 6». Как следует из определения, чтобы узнать среднее арифметическое, нужно сложить все данные вам числа, а потом разделить получившийся результат на количество этих чисел. В приведённом примере — на шесть. Вот как это выражается формулой:

Допустим, вам нужно определить среднее арифметическое для чисел 4, 5 и 6. Складываем 4 + 5 + 6 = 15. Теперь делим 15 на 3 и получаем 5. Это и будет среднее арифметическое.

Таким же образом оно подсчитывается для десятичных и обыкновенных дробей.

Пример расчёта среднего арифметического для обыкновенных дробей будет выглядеть так:

А это пример, как найти среднее арифметическое для десятичных дробей:

Как это пригодится в жизни

Среднее арифметическое помогает описать множество цифровых значений всего одним числом. Например, по выше представленной формуле можно подсчитать усреднённую цену на товар или среднюю зарплату сотрудников в одной организации, среднюю посещаемость заведения. Это полезно для ведения статистики и в случаях, когда нужно сжато изложить информацию.

Читайте также 🧐

  • 7 причин полюбить математику
  • 7 способов найти площадь прямоугольника
  • 6 способов посчитать проценты от суммы с калькулятором и без
  • Как освоить устный счёт школьникам и взрослым
  • 10 увлекательных задач от советского математика

Как считается среднее арифметическое?

Анонимный вопрос

30 октября 2018  · 98,0 K

Среднее арифметическое – это сумма всех чисел, подлежащих усреднению, деленная на их количество.

Для вычисления среднего арифметического необходимо выполнить следующие действия:

1. Сложить все числа, которые нужно усреднить.

2. Разделить полученную сумму на количество чисел.

Формула для вычисления среднего арифметического:

Среднее арифметическое = (a1 + a2 + … + an) / n

Где a1, a2, …, an – числа, которые нужно усреднить, а n – их количество.

353

Комментировать ответ…Комментировать…

Среднее арифметическое рассчитывается как сумма всех чисел, деленная на количество этих чисел. То есть, если у нас есть числа 1, 2, 3, то их среднее арифметическое будет (1+2+3)/3 = 2.

15,4 K

Спасибо большое за то что объяснили

Комментировать ответ…Комментировать…

> как читают средние арифметическое,Просто, берём числа 5, 7, 10
> мы их складываем
> 5+7+10 =22
> Потом умножаем на то количество цифер сколько их в уравнение, у нас их 3 значит
> 22 / 3 = 7 ,3
> Ответ:7,3
Читать далее

7,6 K

Комментировать ответ…Комментировать…

Мне интересны множество тем: от психологии до космоса…)  · 31 окт 2018

Среднее арифметическое – самый простой, и потому часто используемый, показатель для сравнения данных, а также вычисления приемлимого значения.

Рассчитывается как частное от деления суммы значений массива данных на количество значений в массиве.

9,1 K

Комментировать ответ…Комментировать…

Найти среднее арифметическое можно таким способом:

например, у вас есть числа 5, 9 и 10. Для начала нам нужно сложить эти числа , всего получается 24. Всего у нас три числа, значит 24 нужно поделить на 3. Получается 8. (24:3=8)

2,7 K

Комментировать ответ…Комментировать…

Найти среднее арифметическое можно по такой схеме
Среднее арифметическое=сумма всех чисел:количество слагаемых.
Пример, найдем среднем арифметическое чисел 12,11 и 4
1.12+11+4=27=27:3(делим на три потому что у нас три слагаемых) =9
Среднее арифметическое равно 9

9,9 K

Комментировать ответ…Комментировать…

Что бы посчитать среднее арифметическое,нужно все числа сложить, а потом разделить на их численность.

Пример: 1,2,3

1)1+2+3=6

2)6:3=2.

Ответ:среднее арифметическое равно двум.

25,9 K

Комментировать ответ…Комментировать…

Среднее арифметическое значение можно вычилисть вот таким способом.

Допустим у вас есть три числа: 2, 8 и 12.
Нужно вычислить среднее арифметическое.
Сумма всех этих чисел равна 22.
Всего этих чисел три.
22 / 3 = 7,3 (это среднеарифметическое). Читать далее

467

22/3 не равно в точности 7,3. Получается, что и метод не объяснен, и пример неточный.

Комментировать ответ…Комментировать…

Среднее арифметическое

Онлайн калькулятор поможет найти среднее арифметическое чисел. Среднее арифметическое множества чисел (ряда чисел) — число, равное сумме всех чисел множества, делённой на их количество.

Программа вычисляет среднее арифметическое элементов массива, среднее арифметическое натуральных чисел, целых чисел, набора дробных чисел.

Формула которая используется для расчета среднего арифметического значения:
формула для нахождения средней арифметической величины

Приведём примеры нахождения среднего арифметического ряда чисел:
Среднее арифметическое двух чисел: (2+5)/2=3.5;
Среднее арифметическое трёх чисел: (2+5+7)/3=4.66667;
Среднее арифметическое 4 чисел: (2+5+7+2)/4=4;

Найти выборочное среднее (математические ожидание):
Среднее арифметическое 5 чисел: (2+5+7+2+3)/5=3.8;
Среднее арифметическое 6 чисел: (2+5+7+2+3+4)/6=3.833;
Среднее арифметическое 7 чисел: (2+5+7+2+3+4+8)/7=4.42857;
Среднее арифметическое 8 чисел: (2+5+7+2+3+4+8+5)/8=4.5;
Среднее арифметическое 10 чисел: (2+5+7+2+3+4+8+5+9+1)/10=4.6;

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Смотрите также

Среднее арифметическое, размах, мода и медиана

  1. Алгебра
  2. Среднее арифметическое, размах, мода и медиана
Статистические характеристики

количество чисел

Калькулятор вычислит среднее арифметическое чисел, а также размах ряда чисел, моду ряда
чисел, медиану ряда. Для вычисления укажите количество чисел, добавьте числа и нажмите
рассчитать.

Среднее арифметическое, размах, мода и медиана

Средним арифметическим ряда чисел называется частное от деления суммы этих
чисел на число слагаемых.

Для ряда a1,a1,..,an среднее арифметическое вычисляется по
формуле:

begin{align}
& overline{a}=frac{a_1+a_2+…+a_n}{n}\
end{align}

Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.

begin{align}
& overline{a}=frac{5,24+6,97+8,56+7,32+6,23}{5}=6.864\
end{align}


Размахом ряда чисел называется разность между наибольшим и наименьшим из
этих чисел.

Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32


Модой ряда чисел называется число, которое встречается в данном ряду чаще
других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем.

Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.

В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.

Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.


Медианой упорядоченного ряда чисел с нечётным числом членов называется
число, записанное посередине, а медианой упорядоченного ряда чисел с чётным
числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного
ряда.

Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.

Примеры

Рассмотрим примеры нахождения среднего арифметического чисел, а также размаха, медианы и моды
ряда.

  1. Среднее арифметическое чисел 30, 5, 23, 5, 28, 30

    begin{align}
    & overline{a}=frac{30+5+23+5+28+30}{6}=20frac{1}{6}\
    end{align}

    Размах ряда: 30-5=25

    Моды ряда: 5 и 30

    Медиана ряда: 25.5

  2. Среднее арифметическое чисел 40, 35, 30, 25, 30, 35

    begin{align}
    & overline{a}=frac{40+35+30+25+30+35}{6}=32frac{1}{2}\
    end{align}

    Размах ряда: 40-25=15

    Моды ряда: 30, 35

    Медиана ряда: 32.5

  3. Среднее арифметическое чисел 21, 18,5, 25,3, 18,5, 17,9

    begin{align}
    & overline{a}=frac{21+18,5+25,3+18,5+17,9}{5}=20,24\
    end{align}

    Размах ряда: 25,3-17,9=7,4

    Мода ряда: 18,5

    Медиана ряда: 18,5

Примеры

Примеры нахождения среднего арифметического отрицательных и вещественных чисел.

  1. Среднее арифметическое чисел 67,1, 68,2, 67,1, 70,4, 68,2

    begin{align}
    & overline{a}=frac{67,1+68,2+67,1+70,4+68,2}{5}=68,2\
    end{align}

    Размах ряда: 70,4-67,1=3,3

    Моды ряда: 67.1, 68.2

    Медиана ряда: 68.2

  2. Среднее арифметическое чисел 0,6, 0,8, 0,5, 0,9, 1,1

    begin{align}
    & overline{a}=frac{0,6+0,8+0,5+0,9+1,1}{5}=0.78\
    end{align}

    Размах ряда: 1,1-0,5=0.6

    Ряд не имеет моды

    Медиана ряда: 0.8

  3. Среднее арифметическое чисел -21, -33, -35, -19, -20, -22

    begin{align}
    & overline{a}=frac{(-21)+(-33)+(-35)+(-19)+(-20)+(-22)}{6}=-25\
    end{align}

    Размах ряда: (-19)-(-35)=16

    Ряд не имеет моды

    Медиана ряда: -21,5

  4. Среднее арифметическое чисел -4, -6, 0, -4, 0, 6, 8, -12

    begin{align}
    & overline{a}=frac{(-4)+(-6)+0+(-4)+0+6+8+(-12)}{8}=-1,5\
    end{align}

    Размах ряда: 8-(-12)=20

    Моды ряда: -4, 0

    Медиана ряда: -2

  5. Среднее арифметическое чисел 275, 286, 250, 290, 296, 315, 325

    begin{align}
    & overline{a}=frac{275+286+250+290+296+315+325}{7}=291\
    end{align}

    Размах ряда: 325-250=75

    Ряд не имеет моды

    Медиана ряда: 290

  6. Среднее арифметическое чисел 38, 42, 36, 45, 48, 45, 45, 42, 40, 47, 39

    begin{align}
    & overline{a}=frac{38+42+36+45+48+45+45+42+40+47+39}{11}=42frac{6}{11}\
    end{align}

    Размах ряда: 48-36=12

    Мода ряда: 45

    Медиана ряда: 42

  7. Среднее арифметическое чисел 3,8, 7,2, 6,4, 6,8, 7,2

    begin{align}
    & overline{a}=frac{3,8+7,2+6,4+6,8+7,2}{5}=6,28\
    end{align}

    Размах ряда: 7,2-3,8=3,4

    Мода ряда: 7,2

    Медиана ряда: 6,8

  8. Среднее арифметическое чисел 21,6, 37,3, 16,4, 12,6

    begin{align}
    & overline{a}=frac{21,6+37,3+16,4+12,6}{4}=21,025\
    end{align}

    Размах ряда: 37,3-12,6=24,7

    Мода ряда: 12,6

    Медиана ряда: 17,1

Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

На случай, если количество элементов множества чисел стационарного случайного процесса бесконечное, в качестве среднего арифметического играет роль математическое ожидание случайной величины.

Введение[править | править код]

Обозначим множество чисел X = (x1, x2, …, xn) — тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной ({bar {x}}, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее, или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.

На практике разница между μ и {bar {x}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда {bar {x}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

{bar  {x}}={frac  {1}{n}}sum _{{i=1}}^{n}x_{i}={frac  {1}{n}}(x_{1}+cdots +x_{n}).

Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры[править | править код]

  • Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:
{frac  {x_{1}+x_{2}+x_{3}}{3}}.
  • Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:
{frac  {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.

Непрерывная случайная величина[править | править код]

Если существует интеграл от некоторой функции f(x) одной переменной, то среднее арифметическое этой функции на отрезке [a;b] определяется через определённый интеграл:

{displaystyle {overline {f(x)}}_{[a;b]}={frac {1}{b-a}}int _{a}^{b}f(x)dx.}

Здесь для определения отрезка [a;b] подразумевается, что {displaystyle bgeq a,} причём {displaystyle bneq a,} чтобы знаменатель не был равен 0.

Линейное преобразование[править | править код]

Линейно преобразованный набор данных {displaystyle y_{1},dots ,y_{n}} можно получить при применении линейного отображения {displaystyle y=a+bx} к метрически скалируемому набору данных x_{1},dots ,x_{n} следующим образом: {displaystyle y_{i}=a+bx_{i},iin {1,dots ,n}}. Тогда новое среднее значение набора данных будет равно {displaystyle {overline {y}}=a+b{overline {x}}}, так как {displaystyle {overline {y}}={frac {1}{n}}sum _{i=0}^{n}y_{i}={frac {1}{n}}sum _{i=0}^{n}(a+bx_{i})=a+{frac {b}{n}}sum _{i=0}^{n}bx_{i}=a+b{overline {x}}}.

Некоторые проблемы применения среднего[править | править код]

Отсутствие робастности[править | править код]

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, то есть среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число — из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент[править | править код]

Если числа перемножать, а не складывать, нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 60 %, тогда вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 60 %) / 2 = 25 % некорректно, а правильное среднее значение в этом случае дают совокупные ежегодные темпы роста: годовой рост получается 20 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 60 % — это 60 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 60 %, они в конце второго года стоят $43,2. Арифметическое среднее этого роста 25 %, но, поскольку акции выросли за 2 года всего на $13,2, средний рост в 20 % даёт конечный результат $43,2:

$30 × (1 – 0,1)*(1 + 0,6) = $30 × (1 + 0,2)*(1 + 0,2) = $43,2. Если же использовать таким же образом среднее арифметическое значение 25 %, мы не получим фактическое значение: $30 × (1 + 0,25)*(1 + 0,25) = $46,875.

Сложный процент в конце 2 года: 90 % * 160 % = 144 %, то есть общий прирост 44 %, а среднегодовой сложный процент {displaystyle {sqrt {144%}}=120%}, то есть среднегодовой прирост 20 %.

Таким образом среднегодовой прирост рассчитывается по формуле среднего геометрического

{displaystyle {sqrt {(1-0.1)(1+0.6)}}={sqrt {1.44}}=1.20  ={sqrt {(1+0.20)(1+0.20)}}}

Направления[править | править код]

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 180°. Этот результат неверен по двум причинам.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360° = 0° — один градус, между 0° и 1° — тоже 1°, в сумме — 2°).

Примечания[править | править код]

  1. Cantrell, David W., «Pythagorean Means» Архивная копия от 22 мая 2011 на Wayback Machine from MathWorld

См. также[править | править код]

  • Арифметическая пропорция
  • Арифметическая прогрессия
  • Неравенство Швейцера
  • Среднее арифметическое взвешенное

Ссылки[править | править код]

  • Арифметическая средняя // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Финансовая математика. Дисперсия. Среднее арифметическое. Среднеквадратическое отклонение. Коэффициент вариации Архивная копия от 19 сентября 2020 на Wayback Machine / Методики финансового анализа
  • Среднее арифметическое — показатель центральной тенденции / Теория вероятностей и математическая статистика

Добавить комментарий