Как найти среднее арифметическое ряда данных

Среднее арифметическое нескольких величин – это отношение суммы величин к их количеству.

Правило. Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Например: найдем среднее арифметическое чисел 2; 6; 9; 15.

У нас четыре числа, значит надо их сумму разделить на четыре. Это и будет среднее арифметическое данных чисел: (2 + 6 + 9 + 15) : 4 = 8.

Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел.

Например: найдем размах чисел 2; 5; 8; 12; 33.

Наибольшее число здесь – 33, наименьшее – 2. Значит, размах составляет 31, т. е.: 33 – 2 = 31.

Мода ряда чисел – это число, которое встречается в данном ряду чаще других.

Например: найдем моду ряда чисел 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 8.

Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

Медианой упорядоченного ряда чисел с нечетным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Например: в ряде чисел 2; 5; 9; 15; 21 медианой является число 9, находящееся посередине.

Найдем медиану в ряде чисел 4; 5; 7; 11; 13; 19.

Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 является медианой данного ряда чисел.

  1. В институте сдавали зачет по высшей математике. В группе было 10 человек, и они получили соответствующие оценки: 3; 5; 5; 4; 4; 4; 3; 2; 4; 5.

    Какую оценку получали чаще всего? Каков средний балл сдавшей зачет группы?

  2. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.

    Найдите медиану и размах ряда.

  3. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.

    Найдите моду ряда и среднее арифметическое ряда.

  4. Имеются следующие данные о месячной заработной плате пяти рабочих (тг): 126000; 138000; 132000; 141000; 150000.

    Найдите среднюю заработную плату.

  5. Магазин продает 8 видов булочек по следующим ценам: 31; 22; 24; 27; 30; 36; 19; 27.

    Найдите разность среднего арифметического и медианы этого набора.

  6. Найдите объем и медиану числового ряда.

    9; 7; 1; 1; 11; 5; 1.

  7. Товарные запасы хлопчатобумажных тканей в магазине за первое полугодие составили (тыс. тг) на начало каждого месяца:

    I II III IV V VI VII
    37 34 35 32 36 33 38

    Определите средний товарный запас хлопчатобумажных тканей за первое полугодие.

  8. Провели несколько измерений случайной величины: 2,5; 2,2; 2; 2,4; 2,9; 1,8.

    Найдите среднее арифметическое этого набора чисел.

  9. Провели несколько измерений случайной величины: 6; 18; 17; 14; 4; 22.

    Найдите медиану этого набора чисел.

  10. Провели несколько измерений случайной величины:

    800; 3200; 2000; 2600; 2900; 2000. Найдите моду этого набора чисел.

  11. Магазин продает 8 видов хлеба по следующим ценам: 60, 75, 80, 85, 90, 100, 110, 120 тенге.

    Найдите разность среднего арифметического и медианы этого набора.

  12. Дан числовой ряд: 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 7,8.

    Найдите среднее арифметическое, размах и моду.

Среднее арифметическое, размах, мода и медиана

  1. Алгебра
  2. Среднее арифметическое, размах, мода и медиана
Статистические характеристики

количество чисел

Калькулятор вычислит среднее арифметическое чисел, а также размах ряда чисел, моду ряда
чисел, медиану ряда. Для вычисления укажите количество чисел, добавьте числа и нажмите
рассчитать.

Среднее арифметическое, размах, мода и медиана

Средним арифметическим ряда чисел называется частное от деления суммы этих
чисел на число слагаемых.

Для ряда a1,a1,..,an среднее арифметическое вычисляется по
формуле:

begin{align}
& overline{a}=frac{a_1+a_2+…+a_n}{n}\
end{align}

Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.

begin{align}
& overline{a}=frac{5,24+6,97+8,56+7,32+6,23}{5}=6.864\
end{align}


Размахом ряда чисел называется разность между наибольшим и наименьшим из
этих чисел.

Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32


Модой ряда чисел называется число, которое встречается в данном ряду чаще
других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем.

Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.

В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.

Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.


Медианой упорядоченного ряда чисел с нечётным числом членов называется
число, записанное посередине, а медианой упорядоченного ряда чисел с чётным
числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного
ряда.

Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.

Примеры

Рассмотрим примеры нахождения среднего арифметического чисел, а также размаха, медианы и моды
ряда.

  1. Среднее арифметическое чисел 30, 5, 23, 5, 28, 30

    begin{align}
    & overline{a}=frac{30+5+23+5+28+30}{6}=20frac{1}{6}\
    end{align}

    Размах ряда: 30-5=25

    Моды ряда: 5 и 30

    Медиана ряда: 25.5

  2. Среднее арифметическое чисел 40, 35, 30, 25, 30, 35

    begin{align}
    & overline{a}=frac{40+35+30+25+30+35}{6}=32frac{1}{2}\
    end{align}

    Размах ряда: 40-25=15

    Моды ряда: 30, 35

    Медиана ряда: 32.5

  3. Среднее арифметическое чисел 21, 18,5, 25,3, 18,5, 17,9

    begin{align}
    & overline{a}=frac{21+18,5+25,3+18,5+17,9}{5}=20,24\
    end{align}

    Размах ряда: 25,3-17,9=7,4

    Мода ряда: 18,5

    Медиана ряда: 18,5

Примеры

Примеры нахождения среднего арифметического отрицательных и вещественных чисел.

  1. Среднее арифметическое чисел 67,1, 68,2, 67,1, 70,4, 68,2

    begin{align}
    & overline{a}=frac{67,1+68,2+67,1+70,4+68,2}{5}=68,2\
    end{align}

    Размах ряда: 70,4-67,1=3,3

    Моды ряда: 67.1, 68.2

    Медиана ряда: 68.2

  2. Среднее арифметическое чисел 0,6, 0,8, 0,5, 0,9, 1,1

    begin{align}
    & overline{a}=frac{0,6+0,8+0,5+0,9+1,1}{5}=0.78\
    end{align}

    Размах ряда: 1,1-0,5=0.6

    Ряд не имеет моды

    Медиана ряда: 0.8

  3. Среднее арифметическое чисел -21, -33, -35, -19, -20, -22

    begin{align}
    & overline{a}=frac{(-21)+(-33)+(-35)+(-19)+(-20)+(-22)}{6}=-25\
    end{align}

    Размах ряда: (-19)-(-35)=16

    Ряд не имеет моды

    Медиана ряда: -21,5

  4. Среднее арифметическое чисел -4, -6, 0, -4, 0, 6, 8, -12

    begin{align}
    & overline{a}=frac{(-4)+(-6)+0+(-4)+0+6+8+(-12)}{8}=-1,5\
    end{align}

    Размах ряда: 8-(-12)=20

    Моды ряда: -4, 0

    Медиана ряда: -2

  5. Среднее арифметическое чисел 275, 286, 250, 290, 296, 315, 325

    begin{align}
    & overline{a}=frac{275+286+250+290+296+315+325}{7}=291\
    end{align}

    Размах ряда: 325-250=75

    Ряд не имеет моды

    Медиана ряда: 290

  6. Среднее арифметическое чисел 38, 42, 36, 45, 48, 45, 45, 42, 40, 47, 39

    begin{align}
    & overline{a}=frac{38+42+36+45+48+45+45+42+40+47+39}{11}=42frac{6}{11}\
    end{align}

    Размах ряда: 48-36=12

    Мода ряда: 45

    Медиана ряда: 42

  7. Среднее арифметическое чисел 3,8, 7,2, 6,4, 6,8, 7,2

    begin{align}
    & overline{a}=frac{3,8+7,2+6,4+6,8+7,2}{5}=6,28\
    end{align}

    Размах ряда: 7,2-3,8=3,4

    Мода ряда: 7,2

    Медиана ряда: 6,8

  8. Среднее арифметическое чисел 21,6, 37,3, 16,4, 12,6

    begin{align}
    & overline{a}=frac{21,6+37,3+16,4+12,6}{4}=21,025\
    end{align}

    Размах ряда: 37,3-12,6=24,7

    Мода ряда: 12,6

    Медиана ряда: 17,1

Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

На случай, если количество элементов множества чисел стационарного случайного процесса бесконечное, в качестве среднего арифметического играет роль математическое ожидание случайной величины.

Введение[править | править код]

Обозначим множество чисел X = (x1, x2, …, xn) — тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной ({bar {x}}, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее, или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.

На практике разница между μ и {bar {x}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда {bar {x}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

{bar  {x}}={frac  {1}{n}}sum _{{i=1}}^{n}x_{i}={frac  {1}{n}}(x_{1}+cdots +x_{n}).

Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры[править | править код]

  • Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:
{frac  {x_{1}+x_{2}+x_{3}}{3}}.
  • Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:
{frac  {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.

Непрерывная случайная величина[править | править код]

Если существует интеграл от некоторой функции f(x) одной переменной, то среднее арифметическое этой функции на отрезке [a;b] определяется через определённый интеграл:

{displaystyle {overline {f(x)}}_{[a;b]}={frac {1}{b-a}}int _{a}^{b}f(x)dx.}

Здесь для определения отрезка [a;b] подразумевается, что {displaystyle bgeq a,} причём {displaystyle bneq a,} чтобы знаменатель не был равен 0.

Линейное преобразование[править | править код]

Линейно преобразованный набор данных {displaystyle y_{1},dots ,y_{n}} можно получить при применении линейного отображения {displaystyle y=a+bx} к метрически скалируемому набору данных x_{1},dots ,x_{n} следующим образом: {displaystyle y_{i}=a+bx_{i},iin {1,dots ,n}}. Тогда новое среднее значение набора данных будет равно {displaystyle {overline {y}}=a+b{overline {x}}}, так как {displaystyle {overline {y}}={frac {1}{n}}sum _{i=0}^{n}y_{i}={frac {1}{n}}sum _{i=0}^{n}(a+bx_{i})=a+{frac {b}{n}}sum _{i=0}^{n}bx_{i}=a+b{overline {x}}}.

Некоторые проблемы применения среднего[править | править код]

Отсутствие робастности[править | править код]

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, то есть среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число — из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент[править | править код]

Если числа перемножать, а не складывать, нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 60 %, тогда вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 60 %) / 2 = 25 % некорректно, а правильное среднее значение в этом случае дают совокупные ежегодные темпы роста: годовой рост получается 20 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 60 % — это 60 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 60 %, они в конце второго года стоят $43,2. Арифметическое среднее этого роста 25 %, но, поскольку акции выросли за 2 года всего на $13,2, средний рост в 20 % даёт конечный результат $43,2:

$30 × (1 – 0,1)*(1 + 0,6) = $30 × (1 + 0,2)*(1 + 0,2) = $43,2. Если же использовать таким же образом среднее арифметическое значение 25 %, мы не получим фактическое значение: $30 × (1 + 0,25)*(1 + 0,25) = $46,875.

Сложный процент в конце 2 года: 90 % * 160 % = 144 %, то есть общий прирост 44 %, а среднегодовой сложный процент {displaystyle {sqrt {144%}}=120%}, то есть среднегодовой прирост 20 %.

Таким образом среднегодовой прирост рассчитывается по формуле среднего геометрического

{displaystyle {sqrt {(1-0.1)(1+0.6)}}={sqrt {1.44}}=1.20  ={sqrt {(1+0.20)(1+0.20)}}}

Направления[править | править код]

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 180°. Этот результат неверен по двум причинам.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360° = 0° — один градус, между 0° и 1° — тоже 1°, в сумме — 2°).

Примечания[править | править код]

  1. Cantrell, David W., «Pythagorean Means» Архивная копия от 22 мая 2011 на Wayback Machine from MathWorld

См. также[править | править код]

  • Арифметическая пропорция
  • Арифметическая прогрессия
  • Неравенство Швейцера
  • Среднее арифметическое взвешенное

Ссылки[править | править код]

  • Арифметическая средняя // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Финансовая математика. Дисперсия. Среднее арифметическое. Среднеквадратическое отклонение. Коэффициент вариации Архивная копия от 19 сентября 2020 на Wayback Machine / Методики финансового анализа
  • Среднее арифметическое — показатель центральной тенденции / Теория вероятностей и математическая статистика

В поисках средних значений: разбираемся со средним арифметическим, медианой и модой

В поисках средних значений: разбираемся со средним арифметическим, медианой и модой

как считать среднее арифметическое чисел

Иногда при работе с данными нужно описать множество значений каким-то одним числом. Например, при исследовании эффективности сотрудников, уровня вовлеченности в аккаунте, KPI или времени ответа на сообщения клиентов. В таких случаях используют меры центральной тенденции. Их можно называть проще — средние значения.

Но в зависимости от вводных данных, находить среднее значение нужно по-разному. Основной набор задач закрывается с использованием среднего арифметического, медианы и моды. Но если выбрать неверный способ — выводы будут необъективны, а результаты исследования нельзя будет признать действительными. Чтобы не допустить ошибку, нужно понимать особенности разных способов нахождения средних значений.

Cтратег, аналитик и контент-продюсер. Работает с агентством «Палиндром».

Как считать среднее арифметическое

Использовать среднее арифметическое стоит тогда, когда множество значений распределяются нормально ― это значит, что значения расположены симметрично относительно центра. Как выглядит нормальное распределение на графике и в таблице, можно посмотреть на примере:

 использование чужих публикаций

Если данные распределяются как в примерах — вам повезло. Можно без лишних заморочек считать среднее арифметическое и быть уверенным, что выводы будут объективны. Однако, нормальное распределение на практике встречается крайне редко, поэтому среднее арифметическое в большинстве случаев лучше не использовать.

Как рассчитать

Сумму значений нужно поделить на их количество. Например, вы хотите узнать средний ER за 4 дня при нормальном распределении значений и без аномальных выбросов. Для этого считаем среднее арифметическое: складываем ER всех дней и делим полученное число на количество дней.

курирование контента

Если хотите автоматизировать вычисления и узнать среднее арифметическое для большого числа показателей — используйте Google Таблицы:

  1. Заполните таблицу данными.
  2. Щелкните по пустой ячейке, в которую хотите записать среднее арифметическое.
  3. Введите «=AVERAGE(» и выделите ряд чисел, для которых нужно вычислить среднее арифметическое. Нажмите «Enter» после ввода формулы.

курирование контента

Когда можно не использовать

Если данные распределены ненормально, то наши расчеты не будут отражать реальную картину. На ненормальность распределения указывают:

  • Отсутствие симметрии в расположении значений.
  • Наличие ярко выраженных выбросов.

Как пример ненормального распределения (с выбросами) можно рассматривать среднее время ответа на комментарии по неделям:

курирование контента

Если посчитать среднее значение для такого набора данных с помощью среднего арифметического, то получится завышенное число. В итоге наши выводы будут более позитивными, чем реальное положение дел. Еще стоит учитывать, что выбросы могут не только завышать среднее значение, но и занижать его. В таком случае вы получите более скромный показатель, который не будет соответствовать реальности.

Например, в группе «Золотое Яблоко» во ВКонтакте иногда публикуют конкурсные посты. Они набирают более высокие показатели вовлеченности чем обычные публикации. Если посчитать средний ER с учетом конкурсов, мы получим 0,37%, а без учета конкурсов — только 0,29%. Аналогичная ситуация с числом комментариев. С конкурсами в среднем получаем 917 комментариев, а без конкурсов — всего лишь 503. Очевидно, что из-за розыгрышей средние показатели вовлеченности завышаются. В этом случае конкурсные посты следует исключить из анализа, чтобы объективно оценить эффективность контента в группе.

курирование контента

Еще часто бывает так, что данных очень много, заметны явные выбросы, но на их обработку и исключение аномальных значений не хватит ни времени, ни терпения. Тем более нет гарантий, что исключив выбросы, вы получите нормальное распределение. В таком случае лучше подсчитать средние значения, используя медиану.

Как найти медиану и когда ее применять

Если вы имеете дело с ненормальным распределением или замечаете значительные выбросы — используйте медиану. Так можно получить более адекватное среднее значение, чем при использовании среднего арифметического. Чтобы понять, как работать с медианой, рассмотрим аналогичный пример с ненормальным распределением времени ответов на комментарии.

курирование контента

Ниже в таблице уже введены данные из графика и рассчитано среднее время ответа с помощью среднего арифметического и медианы. Из расчетов видна наглядная разница между средним арифметическим и медианой ― она составляет 17 минут. Такое различие появляется из-за низкого темпа работы на выходных и в нестандартных ситуациях, когда к ответу на сообщения нужно относиться с особой ответственностью (события конца февраля). Подобные выбросы сильно завышают среднее арифметическое, а вот на медиану они практически не влияют. Поэтому если хотите посчитать среднее значение избегая влияния выбросов, — используйте медиану. Такие данные будут без искажений.

курирование контента

Как рассчитать

Разберем на примере. В аккаунте опубликовали семь постов и они набрали разное количество комментариев: 35, 105, 2, 15, 2, 31, 1. Чтобы вычислить медиану, нужно пройти два этапа:

  • Расположите числа в порядке возрастания. Итоговый ряд будет выглядеть так: 1, 2, 2, 15, 31, 35, 105.
  • Найдите середину сформированного ряда. В центре стоит число 15 — его и нужно считать медианой.

Немного сложнее найти медиану, если вы работаете с четным количеством чисел. Например, вы собрали количество лайков на последних шести постах: 32, 48, 36, 201, 52, 12. Чтобы найти медиану, выполните три действия:

  • Расставьте числа по возрастанию: 12, 32, 36, 48, 52, 201.
  • Возьмите два из них, наиболее близких к центру. В нашем случае — это 36 и 48.
  • Сложите два этих числа и разделите на два: (36 + 48) / 2 = 42. Результат и есть медиана.

Чтобы вычислять медиану быстрее и обрабатывать большие объемы данных — используйте Google Таблицы:

  • Внесите данные в таблицу.
  • Щелкните по свободной ячейке, в которую хотите записать медиану.
  • Введите формулу «=MEDIAN(» и выделите ряд чисел, для которых нужно рассчитать медиану. Нажмите «Enter», чтобы все посчиталось.

курирование контента

Когда можно не использовать

Если данные распределены нормально и вы не видите заметных выбросов — медиану можно не использовать. В этом случае значение среднего арифметического будет очень близким к медиане. Можете выбрать любой способ нахождения среднего, с которым вам работать проще. Результат от этого сильно не изменится.

Что такое мода и где ее использовать

Мода ― это самое популярное/часто встречающееся значение. Например, стоит задача узнать, сколько комментариев чаще всего набирают посты в аккаунте. В этом случае можно не высчитывать среднее арифметическое или медиану ― лучше и проще использовать моду.

Еще пример. Нужно узнать, в какое время аудитория чаще всего взаимодействует с публикациями. Для этого можно посчитать данные вручную или использовать готовую таблицу из LiveDune (вкладка «Вовлеченность» ― таблица «Лучшее время для поста»). По ее данным ― больше всего реакций пользователи оставляют в среду в 16 часов. Это время и есть мода. Таким образом, если вам нужно найти самое популярное значение, а не классическое среднее — проще использовать моду.

курирование контента

Как рассчитать

Чтобы найти наиболее часто встречающееся значение в наборе данных, нужно посмотреть, какое число встречается в ряду чаще всех. Например, для ряда 5, 4, 2, 4, 7 ― модой будет число 4.

Иногда в ряде значений встречается несколько мод. Например, ряду 7, 7, 21, 2, 5, 5 свойственны две моды — 7 и 5. В этом случае совокупность чисел называется мультимодальной. Также поиск моды можно упростить с помощью Google Таблиц:

  • Внесите значения в таблицу.
  • Щелкните по ячейке, в которую хотите записать моду.
  • Введите формулу «=MODE(» и выделите ряд чисел, для которых нужно вычислить моду. Нажмите «Enter».

курирование контента

Однако важно иметь в виду, что табличная функция выдает только самую меньшую моду. Поэтому будьте внимательны — можно упустить из виду несколько мод.

Когда использовать не стоит

Моду нет смысла использовать, если вас не просят найти самое популярное значение. Там, где надо найти классическое среднее значение, про моду лучше забыть.

Памятка по использованию

Среднее арифметическое

Как находим: сумма чисел / количество чисел.
Используем: если данные распределены нормально и нет ярких выбросов.
Не используем: если видим явные выбросы или ненормальное распределение.

Медиана

Как находим: располагаем числа в порядке возрастания и находим середину сформированного ряда.
Используем: если работаем с ненормальным распределением или видим выбросы.
Не используем: если выбросов нет и распределение нормальное.

Мода

Как находим: определяем значение, которое чаще всего встречается в ряду чисел.
Используем: если нужно найти не среднее, а самое популярное значение.
Не используем: если нужно найти классическое среднее значение.

Только важные новости в ежемесячной рассылке

Нажимая на кнопку, вы даете согласие на обработку персональных данных.

Подписывайся сейчас и получи гайд аудита Instagram аккаунта

Маркетинговые продукты LiveDune — 7 дней бесплатно

Наши продукты помогают оптимизировать работу в соцсетях и улучшать аккаунты с помощью глубокой аналитики

Анализ своих и чужих аккаунтов по 50+ метрикам в 6 соцсетях.

Оптимизация обработки сообщений: операторы, статистика, теги и др.

Автоматические отчеты по 6 соцсетям. Выгрузка в PDF, Excel, Google Slides.

Контроль за прогрессом выполнения KPI для аккаунтов Инстаграм.

Аудит Инстаграм аккаунтов с понятными выводами и советами.

Поможем отобрать «чистых» блогеров для эффективного сотрудничества.

Как считается среднее арифметическое?

Анонимный вопрос

30 октября 2018  · 97,9 K

Среднее арифметическое – это сумма всех чисел, подлежащих усреднению, деленная на их количество.

Для вычисления среднего арифметического необходимо выполнить следующие действия:

1. Сложить все числа, которые нужно усреднить.

2. Разделить полученную сумму на количество чисел.

Формула для вычисления среднего арифметического:

Среднее арифметическое = (a1 + a2 + … + an) / n

Где a1, a2, …, an – числа, которые нужно усреднить, а n – их количество.

319

Комментировать ответ…Комментировать…

Среднее арифметическое рассчитывается как сумма всех чисел, деленная на количество этих чисел. То есть, если у нас есть числа 1, 2, 3, то их среднее арифметическое будет (1+2+3)/3 = 2.

15,4 K

Спасибо большое за то что объяснили

Комментировать ответ…Комментировать…

> как читают средние арифметическое,Просто, берём числа 5, 7, 10
> мы их складываем
> 5+7+10 =22
> Потом умножаем на то количество цифер сколько их в уравнение, у нас их 3 значит
> 22 / 3 = 7 ,3
> Ответ:7,3
Читать далее

7,5 K

Комментировать ответ…Комментировать…

Мне интересны множество тем: от психологии до космоса…)  · 31 окт 2018

Среднее арифметическое – самый простой, и потому часто используемый, показатель для сравнения данных, а также вычисления приемлимого значения.

Рассчитывается как частное от деления суммы значений массива данных на количество значений в массиве.

9,1 K

Комментировать ответ…Комментировать…

Найти среднее арифметическое можно таким способом:

например, у вас есть числа 5, 9 и 10. Для начала нам нужно сложить эти числа , всего получается 24. Всего у нас три числа, значит 24 нужно поделить на 3. Получается 8. (24:3=8)

2,7 K

Комментировать ответ…Комментировать…

Найти среднее арифметическое можно по такой схеме
Среднее арифметическое=сумма всех чисел:количество слагаемых.
Пример, найдем среднем арифметическое чисел 12,11 и 4
1.12+11+4=27=27:3(делим на три потому что у нас три слагаемых) =9
Среднее арифметическое равно 9

9,9 K

Комментировать ответ…Комментировать…

Что бы посчитать среднее арифметическое,нужно все числа сложить, а потом разделить на их численность.

Пример: 1,2,3

1)1+2+3=6

2)6:3=2.

Ответ:среднее арифметическое равно двум.

25,9 K

Комментировать ответ…Комментировать…

Среднее арифметическое значение можно вычилисть вот таким способом.

Допустим у вас есть три числа: 2, 8 и 12.
Нужно вычислить среднее арифметическое.
Сумма всех этих чисел равна 22.
Всего этих чисел три.
22 / 3 = 7,3 (это среднеарифметическое). Читать далее

463

22/3 не равно в точности 7,3. Получается, что и метод не объяснен, и пример неточный.

Комментировать ответ…Комментировать…

Добавить комментарий