Как найти среднее квадратическое отклонение случайной величины

Числовые характеристики дискретной случайной величины

В этом разделе:

  • Основная информация
  • Онлайн калькулятор
  • Полезные ссылки

Полезная страница? Сохрани или расскажи друзьям

Основная информация

Числовые характеристики дискретной случайной величины $X$, которые обычно требуется находить в учебных задачах по теории вероятностей, это математическое ожидание $M(X)$, дисперсия $D(X)$ и среднее квадратическое отклонение $sigma(X)$.

$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2.
$$
$$
sigma(X) = sqrt{D(X)}.
$$

Подробные формулы и примеры расчета вы найдете по ссылкам в предыдущем абзаце, в этом же разделе вы сможете автоматически и бесплатно рассчитать эти значения с помощью онлайн-калькулятора, который даст не только ответ, но и продемонстрирует процесс вычисления.

Подробно решим ваши задачи по теории вероятностей

Калькулятор: числовые характеристики случайной величины

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -1.5 или 10.558). Введите нужные значения (убедитесь, что сумма вероятностей равна единице, то есть закон распределения задан верно).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет процесс вычисления математического ожидания $M(X)$, дисперсии $D(X)$ и СКО $sigma(X)$.
  • Нужны еще расчеты? Вводите новые числа и нажимайте на кнопку.

Видео. Полезные ссылки

Видеоролики об СКО

На закуску для продвинутых – какие формулы вычисления СКО для выборок бывают и для чего подходят.

Лучшее спасибо – порекомендовать эту страницу

Полезные ссылки

  • Калькуляторы по теории вероятнстей
  • Онлайн учебник по ТВ
  • Примеры решений по теории вероятностей
  • Контрольные по теории вероятностей на заказ

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Среднеквадрати́ческое отклонение (среднеквадрати́чное отклонение, стандартное отклонение[1]) — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания (аналога среднего арифметического с бесконечным числом исходов). Обычно означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения.

В литературе обычно обозначают греческой буквой sigma (сигма). В статистике принято два обозначения: sigma  — для генеральной совокупности и {displaystyle sd} (с англ. standard deviation — стандартное отклонение) — для выборки.

Варианты определения[править | править код]

Обычно определяется как квадратный корень из дисперсии случайной величины: {displaystyle sigma ={sqrt {D[X]}}}. Измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

В частности, если x_{i} — i-й элемент выборки, n — объём выборки, {bar {x}} — среднее арифметическое выборки (выборочное среднее — оценка математического ожидания величины):

{displaystyle {bar {x}}={frac {1}{n}}sum _{i=1}^{n}x_{i}={frac {1}{n}}(x_{1}+ldots +x_{n})},

то два основных способа оценки стандартного отклонения записываются нижеследующим образом.

Оценка стандартного отклонения на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией[2]):

{displaystyle S={sqrt {{frac {1}{n}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}}.

Это в буквальном смысле среднее квадратическое разностей измеренных значений и среднего.

Оценка стандартного отклонения на основании несмещённой оценки дисперсии (подправленной выборочной дисперсии[2], в ГОСТ Р 8.736-2011 — «среднее квадратическое отклонение»):

{displaystyle S_{0}={sqrt {{frac {n}{n-1}}S^{2}}}={sqrt {{frac {1}{n-1}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}.}

Само по себе, однако, S_{0} не является несмещённой оценкой квадратного корня из дисперсии, то есть извлечение квадратного корня «портит» несмещённость.

Обе оценки являются состоятельными[2].

Кроме того, среднеквадратическим отклонением называют математическое ожидание квадрата разности истинного значения случайной величины и её оценки для некоторого метода оценки[3]. Если оценка несмещённая (выборочное среднее — как раз несмещённая оценка для случайной величины), то эта величина равна дисперсии этой оценки.

Среднее значение выборки также является случайной величиной с оценкой среднеквадратичного отклонения[3][]:

{displaystyle S_{bar {x}}=S_{0}/{sqrt {n}}={sqrt {{frac {1}{n(n-1)}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}.}

Правило трёх сигм[править | править код]

Правило трёх сигм ({displaystyle 3sigma }) гласит: вероятность того, что любая случайная величина отклонится от своего среднего значения менее чем на {displaystyle 3sigma }:

{displaystyle P(|xi -Exi mid <3sigma )geqslant {frac {8}{9}}}.

Практически все значения нормально распределённой случайной величины лежат в интервале {displaystyle left(mu -3sigma ;mu +3sigma right)}, где {displaystyle mu =Exi } — математическое ожидание случайной величины. Более строго — приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале.

Интерпретация[править | править код]

Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, для у всех трёх числовых множеств: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8} средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение[править | править код]

На практике среднеквадратическое отклонение позволяет оценить, насколько значения из множества могут отличаться от среднего значения.

Экономика и финансы[править | править код]

Среднее квадратическое отклонение доходности портфеля sigma ={sqrt {D[X]}} отождествляется с риском портфеля.

В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера, расчёта волатильности.

Оценка рисков и критика[править | править код]

Среднеквадратическое отклонение широко распространено в финансовой сфере в качестве критерия оценки инвестиционного риска. По мнению американского экономиста Нассима Талеба, этого делать не следует. Так, по теории около двух третей изменений должны укладываться в определённые рамки (среднеквадратические отклонения −1 и +1) и что колебания свыше семи стандартных отклонений практически невозможны. Однако в реальной жизни, по мнению Талеба, всё иначе — скачки отдельных показателей могут превышать 10, 20, а иногда и 30 стандартных отклонений. Талеб считает, что риск-менеджерам следует избегать использования средств и методов, связанных со стандартными отклонениями, таких как регрессионные модели, коэффициент детерминации (R-квадрат) и бета-факторы. Кроме того, по мнению Талеба, среднеквадратическое отклонение — слишком сложный для понимания метод. Он считает, что тот, кто пытается оценить риск с помощью единственного показателя, обречён на неудачу[4].

Климат[править | править код]

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт[править | править код]

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

Пример[править | править код]

Предположим, что интересующая нас группа (генеральная совокупность) это класс из восьми учеников, которым выставляются оценки по 10-бальной системе. Так как мы оцениваем всю группу, а не её выборку, можно использовать стандартное отклонение на основании смещённой оценки дисперсии. Для этого берём квадратный корень из среднего арифметического квадратов отклонений величин от их среднего значения.

Пусть оценки учеников класса следующие:

{displaystyle 2, 4, 4, 4, 5, 5, 7, 9}.

Тогда средняя оценка равна:

{displaystyle mu ={frac {2+4+4+4+5+5+7+9}{8}}=5}.

Вычислим квадраты отклонений оценок учеников от их средней оценки:

{displaystyle {begin{array}{lll}(2-5)^{2}=(-3)^{2}=9&&(5-5)^{2}=0^{2}=0\(4-5)^{2}=(-1)^{2}=1&&(5-5)^{2}=0^{2}=0\(4-5)^{2}=(-1)^{2}=1&&(7-5)^{2}=2^{2}=4\(4-5)^{2}=(-1)^{2}=1&&(9-5)^{2}=4^{2}=16\end{array}}}

Среднее арифметическое этих значений называется дисперсией:

{displaystyle sigma ^{2}={frac {9+1+1+1+0+0+4+16}{8}}=4}

Стандартное отклонение равно квадратному корню дисперсии:

{displaystyle sigma ={sqrt {4}}=2}

Эта формула справедлива только если эти восемь значений и являются генеральной совокупностью. Если бы эти данные были случайной выборкой из какой-то большой совокупности (например, оценки восьми случайно выбранных учеников большого города), то в знаменателе формулы для вычисления дисперсии вместо n = 8 нужно было бы поставить n − 1 = 7:

{displaystyle sigma ^{2}={frac {9+1+1+1+0+0+4+16}{7}}approx 4{,}57}

и стандартное отклонение равнялось бы:

{displaystyle sigma ={sqrt {4{,}57}}approx 2{,}14}

Этот результат называется стандартным отклонением на основании несмещённой оценки дисперсии. Деление на n − 1 вместо n даёт неискажённую оценку дисперсии для больших генеральных совокупностей.

Примечания[править | править код]

  1. Встречаются также различные синонимы: среднее квадратическое отклонение, стандартный разброс, стандартная неопределённость; термин «среднее квадратическое» означает «среднее степени 2»
  2. 1 2 3 Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. — М. : Издательство ЛКИ, 2010. — §2.2. Выборочные моменты: точная и асимптотическая теория. — ISBN 978-5-382-01013-7.
  3. 1 2 C. Patrignani et al. (Particle Data Group). 39. STATISTICS. — В: Review of Particle Physics // Chin. Phys. C. — 2016. — Vol. 40. — P. 100001. — doi:10.1088/1674-1137/40/10/100001.
  4. Талеб, Гольдштейн, Шпицнагель, 2022, с. 46.

Литература[править | править код]

  • Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. — СПб.: Питер, 2003. — 688 с. — ISBN 5-272-00078-1..
  • Нассим Талеб, Дениэл Гольдштейн, Марк Шпицнагель. Шесть ошибок руководителей компаний при управлении рисками // Управление рисками (Серия «Harvard Business Review: 10 лучших статей») = On Managing Risk / Коллектив авторов. — М.: Альпина Паблишер, 2022. — С. 41—50. — 206 с. — ISBN 978-5-9614-8186-0.

Математическое ожидание, дисперсия, среднее квадратичное отклонение

Эти величины определяют некоторое
среднее значение, вокруг которого
группируются значения случайной
величины, и степень их разбросанности
вокруг этого среднего значения.

Математическое ожидание Mдискретной случайной величины – это
среднее значение случайной величины,
равное сумме произведений всех возможных
значений случайной величины на их
вероятности.

Свойства математического ожидания:

  1. Математическое ожидание постоянной
    величины равно самой постоянной .

  2. Постоянный множитель можно выносить
    за знак математического ожидания .

  3. Математическое ожидание произведения
    двух независимых случайных величин
    равно произведению их математических
    ожиданий .

  4. Математическое ожидание суммы двух
    случайных величин равно сумме
    математических ожиданий слагаемых

Для описания многих практически важных
свойств случайной величины необходимо
знание не только ее математического
ожидания, но и отклонения возможных ее
значений от среднего значения.

Дисперсия случайной величины— мера разброса случайной величины,
равная математическому ожиданию квадрата
отклонения случайной величины от ее
математического ожидания.

.

Принимая во внимание свойства
математического ожидания, легко показать
что

Казалось бы естественным рассматривать
не квадрат отклонения случайной величины
от ее математического ожидания, а просто
отклонение. Однако математическое
ожидание этого отклонения равно нулю.
Это объясняется тем, что одни возможные
отклонения положительны, другие
отрицательны, и в результате их взаимного
погашения получается ноль. Можно было
бы принять за меру рассеяния математическое
ожидание модуля отклонения случайной
величины от ее математического ожидания,
но как правило, действия связанные с
абсолютными величинами, приводят к
громоздким вычислениям.

Свойства дисперсии:

  1. Дисперсия постоянной равна нулю.

  2. Постоянный множитель можно выносить
    за знак дисперсии, возводя его в квадрат.

  3. Если x и y независимые случайные величины
    , то дисперсия суммы этих величин равна
    сумме их дисперсий.

Средним квадратическим отклонением
случайной величины
(иногда применяется
термин «стандартное отклонение случайной
величины») называется число равное.

Среднее квадратическое отклонение,
является, как и дисперсия, мерой рассеяния
распределения, но измеряется, в отличие
от дисперсии, в тех же единицах, которые
используют для измерения значений
случайной величины.

Решение задач:

1)Дана случайная величина Х:

xi

-3

-2

0

1

2

pi

0,1

0,2

0,05

0,3

0,35

Найти М(х), D(X).

Решение:

.

=9=2,31.

.

2) Известно, что М(Х)=5, М(Y)=2.
Найти математическое ожидание случайной
величиныZ=6X-2Y+9-XY.

Решение:М(Z)=6М(Х)-2М(Y)+9-M(X)M(Y)=30-4+9-10=25.

Пример:Известно, чтоD(Х)=5,D(Y)=2. Найти
математическое ожидание случайной
величиныZ=6X-2Y+9.

Решение:D(Z)=62D(Х)-22D(Y)+0=180-8=172.

Тема 7. Непрерывные случайные величины

Задача 14

Случайная
величина, значения которой заполняют
некоторый промежуток, называется
непрерывной.

Плотностью распределениявероятностей непрерывной случайной
величины Х называется функцияf(x)– первая производная от функции
распределенияF(x).

Плотность
распределения также называют
дифференциальной
функцией
.
Для описания дискретной случайной
величины плотность распределения
неприемлема.

Зная плотность распределения, можно
вычислить вероятность того, что некоторая
случайная величина Х примет значение,
принадлежащее заданному интервалу.

Вероятность того, что непрерывная
случайная величина Х примет значение,
принадлежащее интервалу (
a,
b), равна определенному
интегралу от плотности распределения,
взятому в пределах от
a
до
b.

Функция распределения может быть легко
найдена, если известна плотность
распределения, по формуле:

Свойства плотности распределения.

1) Плотность распределения – неотрицательная
функция.

2) Несобственный интеграл
от плотности распределения в пределах
от -доравен единице.

Решение задач.

1.Случайная величина подчинена
закону распределения с плотностью:

Требуется найти коэффициент а,
определить вероятность того, что
случайная величина попадет в интервал
от 0 до.

Решение:

Для нахождения коэффициента авоспользуемся свойством.

2 .Задана непрерывная случайная
величинахсвоей функцией распределенияf(x).

Требуется определить
коэффициент А, найти функцию распределения,
определить вероятность того, что
случайная величинахпопадет в
интервал.

Решение:

Найдем коэффициент А.

Найдем функцию распределения:

1) На участке
:

2) На участке

3) На участке

Итого:

Найдем вероятность попадания случайной
величины в интервал
.

Ту же самую вероятность можно искать
и другим способом:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Загрузить PDF


Загрузить PDF

Вычислив среднеквадратическое отклонение, вы найдете разброс значений в выборке данных.[1]
Но сначала вам придется вычислить некоторые величины: среднее значение и дисперсию выборки. Дисперсия – мера разброса данных вокруг среднего значения.[2]
Среднеквадратическое отклонение равно квадратному корню из дисперсии выборки. Эта статья расскажет вам, как найти среднее значение, дисперсию и среднеквадратическое отклонение.

  1. Изображение с названием Calculate Standard Deviation Step 1

    1

    Возьмите наборе данных. Среднее значение – это важная величина в статистических расчетах.[3]

    • Определите количество чисел в наборе данных.
    • Числа в наборе сильно отличаются друг от друга или они очень близки (отличаются на дробные доли)?
    • Что представляют числа в наборе данных? Тестовые оценки, показания пульса, роста, веса и так далее.
    • Например, набор тестовых оценок: 10, 8, 10, 8, 8, 4.
  2. Изображение с названием Calculate Standard Deviation Step 2

    2

    Для вычисления среднего значения понадобятся все числа данного набора данных.[4]

    • Среднее значение – это усредненное значение всех чисел в наборе данных.
    • Для вычисления среднего значения сложите все числа вашего набора данных и разделите полученное значение на общее количество чисел в наборе (n).
    • В нашем примере (10, 8, 10, 8, 8, 4) n = 6.
  3. Изображение с названием Calculate Standard Deviation Step 3

    3

    Сложите все числа вашего набора данных.[5]

    • В нашем примере даны числа: 10, 8, 10, 8, 8 и 4.
    • 10 + 8 + 10 + 8 + 8 + 4 = 48. Это сумма всех чисел в наборе данных.
    • Сложите числа еще раз, чтобы проверить ответ.
  4. Изображение с названием Calculate Standard Deviation Step 4

    4

    Разделите сумму чисел на количество чисел (n) в выборке. Вы найдете среднее значение.[6]

    • В нашем примере (10, 8, 10, 8, 8 и 4) n = 6.
    • В нашем примере сумма чисел равна 48. Таким образом, разделите 48 на n.
    • 48/6 = 8
    • Среднее значение данной выборки равно 8.

    Реклама

  1. Изображение с названием Calculate Standard Deviation Step 5

    1

    Вычислите дисперсию. Это мера разброса данных вокруг среднего значения.[7]

    • Эта величина даст вам представление о том, как разбросаны данные выборки.
    • Выборка с малой дисперсией включает данные, которые ненамного отличаются от среднего значения.
    • Выборка с высокой дисперсией включает данные, которые сильно отличаются от среднего значения.
    • Дисперсию часто используют для того, чтобы сравнить распределение двух наборов данных.
  2. Изображение с названием Calculate Standard Deviation Step 6

    2

    Вычтите среднее значение из каждого числа в наборе данных. Вы узнаете, насколько каждая величина в наборе данных отличается от среднего значения.[8]

    • В нашем примере (10, 8, 10, 8, 8, 4) среднее значение равно 8.
    • 10 – 8 = 2; 8 – 8 = 0, 10 – 2 = 8, 8 – 8 = 0, 8 – 8 = 0, и 4 – 8 = -4.
    • Проделайте вычитания еще раз, чтобы проверить каждый ответ. Это очень важно, так как полученные значения понадобятся при вычислениях других величин.
  3. Изображение с названием Calculate Standard Deviation Step 7

    3

    Возведите в квадрат каждое значение, полученное вами в предыдущем шаге.[9]

    • При вычитании среднего значения (8) из каждого числа данной выборки (10, 8, 10, 8, 8 и 4) вы получили следующие значения: 2, 0, 2, 0, 0 и -4.
    • Возведите эти значения в квадрат: 22, 02, 22, 02, 02, и (-4)2 = 4, 0, 4, 0, 0, и 16.
    • Проверьте ответы, прежде чем приступить к следующему шагу.
  4. Изображение с названием Calculate Standard Deviation Step 8

    4

    Сложите квадраты значений, то есть найдите сумму квадратов.[10]

    • В нашем примере квадраты значений: 4, 0, 4, 0, 0 и 16.
    • Напомним, что значения получены путем вычитания среднего значения из каждого числа выборки: (10-8)^2 + (8-8)^2 + (10-2)^2 + (8-8)^2 + (8-8)^2 + (4-8)^2
    • 4 + 0 + 4 + 0 + 0 + 16 = 24.
    • Сумма квадратов равна 24.
  5. Изображение с названием Calculate Standard Deviation Step 9

    5

    Разделите сумму квадратов на (n-1). Помните, что n – это количество данных (чисел) в вашей выборке. Таким образом, вы получите дисперсию.[11]

    • В нашем примере (10, 8, 10, 8, 8, 4) n = 6.
    • n-1 = 5.
    • В нашем примере сумма квадратов равна 24.
    • 24/5 = 4,8
    • Дисперсия данной выборки равна 4,8.

    Реклама

  1. Изображение с названием Calculate Standard Deviation Step 10

    1

    Найдите дисперсию, чтобы вычислить среднеквадратическое отклонение.[12]

    • Помните, что дисперсия – это мера разброса данных вокруг среднего значения.
    • Среднеквадратическое отклонение – это аналогичная величина, описывающая характер распределения данных в выборке.
    • В нашем примере дисперсия равна 4,8.
  2. Изображение с названием Calculate Standard Deviation Step 11

    2

    Извлеките квадратный корень из дисперсии, чтобы найти среднеквадратическое отклонение.[13]

    • Как правило, 68% всех данных расположены в пределах одного среднеквадратического отклонения от среднего значения.
    • В нашем примере дисперсия равна 4,8.
    • √4,8 = 2,19. Среднеквадратическое отклонение данной выборки равно 2,19.
    • 5 из 6 чисел (83%) данной выборки (10, 8, 10, 8, 8, 4) находится в пределах одного среднеквадратического отклонения (2,19) от среднего значения (8).
  3. Изображение с названием Calculate Standard Deviation Step 12

    3

    Проверьте правильность вычисления среднего значения, дисперсии и среднеквадратического отклонения. Это позволит вам проверить ваш ответ.[14]

    • Обязательно записывайте вычисления.
    • Если в процессе проверки вычислений вы получили другое значение, проверьте все вычисления с самого начала.
    • Если вы не можете найти, где сделали ошибку, проделайте вычисления с самого начала.

    Реклама

Об этой статье

Эту страницу просматривали 64 743 раза.

Была ли эта статья полезной?

Среднеквадратическое отклонение случайной величины (или СКО случайной величины показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения. 

Обозначение: σ(X), σ

В регрессионном анализе СКО характеризует достоверность линии тренда для прогнозирования.

Среднеквадратическое отклонение связано с дисперсией случайной величины X и эта связь выражается в виде формулы для определения среднего квадратического отклонения:

Среднеквадратическое отклонение случайной величины формула

Ряд распределения задан в виде таблицы 1

Найти дисперсию и среднее квадратическое отклонение:

Решение

D(X) = M(X2) — M2(X) 

  Вычисляем математическое ожидание

  М(Х)=3·0,2+4·0,5+5·0,3=

=0,6+2,0+1,5=4,1

  Представим закон распределения дискретной случайной величины для X2 в виде таблицы 2:

Найдем М(Х2) исходя из таблицы 2:

М(Х2)=9·0,2+16·0,5 +25·0,3=

=1,8+8+7,5=17,3

Дисперсия СВ равна:

   D(X) = M(X2)-M2(X)=

=17,3-(4,1)2 =0,49

Извлекая корень квадратный из дисперсии, найдём среднеквадратическое отклонение случайной величины:

Среднеквадратическое отклонение случайной величины формула пример с решением

17404


Добавить комментарий