Как найти среднее линейное отклонение в статистике

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Размер вклада, руб. До 400 400 – 600 600 – 800 800 – 1000 Свыше 1000
Число вкладчиков 32 56 120 104 88

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

Размер вклада, руб. 200 – 400 400 – 600 600 – 800 800 – 1000 1000 – 1200
Число вкладчиков 32 56 120 104 88

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Формула и расчёт размаха вариации

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

Средняя арифметическая простая

второго – 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

Формула и расчёт средней арифметической взвешенной

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

 Формула среднего линейного отклонения

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

Абсолютное отклонение варианта от средней

3. Полученные отклонения умножаются на частоты:

Взвешенные абсолютные отклонения

4. Находится сумма взвешенных отклонений без учёта знака:

Сумма взвешенных абсолютных отклонений

5. Сумма взвешенных отклонений делится на сумму частот:

Отношение суммы взвешенных отклонений и суммы весов

Удобно пользоваться таблицей расчётных данных:

 Формула и расчёт среднего линейного отклонения

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия – это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

 Формула дисперсии

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

Отклонение варианта от средней

3. Возводят в квадрат отклонения каждой варианты от средней:

Квадрат отклонений варианта от средней

4. Умножают квадраты отклонений на веса (частоты):

Произведение отклонения варианта от средей на частоту

5. Суммируют полученные произведения:

Сумма произведений отклонений варианта от средней на частоту

6. Полученная сумма делится на сумму весов (частот):

Формула дисперсии

Расчёты оформим в таблицу:

Формула и расчёт дисперсии

5) Среднее квадратическое отклонение размера вклада определяется как корень квадратный из дисперсии:

Расчёт среднего квадратического отклонения

6) Коэффициент вариации – это отношение среднего квадратического отклонения к средней арифметической:

 Формула и расчёт коэффициента вариации

По величине коэффициента вариации можно судить о степени вариации признаков совокупности. Чем больше его величина, тем больше разброс значений признаков вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя.

Среднее линейное и квадратическое отклонение

Среднее
линейное отклонение
 
 —
это средняя
арифметическая из
абсолютных отклонений отдельных значений
признака от средней.

Среднее
линейное отклонение простое:

Опыт
работы у пяти претендентов на предшествующей
работе составляет: 2,3,4,7 и 9 лет.

В
нашем примере: 
 лет;

Ответ:
2,4 года.

Среднее
линейное отклонение взвешенное
 применяется
для сгруппированных данных:

Среднее
линейное отклонение в силу его условности
применяется на практике сравнительно
редко (в частности, для характеристики
выполнения договорных обязательств по
равномерности поставки; в анализе
качества продукции с учетом технологических
особенностей производства).

Среднее
квадратическое отклонение

Наиболее
совершенной характеристикой вариации
является среднее квадратическое
откложение, которое называют стандартом
(или стандартным отклонение). Среднее
квадратическое отклонение
 (
)
равно квадратному корню из среднего
квадрата отклонений отдельных значений
признака от средней
арифметической:

Среднее
квадратическое отклонение простое:

Среднее
квадратическое отклонение взвешенное
применяется для сгруппированных данных:

Между
средним квадратическим и средним
линейным отклонениями в условиях
нормального распределения имеет место
следующее соотношение: 
 ~
1,25.

Среднее
квадратическое отклонение, являясь
основной абсолютной мерой вариации,
используется при определении значений
ординат кривой нормального распределения,
в расчетах, связанных с организацией
выборочного наблюдения и установлением
точности выборочных характеристик, а
также при оценке границ вариации признака
в однородной совокупности.

Дисперсия

Дисперсия 

представляет собой средний квадрат
отклонений индивидуальных значений
признака от их средней величины.

Дисперсия
простая:

В
нашем примере:

Дисперсия
взвешенная:

Более
удобно вычислять дисперсию по формуле:

которая
получается из основной путем несложных
преобразований. В этом случае средний
квадрат отклонений равен средней из
квадратов значений признака минус
квадрат средней.

Для
несгрупиированных данных:

Для
сгруппированных данных:

Вариация
альтернативного признака
 заключается
в наличии или отсутствии изучаемого
свойства у единиц совокупности.
Количественно вариация альтернативного
признака выражается двумя значениями:
наличие у единицы изучаемого свойства
обозначается единицей (1), а его отсутствие
— нулем (0). Долю единиц, обладающих
изучаемым признаком, обозначают буквой
,
а долю единиц, не обладающих этим
признаком — через 
.
Учитывая, что p + q = 1 (отсюда q = 1 — p), а
среднее значение альтернативного
признака равно 


,

средний
квадрат отклонений

Таким
образом, дисперсия альтернативного
признака равна произведению доли единиц,
обладающих данным свойством (
),
на долю единиц, данным свойством не
обладающих (
).

Максимальное
значение средний квадрат отклонения
(дисперсия) принимает в случае равенства
долей, т.е. когда 
 т.е. 
.
Нижняя граница этого показателя равна
нулю, что соответствует ситуации, при
которой в совокупности отсутствует
вариация. Среднее квадратическое
отклонение альтернативного признака:

Так,
если в изготовленной партии 3% изделий
оказались нестандартными, то дисперсия
доли нестандартных изделий 
,
а среднее квадратическое отклонение 
 или
17,1%.

Среднее
квадратическое отклонение 

 равно
квадратному корню из среднего квадрата
отклонений отдельных значений признака
от средней арифметической.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


3.2.2. Среднее линейное отклонение

 – есть среднее арифметическое

абсолютных отклонений всех значений статистической совокупности от средней. Это формула для

несгруппированных статистических данных.

Если же в нашем распоряжении есть сформированный дискретный либо интервальный вариационный ряд, то формула будет такой:

, где  – варианты (для дискретного ряда) либо середины частичных

интервалов (для интервального ряда), а  –

соответствующие частоты.

Напоминаю, что маленькая буква  обычно

используется для выборочной совокупности, а большая  – для генеральной:  – объём ген. совокупности,   – частоты.

Пример 13

В результате 10 независимых измерений некоторой величины, выполненных с одинаковой точностью, полученные опытные данные,

которые представлены в таблице

Требуется вычислить среднее линейное отклонение.

Решение: очевидно, что перед нами первичные данные и выборочная совокупность (теоретически измерений

можно провести бесконечно много). На первом шаге вычислим выборочную

среднюю:

Теперь находим модули отклонений от средней:


и так далее до:

Вычисления удобно проводить на калькуляторе или в Экселе (видео ниже), а результаты заносить в таблицу:

На завершающем этапе рассчитываем сумму модулей:
 и среднее линейное отклонение:
 ед. – оно означает, что измеренные

значения  
в среднем отличаются от  примерно на 0,6 ед.

Ответ:

Среднее линейное отклонение – это хорошо, но помимо него, для оценки рассеяния вариант относительно

средней существует более совершенный и распространённый подход. Он состоит в том, чтобы использовать не модули, а

возведение отклонений в квадрат:  (для

ликвидации возможных «минусов»).

В результате получается:

3.2.3. Генеральная и выборочная дисперсия

3.2.1. Размах вариации

| Оглавление |



В этой статье мы приступим к изучению показателей вариации: размах вариации, межквартильный размах, среднее линейное отклонение.

В математической статистике вариация занимает одно из центральных мест. Что же такое вариация? Это изменчивость. Вариация показателя – изменчивость показателя. 

Показатели вариации дают очень важную характеристику процессам и явлениям. Они отражают устойчивость процессов и однородность явлений. Чем меньше показатель вариации, тем более процесс устойчивый, а значит, и более предсказуемый.

Показатели вариации отражают не отдельно взятые значения, а дают характеристику некоторому явлению или процессу в целом. Имея в наличии показатели среднего значения и вариации, можно получить первичное представление о характере данных. Средняя – это обобщающий уровень, а вариация характеризует, насколько среднее значение (или другой показатель) хорошо обобщает значения некоторой совокупности данных. Если показатель вариации незначительный, то значения совокупности находятся близко к среднему, следовательно, среднее значение хорошо обобщает совокупность. Если вариация большая, то среднее значение плохо обобщает данные (значения разбросаны далеко друг от друга), и получается «средняя температура по больнице».

Размах вариации

Размах вариации – разница между максимальным и минимальным значением:

Формула размаха вариации

Ниже приведена графическая интерпретация размаха вариации.

Размах вариации на рисунке

Видно максимальное и минимальное значение, а также расстояние между ними, которое и соответствует размаху вариации.

С одной стороны, показатель размаха может быть вполне информативным и полезным. К примеру, максимальная и минимальная стоимость квартиры в городе N, максимальная и минимальная зарплата по профессии в регионе и проч. С другой стороны, размах может быть очень широким и не иметь практического смысла, т.к. зависит лишь от двух наблюдений. Таким образом, размах вариации очень неустойчивая величина.

Межквартильный размах

В статистике для анализа выборки часто прибегают к другому показателю вариации – межквартильному размаху. Квартиль – это то значение, которые делит ранжированные (отсортированные) данные на части, кратные одной четверти, или 25%. Так, 1-й квартиль – это значение, ниже которого находится 25% совокупности. 2-й квартиль делит совокупность данных пополам (то бишь медиана), ну и 3-й квартиль отделяет 25% наибольших значений. Так вот межквартильный размах – это разница между 3-м и 1-м квартилями. У данного показателя есть одно неоспоримое преимущество: он является робастным, т.е. не зависит от аномальных отклонений.

Наглядное отображение размаха вариации и межкварительного расстояния производят с помощью диаграммы «ящик с усами».

Среднее линейное отклонение

Есть показатели вариации, которые учитывают сразу все значения, а не только отдельные наблюдения (типа максимума или минимума). Одним из таких является среднее линейное отклонение. Этот показатель характеризует меру разброса значений вокруг их среднего. В чем суть? Для того, чтобы показать меру разброса данных, нужно вначале определиться, относительно чего этот самый разброс будет считаться. Обычно это среднее арифметическое. Далее нужно посчитать, насколько каждое значение отклоняется от средней. Нас интересует среднее из таких отклонений. Однако напрямую складывать положительные и отрицательные отклонения нельзя, т.к. они взаимоуничтожатся и их сумма будет равна нулю. Поэтому все отклонения берутся по модулю. Средне линейное отклонение рассчитывается по формуле:

Формула среднего линейного отклонения

где

a – среднее линейное отклонение,

X – анализируемый показатель,

– среднее значение показателя,

n – количество значений в анализируемой совокупности данных.

Рассчитанное по этой формуле значение показывает среднее абсолютное отклонение от средней арифметической. Наглядная картинка в помощь.

Расчет среднего линейного отклонения

Отклонения каждого наблюдения от среднего указаны маленькими стрелочками. Именно они берутся по модулю и суммируются. Потом все делится на количество значений.

Для полноты картины нужно привести еще и пример. Допустим, имеется фирма по производству черенков для лопат. Каждый черенок должен быть 1,5 метра длиной, но, что еще важней, все должны быть одинаковыми или, по крайней мере, плюс-минус 5 см. Однако нерадивые работники то 1,2 м отпилят, то 1,8 м. Дачники недовольны. Решил директор провести статистический анализ длины черенков. Отобрал 10 штук и замерил их длину, нашел среднюю и рассчитал среднее линейное отклонение. Средняя получилась как раз, что надо – 1,5 м. А вот среднее линейное отклонение вышло 0,16 м. Вот и получается, что каждый черенок длиннее или короче, чем нужно, в среднем на 16 см. Есть, о чем поговорить с работниками.

На этом сегодняшнюю заметку закончим. В следующей статье будут рассмотрены такие показатели вариации, как дисперсия, среднеквадратичное отклонение и коэффициент вариации.

Поделиться в социальных сетях:

В статистике под вариацией понимают количественные
изменения величины исследуемого признака в пределах однородной совокупности,
обусловленные взаимодействием различных факторов.  Причины, порождающие вариацию социально-экономических
явлений, очень сложны и многообразны. Они лежат в коренных особенностях
исследуемого явления, в его сущности, а также в методологии сбора исходной
информации. Социально-экономические явления, как правило, обладают большой
вариацией. Если исследуются результаты целенаправленной человеческой
деятельности, то вариация будет выражать вмешательство многочисленных факторов,
природу которых не всегда можно установить. Однако, в большинстве теоретических
исследований и практических применений статистики необходимы наряду со средней
показатели вариации, характеризующие группировку значений признака вокруг
средней,  т. е. степень упорядоченности
статистической совокупности.

В соответствии с определением вариация измеряется
степенью колеблемости вариантов признака от уровня их
средней величины. Именно на этом и основано большинство показателей,
применяемых в статистике для измерения вариации значений признака в
совокупности. К показателям вариации относятся: размах вариации, среднее
линейное отклонение, дисперсия, среднее квадратическое
отклонение, коэффициент вариации.

Простейшим показателем вариации является размах вариации, определяемый как разность между максимальным и минимальным значениями
признака:

Размах вариации выражается в тех же единицах
измерений, что в варианты ряда. По величине его можно определить, например,
передовое и отстающее в достижении какой-либо цели. Величина вариации служит
также и для характеристики средней. Размах вариации имеет и самостоятельное
значение. Например, в промышленности для измерения точности изделий
устанавливают определенные пределы, соответствующие иногда величине размаха
вариации их признаков.

Однако показатель размаха вариации не может в полной
мере охарактеризовать колеблемость ряда, поскольку он
не учитывает промежуточных значений вариантов внутри этих пределов, а по этому
не отражает колеблемость ряда в целом, кроме того, он
полностью зависит от максимального и минимального значений, которые могут
оказаться не достаточно характерными.

Таким образом, размах вариации отражает иногда
случайную, а не типичную для данного ряда величину колеблемости.
По этому необходимы другие показатели вариации, основанные на всех значениях
признака в данной совокупности, а именно: среднее линейное отклонение,
дисперсия и среднее квадратическое отклонение.

Среднее линейное отклонение представляет среднюю
арифметическую из абсолютных значений отклонений отдельных вариантов от их
среднего значения. 

Для данных, где частота каждого варианта равна
единице, среднее линейное отклонение определяется по формуле:

Для вариационных рядов

 определяется с учетом частот по формуле:

Среднее линейное отклонение по сравнению с размахом
вариации дает более полную характеристику колеблемости
признака в совокупности.

Средний квадрат отклонений вариантов от их средней
величины называют дисперсией

.
Дисперсия рассчитывается по формуле:

Для негруппированных
данных, где частота каждого варианта равна единице, дисперсия рассчитывается по
формуле простой средней:

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:

либо при равенстве весов:

Среднее квадратическое
отклонение является также обобщающим показателем колеблемости
признака и характеризует средний показатель отклонения вариантов ряда от их
общей средней. Выражается s в тех же именованных числах, в которых выражены
варианты совокупности и средняя величина.

Дисперсия и среднее квадратическое отклонение – наиболее широко применяемые
показатели вариации. Объясняется это тем, что они входят в большинство теорем
теории вероятностей, служащих фундаментом математической статистики. Кроме
того, дисперсия может быть разложена на составные элементы, позволяющие оценить
влияние различных факторов, обусловливающих вариацию признака. Порядок расчета
среднего квадратического отклонения следующий:

1) Определяется средняя
величина:

2) Рассчитывается
отклонения вариантов от средней:

3) Отклонение каждого
варианта от средней возводится в квадрат:

4) Квадрат отклонений
взвешивается по частотам:

5) Взвешенные по
частотам квадраты отклонений суммируются:

6) Полученная сумма
делится на сумму частот, и из нее извлекается квадратный корень.

Среднее квадратическое
отклонение можно вычислить, составив следующую расчетную таблицу:

№ п/п Линейные отклонения от средней

Квадрат линейных отклонений

Взвешенные квадраты

Итого

Среднее квадратическое
отклонение можно вычислить на основании математических преобразований значений
варьирующего признака, применяя способ условных моментов:

где первый условный
момент:

второй условный момент:

Среднее квадратическое
отклонение по способу условных моментов определяется по формуле:

Система условных
моментов различных порядков, в частности, третьего

 и
четвертого

 используется при расчете различных
статистических характеристик (например, коэффициентов асимметрии и эксцесса).

Чем больше σ, тем разнообразнее состав
совокупности по величине изучаемого признака, и, наоборот, чем меньше σ, тем
состав совокупности по величине изучаемого признака более одинаков. Однако
оценка величины σ
как качественной характеристики ряда в конечном итоге определяется сущностью
изучаемых явлений. Среднее квадратическое отклонение
используется для сопоставления вариации по однородным совокупностям, а также
для одной совокупности за разные годы. Среднее квадратическое
отклонение является критерием надежности средней. Чем меньше оно, тем лучше
средняя арифметическая отражает всю представляемую совокупность.

Коэффициент осцилляции – процентное отношение размаха
вариации к средней

Линейный 
коэффициент вариации (относительное линейное отклонение)
измеряют через
соотношение среднего линейного отклонения и средней:

Коэффициент вариации представляет собой отношение
среднего квадратического отклонения к средней
арифметической:

Характеризуя степень колеблемости
признака, коэффициент вариации позволяет давать сравнительную характеристику
этой колеблемости одного и того же признака в
различных совокупностях.

Коэффициент вариации используется также, если
сравнивается степень вариации одного и того же признака в двух совокупностях,
имеющих разные по величине средние. Как относительные величины коэффициенты
вариации могут сопоставляться не только для одинаковых одноименных показателей,
но и для различных показателей, выраженных в разных единицах измерения. Таким
образом, коэффициент вариации в отличие от среднего квадратического
отклонения позволяет сопоставить глубину вариации неоднородных совокупностей.

Добавить комментарий