Загрузить PDF
Загрузить PDF
Вычислив среднеквадратическое отклонение, вы найдете разброс значений в выборке данных.[1]
Но сначала вам придется вычислить некоторые величины: среднее значение и дисперсию выборки. Дисперсия – мера разброса данных вокруг среднего значения.[2]
Среднеквадратическое отклонение равно квадратному корню из дисперсии выборки. Эта статья расскажет вам, как найти среднее значение, дисперсию и среднеквадратическое отклонение.
-
1
Возьмите наборе данных. Среднее значение – это важная величина в статистических расчетах.[3]
- Определите количество чисел в наборе данных.
- Числа в наборе сильно отличаются друг от друга или они очень близки (отличаются на дробные доли)?
- Что представляют числа в наборе данных? Тестовые оценки, показания пульса, роста, веса и так далее.
- Например, набор тестовых оценок: 10, 8, 10, 8, 8, 4.
-
2
Для вычисления среднего значения понадобятся все числа данного набора данных.[4]
- Среднее значение – это усредненное значение всех чисел в наборе данных.
- Для вычисления среднего значения сложите все числа вашего набора данных и разделите полученное значение на общее количество чисел в наборе (n).
- В нашем примере (10, 8, 10, 8, 8, 4) n = 6.
-
3
Сложите все числа вашего набора данных.[5]
- В нашем примере даны числа: 10, 8, 10, 8, 8 и 4.
- 10 + 8 + 10 + 8 + 8 + 4 = 48. Это сумма всех чисел в наборе данных.
- Сложите числа еще раз, чтобы проверить ответ.
-
4
Разделите сумму чисел на количество чисел (n) в выборке. Вы найдете среднее значение.[6]
- В нашем примере (10, 8, 10, 8, 8 и 4) n = 6.
- В нашем примере сумма чисел равна 48. Таким образом, разделите 48 на n.
- 48/6 = 8
- Среднее значение данной выборки равно 8.
Реклама
-
1
Вычислите дисперсию. Это мера разброса данных вокруг среднего значения.[7]
- Эта величина даст вам представление о том, как разбросаны данные выборки.
- Выборка с малой дисперсией включает данные, которые ненамного отличаются от среднего значения.
- Выборка с высокой дисперсией включает данные, которые сильно отличаются от среднего значения.
- Дисперсию часто используют для того, чтобы сравнить распределение двух наборов данных.
-
2
Вычтите среднее значение из каждого числа в наборе данных. Вы узнаете, насколько каждая величина в наборе данных отличается от среднего значения.[8]
- В нашем примере (10, 8, 10, 8, 8, 4) среднее значение равно 8.
- 10 – 8 = 2; 8 – 8 = 0, 10 – 2 = 8, 8 – 8 = 0, 8 – 8 = 0, и 4 – 8 = -4.
- Проделайте вычитания еще раз, чтобы проверить каждый ответ. Это очень важно, так как полученные значения понадобятся при вычислениях других величин.
-
3
Возведите в квадрат каждое значение, полученное вами в предыдущем шаге.[9]
- При вычитании среднего значения (8) из каждого числа данной выборки (10, 8, 10, 8, 8 и 4) вы получили следующие значения: 2, 0, 2, 0, 0 и -4.
- Возведите эти значения в квадрат: 22, 02, 22, 02, 02, и (-4)2 = 4, 0, 4, 0, 0, и 16.
- Проверьте ответы, прежде чем приступить к следующему шагу.
-
4
Сложите квадраты значений, то есть найдите сумму квадратов.[10]
- В нашем примере квадраты значений: 4, 0, 4, 0, 0 и 16.
- Напомним, что значения получены путем вычитания среднего значения из каждого числа выборки: (10-8)^2 + (8-8)^2 + (10-2)^2 + (8-8)^2 + (8-8)^2 + (4-8)^2
- 4 + 0 + 4 + 0 + 0 + 16 = 24.
- Сумма квадратов равна 24.
-
5
Разделите сумму квадратов на (n-1). Помните, что n – это количество данных (чисел) в вашей выборке. Таким образом, вы получите дисперсию.[11]
- В нашем примере (10, 8, 10, 8, 8, 4) n = 6.
- n-1 = 5.
- В нашем примере сумма квадратов равна 24.
- 24/5 = 4,8
- Дисперсия данной выборки равна 4,8.
Реклама
-
1
Найдите дисперсию, чтобы вычислить среднеквадратическое отклонение.[12]
- Помните, что дисперсия – это мера разброса данных вокруг среднего значения.
- Среднеквадратическое отклонение – это аналогичная величина, описывающая характер распределения данных в выборке.
- В нашем примере дисперсия равна 4,8.
-
2
Извлеките квадратный корень из дисперсии, чтобы найти среднеквадратическое отклонение.[13]
- Как правило, 68% всех данных расположены в пределах одного среднеквадратического отклонения от среднего значения.
- В нашем примере дисперсия равна 4,8.
- √4,8 = 2,19. Среднеквадратическое отклонение данной выборки равно 2,19.
- 5 из 6 чисел (83%) данной выборки (10, 8, 10, 8, 8, 4) находится в пределах одного среднеквадратического отклонения (2,19) от среднего значения (8).
-
3
Проверьте правильность вычисления среднего значения, дисперсии и среднеквадратического отклонения. Это позволит вам проверить ваш ответ.[14]
- Обязательно записывайте вычисления.
- Если в процессе проверки вычислений вы получили другое значение, проверьте все вычисления с самого начала.
- Если вы не можете найти, где сделали ошибку, проделайте вычисления с самого начала.
Реклама
Об этой статье
Эту страницу просматривали 64 743 раза.
Была ли эта статья полезной?
В данной статье я расскажу о том, как найти среднеквадратическое отклонение. Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.
Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).
Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”
Что такое дисперсия
Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.
Чтобы найти дисперсию последовательно проведите следующие вычисления:
- Определите среднее (простое среднее арифметическое ряда значений).
- Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности).
- Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).
Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.
Порода собаки | Рост в миллиметрах |
Ротвейлер | 600 |
Бульдог | 470 |
Такса | 170 |
Пудель | 430 |
Мопс | 300 |
Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.
Сперва найдём среднее значение. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:
Среднее мм.
Итак, среднее (среднеарифметическое) составляет 394 мм.
Теперь нужно определить отклонение роста каждой из собак от среднего:
Наконец, чтобы вычислить дисперсию, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:
Дисперсия мм2.
Таким образом, дисперсия составляет 21704 мм2.
Как найти среднеквадратическое отклонение
Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:
мм (округлено до ближайшего целого значения в мм).
Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).
Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.
То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.
Что такое стандартное отклонение
Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.
Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.
Если есть значений, то:
Все остальные расчеты производятся аналогично, в том числе и определение среднего.
Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:
Дисперсия выборки = мм2.
При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).
Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.
Примечание. Почему именно квадраты разностей?
Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:
.
Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?
.
На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:
.
Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.
А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).
Для первого примера получится:
.
Для второго примера получится:
.
Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.
Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.
И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.
О том, как найти среднеквадратическое отклонение, вам рассказал репетитор по математике в Москве, Сергей Валерьевич
Что такое среднеквадратичное отклонение
Рассматривая какие-либо величины или их изменения, используют такие критерии как среднеарифметическая величина и ее отклонение. Различные понятия позволяют оценить разброс измеряемой величины и ее отклонение. К ним относится абсолютная погрешность, которая показывает насколько каждая конкретная величина отличается от среднего значения. Но так как сумма всех абсолютных погрешностей равна нулю, то этот критерий не позволяет показать разброс измеряемых величин. И для решения этой задачи был введен новый показатель — среднее квадратичное отклонение.
Для того чтобы объяснить его смысл необходимо вспомнить некоторые основные математические понятия.
Определение
Средней величиной или средним арифметическим называется число, полученное в результате деления суммы всех величин на их количество.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Пример
Среднеарифметическое для 3 чисел b1, b2 и b3 определяется как:
(M=frac{b_1+b_2+b_3}3)
Со средней величиной непосредственно связана и другая характеристика — математическое ожидание.
Определение
Значение среднего арифметического некоторого множества при стремлении его членов к бесконечности называется математическим ожиданием (М).
А оценкой математического ожидания является среднее арифметическое определенного числа измерений изучаемой величины.
Определение
Вариантой или абсолютной погрешностью называется разность измеряемой величины со средним значением.
Она обозначается греческой буквой D. Для того чтобы найти варианту единичного измерения ai следует отнять от ее значение среднее арифметическое:
(Da_i=a_i-M)
Также для оценки единичного измерения используется и относительная погрешность, значение которой выражается в процентах. Ее вычисление проводят по формуле:
(sigma=frac{left|triangle a_iright|}Mtimes100%)
Относительная погрешность каждой величины позволяет отбросить из вариации измерений значения с очень большой погрешностью и проводить дальнейший анализ только величин с незначительной относительной погрешностью.
Характеристикой распределения значений некоторой измеряемой величины является дисперсия (D).
Определение
Дисперсией называется среднее арифметическое квадратов всех абсолютных погрешностей.
Теперь можно дать определение и «среднеквадратичному отклонению».
Определение
Значение корня квадратного из дисперсии случайной величины называется среднеквадратичным отклонением и обозначается «ϭ».
Оно вычисляется по формуле:
(sigma=sqrt{D_{left|xright|}})
Единицей измерения среднеквадратического отклонения является единица измерения исследуемой величины. Данный критерий используется при измерении линейной функции, статической проверки гипотезы, расчете стандартной ошибки среднего арифметического, а также при построении доверительных интервалов.
Как найти среднеквадратическое отклонение
Вычисление среднеквадратичного отклонения на первый взгляд может показаться достаточно сложным и запутанным. Но этот процесс можно облегчить, если воспользоваться следующим алгоритмом действий:
- Найти среднее арифметическое всех членов множества.
- Для каждого элемента вычислить варианту.
- Сложить все полученные на предыдущем этапе значения.
- Разделить число, полученное при выполнении третьего шага, на количество элементов множества.
- Из полученного в предыдущем шаге числа извлечь корень квадратный.
Формула, примеры решения задач
Для четырех измеренных значений величины b формула среднеквадратичного отклонения будет выглядеть следующим образом:
(sigma=sqrt{frac{triangle b_1+triangle b_2+triangle b_3+triangle b_4}4})
где Db1 – Db4 являются абсолютными погрешностями каждой исследуемой величины.
Рассмотрим пример решения конкретной задачи.
Задача
При проведении лабораторной работы по физике школьники несколько раз измерили напряжение электрического тока и получили следующие значения:
(U_1=4.22B\U_2=4.30B\U_3=4.27B\U_4=4.23B\U_5=4.20B)
Необходимо рассчитать погрешности (абсолютные и относительные) каждого измерения, дисперсию и среднеквадратическое отклонение.
Решение
Определим среднее арифметическое значение напряжения в данной работе:
(U_c=sqrt{frac{U_1+U_2+U_3+U_4+U_5}5}=frac{4.22+4.30+4.27+4.23+4.20}5=4.244B)
Теперь рассчитаем для каждого полученного измерения абсолютную и относительную погрешности. Так как абсолютная погрешность определяется как разница между средним арифметическим и полученным значением, то
(triangle U_1=0.024\triangle U_2=-0.056\triangle U_3=-0.026\triangle U_4=0.014\triangle U_5=0.044)
Находим относительную погрешность:
(sigma_1=frac{left|U_1right|}{U_c}times100%=0.50%\sigma_2=frac{left|U_2right|}{U_c}times100%=1.06%\sigma_3=frac{left|U_3right|}{U_c}times100%=0.50%\sigma_4=frac{left|U_4right|}{U_c}times100%=0.25%\sigma_5=frac{left|U_5right|}{U_c}times100%=0.84%\)
Зная абсолютные погрешности несложно вычислить дисперсию:
(D=frac{triangle U_1^2+{triangle U_2}^2+{triangle U_3}^2+{triangle U_4}^2+{triangle U_5}^2}5=0.001304\)
Теперь можно вычислить среднеквадратичное отклонение:
(sigma=sqrt D=0.0361\)
Калькулятор Начальной максимальной цены контракта
В графу «Цена коммерческого предложения» ввести стоимость коммерческого предложения.
Для дальнейшего расчета НМЦК необходимо вычислить «Среднее арифметическое», «Среднее квадратичное отклонение»,
«Коэффициент вариации», «Дисперсия», для этого необходимо нажать кнопку «Рассчитать».
Количество полей «Цена коммерческого предложения» можно менять кнопками + / –
Далее заполняем графу «Количество необходимого товара (работы, услуги)», после чего НМЦК будет рассчитана
автоматически.
Полученные результаты:
Количество необходимого товара(работы/услуги)
Начальная (максимальная) цена контракта
Необходимо ввести не менее 3-х значений цен коммерческих предложений.
В соответствии с п. 3.7.1 Приказа Министерства экономического развития РФ от 2 октября 2013 г. № 567 в целях получения ценовой информации в отношении товара, работы, услуги для определения НМЦК необходимо направить запросы о предоставлении ценовой информации не менее пяти поставщикам (подрядчикам, исполнителям), обладающим опытом поставок соответствующих товаров, работ, услуг, информация о которых имеется в свободном доступе (в частности, опубликована в печати, размещена на сайтах в сети ‘Интернет’).
Согласно п. 3.19 Приказа Министерства экономического развития РФ от 2 октября 2013 г. № 567 в целях определения НМЦК методом сопоставимых рыночных цен (анализа рынка) рекомендуется использовать не менее трех цен товара, работы, услуги, предлагаемых различными поставщиками (подрядчиками, исполнителями).
Коэффициент вариации более 33%
Вам необходимо провести дополнительные исследования в целях увеличения количества ценовой информации, используемой в расчётах.
В соответствии с п.3.20.2. Приказа Министерства экономического развития РФ от 2 октября 2013 г. № 567 совокупность значений, используемых в расчёте, при определении НМЦК считается неоднородной, если коэффициент вариации цены превышает 33%.
Расчет начальной (максимальной) цены контракта.
Используемый метод определения НМЦК с обоснованием: метод сопоставимых рыночных цен (анализа рынка).
Наименование товара | Ед. изм. | Коммерческое предложение | Цена за единицу | Среднее квадратичное отклонение | Коэффициент вариации % | Средняя цена за единицу | Количество | Сумма (руб.) |
|
|
№ №от № от |
В соответствии с вышеизложенными расчетами установлена начальная (максимальная) цена контракта составляет: рублей
Дата подготовки обоснования: 25.05.2023
Среднее квадратичное отклонение двух, трех, четырех и более чисел. Оно же стандартное отклонение, среднеквадратическое отклонение, среднеквадратичное отклонение, средняя квадратическая, стандартный разброс — показатель рассеивания значений случайной величины относительно её математического ожидания в теории вероятностей и статистике.
Как правило перечисленные термины равны квадратному корню дисперсии.
Пример вычисления стандартного отклонения по следующим формулам:
Вычислим среднюю оценку ученика: 2; 4; 5; 6; 8.
Cредняя оценка будет равна:
Вычисляем квадраты отклонений оценок от их средней оценки:
Вычислим среднее арифметическое (дисперсию) этих значений:
Стандартное отклонение равно квадратному корню дисперсии:
Эта формула справедлива только если эти пять значений и являются генеральной совокупностью. Если бы эти данные были случайной выборкой из какой-то большой совокупности (например, оценки пяти случайно выбранных учеников большого города), то в знаменателе формулы для вычисления дисперсии вместо n = 5 нужно было бы поставить n − 1 = 4:
Тогда стандартное отклонение будет равняться:
Этот результат называется стандартным отклонением на основании несмещённой оценки дисперсии. Деление на n − 1 вместо n даёт неискажённую оценку дисперсии для больших генеральных совокупностей.
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»