Как найти среднее геометрическое двух чисел формула

В данной публикации мы рассмотрим, с помощью какой формулы можно найти среднее геометрическое чисел, а также разберем примеры задач для ее демонстрации на практике.

  • Расчет среднего геометрического

  • Пример задачи

Расчет среднего геометрического

Чтобы вычислить среднее геометрическое двух или более чисел, требуется их перемножить, а затем из полученного результата извлечь корень, степень которого равняется их количеству.

Допустим, у нас есть числа a1, a2, … , an. Среднее геометрическое находится по формуле:

Формула расчета среднего геометрического чисел

Частные случаи формулы:

Пример задачи

Задание 1
Найдем среднее геометрическое чисел 3, 6 и 12.

Решение:
Воспользуемся соответствующей формулой для трех чисел:

Пример расчета среднего геометрического трех чисел

Задание 2
Среднее геометрическое четырех чисел равняется 4, а также известны три из них – 2, 2 и 4. Найдем четвертое.

Решение:
Обозначим число, которое требуется найти буквой x. Формула выглядит следующим образом:

Среднее геометрическое с одним неизвестным числом

Помещаем число 4 под знак корня, сохранив равенство (для этого возводим его в четвертую степень, т.е. 44 = 256):

Уравнение с корнем

Следовательно, x = 256 : 16 = 16.

Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось. Более формально:

G(x_{1},x_{2},ldots ,x_{n})={sqrt[ {n}]{x_{1}x_{2}cdots x_{n}}}=left(prod _{{i=1}}^{n}x_{i}right)^{{1/n}}

Среднее геометрическое двух чисел также называется их средним пропорциональным[1], поскольку среднее геометрическое g двух чисел a_{1} и a_{2} обладает следующим свойством: {displaystyle {frac {a_{1}}{g}}={frac {g}{a_{2}}}}, то есть среднее геометрическое относится к первому числу так же, как второе число к среднему геометрическому.

Свойства[править | править код]

  • Так же, как и любое другое среднее значение, среднее геометрическое лежит между минимумом и максимумом из всех чисел:
{displaystyle operatorname {min} (x_{1},x_{2},ldots ,x_{n})leqslant G(x_{1},x_{2},ldots ,x_{n})leqslant operatorname {max} (x_{1},x_{2},ldots ,x_{n}).}
  • Среднее геометрическое двух чисел a=A_{0},b=G_{0} является средним арифметическим-гармоническим этих чисел, то есть равно пределу двух последовательностей:
{displaystyle A_{i}={frac {A_{i-1}+G_{i-1}}{2}},quad G_{i}={sqrt {A_{i-1}G_{i-1}}}.}
  • Среднее геометрическое двух чисел равно среднему геометрическому их среднего арифметического и среднего гармонического[2].

Среднее геометрическое взвешенное[править | править код]

Среднее геометрическое взвешенное набора вещественных чисел x_{1},ldots ,x_{n} с вещественными весами w_{1},ldots ,w_{n} определяется как

{displaystyle {bar {x}}=left(prod _{i=1}^{n}x_{i}^{w_{i}}right)^{1/sum _{i=1}^{n}w_{i}}=quad exp left({frac {1}{sum _{i=1}^{n}w_{i}}};sum _{i=1}^{n}w_{i}ln x_{i}right).}

В том случае, если все веса равны между собой, среднее геометрическое взвешенное равно среднему геометрическому.

В геометрии[править | править код]

Среднее геометрическое отрезков:
BH={sqrt  {AHcdot HC}}={sqrt  {ab}}

Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу, а каждый катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.

Это даёт геометрический способ построения среднего геометрического двух (длин) отрезков: нужно построить окружность на сумме этих двух отрезков как на диаметре, и тогда высота, восстановленная из точки их соединения до пересечения с окружностью, даст искомую величину.

Расстояние до горизонта сферы есть среднее геометрическое между расстоянием до самой ближней точки сферы и расстоянием до самой дальней точки сферы.

Обобщения[править | править код]

Примечания[править | править код]

  1. «Среднее пропорциональное». — статья из Большой советской энциклопедии. 
  2. Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Матезис, 1923. Архивная копия от 13 августа 2020 на Wayback Machine

См. также[править | править код]

  • Геометрическая пропорция
  • Геометрическая прогрессия
  • Неравенство Швейцера

Средние величины в статистике дают обобщающую характеристику анализируемого явления. Самая распространенная из них – среднее арифметическое. Она применяется, когда агрегатный показатель образуется с помощью суммы элементов. Например, масса нескольких яблок, суммарная выручка за каждый день продаж и т.д. Но так бывает не всегда. Иногда агрегатный показатель образуется не в результате суммирования, а в результате умножения.

Такой пример. Месячная инфляция – это изменение уровня цен одного месяца по сравнению с предыдущим. Если известны показатели инфляции за каждый месяц, то как получить годовое значение? С точки зрения статистики – это цепной индекс, поэтому правильный ответ: с помощью перемножения месячных показателей инфляции. То есть общий показатель инфляции – это не сумма, а произведение. А как теперь узнать среднюю инфляцию за месяц, если имеется годовое значение? Нет, не разделить на 12, а извлечь корень 12-й степени (степень зависит от количества множителей). В общем случае среднее геометрическое рассчитывается по формуле:

Формула средней геометрической

То есть корень из произведения исходных данных, где степень определяется количеством множителей. Например, среднее геометрическое двух чисел – это квадратный корень из их произведения

Среднее геометрическое двух чисел

Среднее геометрическое трех чисел – кубический корень из произведения

Среднее геометрическое трех чисел и т.д.

Если каждое исходное число заменить на их среднее геометрическое, то произведение даст тот же результат.

Чтобы лучше разобраться, чем отличаются среднее арифметическое и среднее геометрическое, рассмотрим следующий рисунок. Имеется прямоугольный треугольник, вписанный в круг.

Наглядное изображение средней геометрической

Из прямого угла опущена медиана a (на середину гипотенузы). Также из прямого угла опущена высота b, которая в точке P делит гипотенузу на две части m и n. Т.к. гипотенуза – это диаметр описанного круга, а медиана – радиус, то очевидно, что длина медианы a – это среднее арифметическое из m и n.

Длина медианы - среднее арифмтическое

Рассчитаем, чему равна высота b. В силу подобия треугольников АВP и BCP справедливо равенство

Соотношение сторон в подобных треугольниках

Откуда

Высота треугольника - среднее геометрическое

Значит, высота прямоугольного треугольника – это среднее геометрическое из отрезков, на которые она разбивает гипотенузу. Такое наглядное отличие.

В MS Excel среднюю геометрическую можно найти с помощью функции СРГЕОМ.

Функция СРГЕОМ в Excel для расчета средней геометрической

Все очень просто: вызвали функцию, указали диапазон и готово.

На практике этот показатель используют не так часто, как среднее арифметическое, но все же встречается. Например, есть такой индекс развития человеческого потенциала, с помощью которого сравнивают уровень жизни в разных странах. Он рассчитывается, как среднее геометрическое из нескольких индексов.

Ниже видео, как найти среднее геометрическое чисел в Excel.

Поделиться в социальных сетях:

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Среднее геометрическое

Поддержать сайтспасибо

Запомните!
!

Чтобы найти среднее геометрическое, нужно перемножить все числа и извлечь из них корень.
Степень корня определяется количеством чисел.

Пример:

Найти среднее геометрическое 2, 4 и
8.

Обозначим среднее геометрическое буквой
«n».

По определению выше найдем произведение всех чисел.
2 · 4 · 8 = 64

По условию нам дано 3 числа, значит корень, который мы будем извлекать из произведения будет
третьей степени (кубический).

В итоге мы получаем формулу среднего геометрического:

Формула среднего геометрического

Среднее геометрическое

Интересный факт: среднее геометрическое всегда будет меньше среднего арифметического
тех же чисел. За исключением случая, когда все взятые числа равны друг другу.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:



Загрузить PDF


Загрузить PDF

Среднее геометрическое — математическая величина, которую легко спутать с более часто применяемым средним арифметическим. Для вычисления среднего геометрического следуйте методам, приведенным ниже.

  1. Изображение с названием Calculate the Geometric Mean Step 1

    1

    Возьмите два числа, среднее геометрическое которых необходимо найти.

    • Например, 2 и 32.
  2. Изображение с названием Calculate the Geometric Mean Step 2

    2

  3. Изображение с названием Calculate the Geometric Mean Step 3

    3

    Реклама

  1. Изображение с названием Calculate the Geometric Mean Step 4

    1

    Подставьте числа в приведенное уравнение. Если это, скажем, 10 и 15, то подставьте их так, как показано на рисунке.

  2. Изображение с названием Calculate the Geometric Mean Step 5

    2

    Найдите «х». Начните с перемножения крест-накрест, что означает перемножение пар чисел по диагонали и расстановку результатов умножения по разные стороны знака =. Так как х*х = х2, то уравнение приводится к виду к виду: х2 = (результат умножения ваших чисел). Для вычисления «х» извлеките квадратный корень из результата перемножения используемых чисел. Если в результате вычисления корня получится целое число — отлично. Если нет, дайте ответ в виде десятичной дроби или запишите его со знаком корня (в зависимости от того, что требует преподаватель). Ответ, приведенный выше на рисунке, записан в виде упрощенного квадратного корня.

    Реклама

  1. Изображение с названием Calculate the Geometric Mean Step 6

    1

    Подставьте числа в приведенное уравнение.Среднее геометрическое = (a1 × a2 . . . an)1/n[3]

    • a1 — первое число, a2 — второе число и так далее
    • n — общее количество чисел
  2. Изображение с названием Calculate the Geometric Mean Step 7

    2

    Перемножьте числа (a1, a2 и так далее).

  3. Изображение с названием Calculate the Geometric Mean Step 8

    3

    Извлеките корень n степени из полученного числа. Это и будет среднее геометрическое.[4]

    Реклама

  1. Изображение с названием Calculate the Geometric Mean Step 9

    1

    Найдите логарифм каждого числа и сложите полученные значения. Найдите клавишу LOG на своем калькуляторе. Затем введите: (первое число) LOG + (второе число) LOG + (третье число) LOG [+ столько чисел, сколько дано] =. Не забудьте нажать «=», или показанный вам результат будет логарифмом последнего введенного числа, а не суммой логарифмов всех чисел.

    • Например, log 7 + log 9 + log 12 = 2,878521796
  2. Изображение с названием Calculate the Geometric Mean Step 10

    2

    Разделите результат сложения на общее количество изначально данных чисел. Если вы сложили логарифмы трех чисел, делите полученный результат на три.

    • Например, 2,878521796 / 3 = 0,959507265
  3. Изображение с названием Calculate the Geometric Mean Step 11

    3

    Вычислите антилогарифм полученного результата. На калькуляторе нажмите кнопку переключения регистра (активирует функции верхнего регистра — над клавишами), а затем нажмите LOG, чтобы получить значение антилогарифма. Этот результат и будет средним геометрическим.[5]

    • Например, antilog 0,959507265 = 9,109766916. Поэтому среднее геометрическое 7, 9, и 12 равно 9,11.

    Реклама

Советы

  • Различия между средним арифметическим и средним геометрическим:
    • Для вычисления среднего арифметического, например, чисел 3, 4 и 18, необходимо их сложить 3 + 4 + 18, а затем разделить на 3 (потому что изначально даны три числа). Ответ равен 25/3 или примерно 8,333; это означает, что если сложить 8,3333 три раза подряд, то ответ будет таким же, как при сложении чисел 3, 4, и 18. Среднее арифметическое отвечает на вопрос: «Если все величины имеют одинаковое значение, то каким это значение должно быть, чтобы при суммировании получился один результат?»
    • Напротив, среднее геометрическое отвечает на вопрос: «Если все величины имеют одинаковое значение, то каким это значение должно быть, чтобы при перемножении получился один результат?» Поэтому, чтобы найти среднее геометрическое чисел 3, 4 и 18, мы перемножаем эти числа: 3 x 4 x 18. Получаем 216. Затем мы берем кубический корень из полученного результата перемножения (кубический корень, так как в вычислении участвуют три числа). Ответ будет 6. Другими словами, так как 6 x 6 x 6 = 3 x 4 x 18, то 6 является средним геометрическим чисел 3, 4 и 18.
  • Среднее геометрическое всегда меньше или равно среднему арифметическому. Более подробно читайте тут.
  • Среднее геометрическое рассчитывается только для положительных чисел. Схема решения различных прикладных задач с использованием среднего геометрического не будет работать в случае наличия отрицательных чисел.

Реклама

Об этой статье

Эту страницу просматривали 131 683 раза.

Была ли эта статья полезной?

Добавить комментарий