В электронную таблицу занесли данные наблюдения за погодой в течение одного года. Ниже приведены первые пять строк таблицы.
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
1 | Дата | Температура | Осадки | Давление | Ветер | Скорость ветра |
2 | 1 января | 0,7 | 15,2 | 748 | ЮВ | 4,2 |
3 | 2 января | 0,4 | 4,6 | 751 | В | 4,7 |
4 | 3 января | –1,9 | 1,4 | 747 | С | 2,4 |
5 | 4 января | –7,7 | 0,2 | 752 | З | 4,7 |
В столбце A записана дата наблюдения, в столбце B — среднесуточная температура воздуха для указанной даты, в столбце C — количество выпавших осадков (в миллиметрах) для указанной даты, в столбце D — среднесуточное атмосферное давление (в миллиметрах ртутного столба). В столбце E записано направление ветра для указанной даты — одно из восьми возможных значений «СЗ», «С», «СВ», «В», «ЮВ», «Ю», «ЮЗ», «З». В столбце F записана среднесуточная скорость ветра (в метрах в секунду). Всего в электронную таблицу были занесены данные по всем 365 дням года в хронологическом порядке.
task19.xls
Выполните задание.
Откройте файл с данной электронной таблицей. На основании данных, содержащихся в этой таблице, ответьте на два вопроса.
1. Каким было среднее значение атмосферного давления в весенние месяцы (март, апрель, май)? Ответ на этот вопрос запишите в ячейку H2 таблицы.
2. Какое среднее количество осадков выпадало за сутки в те дни года, когда дул северо-западный (СЗ) ветер? Ответ на этот вопрос запишите в ячейку H3 таблицы.
Ответы должны быть вычислены с точностью не менее двух знаков после запятой.
Самочувствие многих людей зависит от погодных условий. В таком случае говорят о метеозависимости. Что означает среднее атмосферное давление и как влияет на здоровье жителей? Как минимизировать последствия его колебаний? Что считается нормой?
Стандартное состояние
Под атмосферным давлением понимают вес воздуха, давящего на тело человека и иные предметы на земной поверхности. Этот коэффициент составляет 1,033 кг на 1 см3. Наша масса ежеминутно контролируется 10-15 тоннами газа.
Средне нормальное атмосферное давление при температуре 0 °С достигает отметки в 760 мм ртутного столба. Конкретные значения являются стандартом. Давление измеряется на уровне моря, поэтому оно считается нормой. Бывает, говорят: «Одна атмосфера» или «Три атмосферы». В последнем варианте давление назвать нормой никак нельзя, поскольку оно превышает средние показатели в 3 раза. Под атмосферой подразумевают стандартную отметку.
Давление не стабильно, оно колеблется каждый день. Его показатели зависят от погоды, рельефа, уровня над морем, времени суток и года, климата. Давление изменяется из-за распространения в атмосферном слое волн различной природы от звуковых до синоптических.
Незначительные перемены в 2-3 деления ртутного столба не отражаются на самочувствии. Перепад в 5-10 единиц приводит к болезненным состояниям. Скачки, превышающие предыдущие показатели в несколько раз, могут привести к летальному исходу. Так, в горном ландшафте при подъеме на высоту сознание теряется при падении давления на 30 единиц.
Природа позаботилась о том, чтобы организм человека был гибким и смог подстроиться под любые условия. Акклиматизация тому яркий пример. Однако не все люди могут безболезненно пережить смену климатических условий. Например, жители гор не способны адаптироваться к погоде в низине.
Измерение атмосферного давления
Этот параметр можно измерять в паскалях, барах, миллиметрах ртутного столба. Последняя единица применяется в барометре. Как и сам прибор, такое название единицы измерения давления является понятным для простых обывателей. Поэтому они знают, чему равно среднее атмосферное давление при фиксировании данных барометром.
В физике прибегают к паскалям. Нормой в данном случае выступает 101 325 Па = 760 мм. Последней единицей измерения является 1 бар = 100 000 Па. Стандартом выступает 1,01325 бара.
Влияние атмосферного давления на погоду
Поскольку среднее атмосферное давление варьируется до низких и высоких показателей, можно сказать, какая погода ожидается в ближайшие несколько дней. Подобный прогноз не отличается особенной точностью. Все зависит от многих параметров. Точный прогноз затруднителен и по той причине, что для каждого региона планеты среднее атмосферное давление разнится.
Любой человек может сориентироваться и сказать, какая погода ожидается. Если давление опускается ниже среднего показателя, то скоро будут дождливые и пасмурные дни. Солнечная погода наступает при повышении параметра.
В зимнее время ситуация кардинально меняется. При пониженном давлении ожидается потепление и возможные осадки (снег). Повышение параметра – залог ясной погоды, соответственно, будет морозно.
Давление и человек
Нормальный, пониженный или повышенный показатель давления – весьма условные определения. Люди могут привыкнуть и приспособиться ко всему. Важнее наблюдать за динамикой и амплитудой перепадов.
В городах-миллионниках атмосферное давление рассматривается как вариативная величина из-за большого скопления небоскребов. Такой тип зданий можно сравнить с горой. Чем больше человек спускается и поднимается на скоростном лифте, тем острее он реагирует на перепады давления.
Врачи утверждают, что давление в среднем ухе соответствует атмосферному. Как еще связан погодный показатель со здоровьем человека?
Метеозависимость
Если среднее значение атмосферного давления колеблется более чем на 1 единицу за 3 часа, то здоровый, крепкий организм получает стресс. У любого метеозависимого человека проявляются симптомы: сонливость, мигрень, усталость. Среди наиболее чувствительных людей – пациенты с заболеваниями сердечно-сосудистой, нервной, дыхательной систем. Пожилые остро реагируют на незначительные колебания.
Чтобы минимизировать метеоуязвимость, необходимо придерживаться следующих рекомендаций:
- следить за прогнозом погоды;
- консультироваться с врачом;
- высыпаться;
- наладить режим сна;
- сбалансировать график питания и пищевые привычки;
- пить витамины;
- гулять длительное время на свежем воздухе;
- не перенапрягаться;
- купить барометр и следить за колебаниями ртутного столба.
Группы риска
При пониженном атмосферном давлении в группу риска входят гипотоники и люди с нарушенными функциями дыхания. Из-за подобных перепадов у них чаще всего случаются приступы и обострение симптомов. Риск получения гипотонического криза возрастает.
При повышенном атмосферном давлении страдают гипертоники и люди с заболеваниями сердечно-сосудистой системы. В такие дни вероятность слечь с инфарктом или инсультом возрастает.
Из-за колебаний ртутного столба в организме раздражаются барорецепторы. Нервные окончания сигнализируют мозгу об ухудшении самочувствия из-за изменений погоды.
Колебания атмосферного давления ухудшают самочувствие пациентов:
- с заболеваниями дыхательной системы: плевритом, бронхитом, астмой, травмами грудной клетки;
- сердечно-сосудистыми недугами: гипер- и и гипотонией, атеросклерозом;
- хроническими заболеваниями органов уха и обоняния: гайморитом, отитом, фронтитом;
- нарушением мозговой деятельности: повышенным внутричерепным давлением и травмами;
- болезнями опорно-двигательного аппарата: ревматизмом, артрозом, остеохондрозом.
Симптоматика заболеваний при низком или высоком атмосферном давлении
Признаки ухудшения здоровья зависят от того, какое среднее атмосферное давление в конкретный момент времени.
При пониженном показателе у человека наблюдаются:
- снижение артериального давления;
- сонливость, апатичное состояние;
- понижение пульса;
- трудности с дыхательной системой;
- головокружение и мигрени;
- тошнота;
- проблемы в ЖКТ;
- головные боли;
- утомляемость.
При повышенном атмосферном давлении у человека проявляется следующая симптоматика:
- появление красноты на лице;
- повышение артериального давления;
- шум в ушах;
- повышение пульса;
- черные точки перед глазами;
- тошнота;
- пульсация в височной области;
- головокружение.
Рекомендации по улучшению самочувствия
Если среднее атмосферное давление резко упало или повысилось, метеозависимым людям приходится нелегко. Следующие советы помогут минимизировать ущерб от погоды и справиться с внутренним дискомфортом:
- примите с утра контрастный душ;
- гипотоники и люди с легкой степенью гипертонии могут выпить чашку некрепкого кофе;
- в течение дня в качестве напитка приоритетным выступает зеленый чай с лимоном;
- количество соли нужно уменьшить;
- сделать посильные физические упражнения;
- для отдыха и расслабления вечером выпить отвары успокаивающих трав, ромашки с медом или таблетку глицина.
Перепады атмосферного давления становятся причиной нарушения психического состояния. Появляются тревога и раздражение, бессонница или беспокойный отдых.
По статистике, резкие перепады атмосферного давления приводят к увеличению аварий и правонарушений, чрезвычайным происшествиям на производстве.
From Wikipedia, the free encyclopedia
“Air pressure” redirects here. For the pressure of air in other systems, see Pressure.
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars,[1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi.[2] The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth’s atmospheric pressure at sea level is approximately 1 atm.
In most circumstances, atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so atmospheric pressure decreases with increasing elevation. Because the atmosphere is thin relative to the Earth’s radius—especially the dense atmospheric layer at low altitudes—the Earth’s gravitational acceleration as a function of altitude can be approximated as constant and contributes little to this fall-off. Pressure measures force per unit area, with SI units of pascals (1 pascal = 1 newton per square metre, 1 N/m2). On average, a column of air with a cross-sectional area of 1 square centimetre (cm2), measured from the mean (average) sea level to the top of Earth’s atmosphere, has a mass of about 1.03 kilogram and exerts a force or “weight” of about 10.1 newtons, resulting in a pressure of 10.1 N/cm2 or 101 kN/m2 (101 kilopascals, kPa). A column of air with a cross-sectional area of 1 in2 would have a weight of about 14.7 lbf, resulting in a pressure of 14.7 lbf/in2.
Mechanism[edit]
Atmospheric pressure is caused by the gravitational attraction of the planet on the atmospheric gases above the surface and is a function of the mass of the planet, the radius of the surface, and the amount and composition of the gases and their vertical distribution in the atmosphere.[3][4] It is modified by the planetary rotation and local effects such as wind velocity, density variations due to temperature and variations in composition.[5]
Mean sea-level pressure[edit]
Map showing atmospheric pressure in mbar or hPa
15-year average mean sea-level pressure for June, July, and August (top) and December, January, and February (bottom). ERA-15 re-analysis.
The mean sea-level pressure (MSLP) is the atmospheric pressure at mean sea level (PMSL). This is the atmospheric pressure normally given in weather reports on radio, television, and newspapers or on the Internet. When barometers in the home are set to match the local weather reports, they display pressure adjusted to sea level, not the actual local atmospheric pressure.
The altimeter setting in aviation is an atmospheric pressure adjustment.
Average sea-level pressure is 1,013.25 hPa (29.921 inHg; 760.00 mmHg). In aviation weather reports (METAR), QNH is transmitted around the world in hectopascals or millibars (1 hectopascal = 1 millibar), except in the United States, Canada, and Japan where it is reported in inches of mercury (to two decimal places). The United States and Canada also report sea-level pressure SLP, which is adjusted to sea level by a different method, in the remarks section, not in the internationally transmitted part of the code, in hectopascals or millibars.[6] However, in Canada’s public weather reports, sea level pressure is instead reported in kilopascals.[7]
In the US weather code remarks, three digits are all that are transmitted; decimal points and the one or two most significant digits are omitted: 1,013.2 hPa (14.695 psi) is transmitted as 132; 1,000 hPa (100 kPa) is transmitted as 000; 998.7 hPa is transmitted as 987; etc. The highest sea-level pressure on Earth occurs in Siberia, where the Siberian High often attains a sea-level pressure above 1,050 hPa (15.2 psi; 31 inHg), with record highs close to 1,085 hPa (15.74 psi; 32.0 inHg). The lowest measurable sea-level pressure is found at the centres of tropical cyclones and tornadoes, with a record low of 870 hPa (12.6 psi; 26 inHg).
Surface pressure [edit]
Surface pressure is the atmospheric pressure at a location on Earth’s surface (terrain and oceans). It is directly proportional to the mass of air over that location.
For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of surface pressure.
The average value of surface pressure on Earth is 985 hPa.[8] This is in contrast to mean sea-level pressure, which involves the extrapolation of pressure to sea level for locations above or below sea level. The average pressure at mean sea level (MSL) in the International Standard Atmosphere (ISA) is 1,013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury.
Pressure (P), mass (m), and acceleration due to gravity (g) are related by P = F/A = (m*g)/A, where A is the surface area. Atmospheric pressure is thus proportional to the weight per unit area of the atmospheric mass above that location.
Altitude variation[edit]
Variation in atmospheric pressure with altitude, computed for 15 °C and 0% relative humidity.
This plastic bottle was sealed at approximately 4,300 metres (14,000 ft) altitude, and was crushed by the increase in atmospheric pressure, recorded at 2,700 metres (9,000 ft) and 300 metres (1,000 ft), as it was brought down towards sea level.
Pressure on Earth varies with the altitude of the surface, so air pressure on mountains is usually lower than air pressure at sea level. Pressure varies smoothly from the Earth’s surface to the top of the mesosphere. Although the pressure changes with the weather, NASA has averaged the conditions for all parts of the earth year-round. As altitude increases, atmospheric pressure decreases. One can calculate the atmospheric pressure at a given altitude.[9] Temperature and humidity also affect the atmospheric pressure. Pressure is proportional to temperature and inversely proportional to humidity. And it is necessary to know both of these to compute an accurate figure. The graph on the rightabove was developed for a temperature of 15 °C and a relative humidity of 0%.
At low altitudes above sea level, the pressure decreases by about 1.2 kPa (12 hPa) for every 100 metres. For higher altitudes within the troposphere, the following equation (the barometric formula) relates atmospheric pressure p to altitude h:
. The values in these equations are:
Parameter | Description | Value |
---|---|---|
h | Height above mean sea level | m |
p0 | Sea level standard atmospheric pressure | 101,325 Pa |
L | Temperature lapse rate, = g/cp for dry air | ~ 0.00976 K/m |
cp | Constant-pressure specific heat | 1,004.68506 J/(kg·K) |
T0 | Sea level standard temperature | 288.16 K |
g | Earth-surface gravitational acceleration | 9.80665 m/s2 |
M | Molar mass of dry air | 0.02896968 kg/mol |
R0 | Universal gas constant | 8.314462618 J/(mol·K) |
Local variation[edit]
Hurricane Wilma on 19 October 2005. The pressure in the eye of the storm was 882 hPa (12.79 psi) at the time the image was taken.
Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate. Atmospheric pressure shows a diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides. This effect is strongest in tropical zones, with an amplitude of a few hectopascals, and almost zero in polar areas. These variations have two superimposed cycles, a circadian (24 h) cycle, and a semi-circadian (12 h) cycle.
Records[edit]
The highest adjusted-to-sea level barometric pressure ever recorded on Earth (above 750 meters) was 1,084.8 hPa (32.03 inHg) measured in Tosontsengel, Mongolia on 19 December 2001.[10] The highest adjusted-to-sea level barometric pressure ever recorded (below 750 meters) was at Agata in Evenk Autonomous Okrug, Russia (66°53′ N, 93°28′ E, elevation: 261 m, 856 ft) on 31 December 1968 of 1,083.8 hPa (32.005 inHg).[11] The discrimination is due to the problematic assumptions (assuming a standard lapse rate) associated with reduction of sea level from high elevations.[10]
The Dead Sea, the lowest place on Earth at 430 metres (1,410 ft) below sea level, has a correspondingly high typical atmospheric pressure of 1,065 hPa.[12] A below-sea-level surface pressure record of 1,081.8 hPa (31.95 inHg) was set on 21 February 1961.[13]
The lowest non-tornadic atmospheric pressure ever measured was 870 hPa (0.858 atm; 25.69 inHg), set on 12 October 1979, during Typhoon Tip in the western Pacific Ocean. The measurement was based on an instrumental observation made from a reconnaissance aircraft.[14]
Measurement based on the depth of water[edit]
One atmosphere (101.325 kPa or 14.7 psi) is also the pressure caused by the weight of a column of freshwater of approximately 10.3 m (33.8 ft). Thus, a diver 10.3 m underwater experiences a pressure of about 2 atmospheres (1 atm of air plus 1 atm of water). Conversely, 10.3 m is the maximum height to which water can be raised using suction under standard atmospheric conditions.
Low pressures, such as natural gas lines, are sometimes specified in inches of water, typically written as w.c. (water column) gauge or w.g. (inches water) gauge. A typical gas-using residential appliance in the US is rated for a maximum of 1⁄2 psi (3.4 kPa; 34 mbar), which is approximately 14 w.g. Similar metric units with a wide variety of names and notation based on millimetres, centimetres or metres are now less commonly used.
Boiling point of liquids[edit]
Pure water boils at 100 °C (212 °F) at earth’s standard atmospheric pressure. The boiling point is the temperature at which the vapour pressure is equal to the atmospheric pressure around the liquid.[15] Because of this, the boiling point of liquids is lower at lower pressure and higher at higher pressure. Cooking at high elevations, therefore, requires adjustments to recipes[16] or pressure cooking. A rough approximation of elevation can be obtained by measuring the temperature at which water boils; in the mid-19th century, this method was used by explorers.[17] Conversely, if one wishes to evaporate a liquid at a lower temperature, for example in distillation, the atmospheric pressure may be lowered by using a vacuum pump, as in a rotary evaporator.
Measurement and maps[edit]
An important application of the knowledge that atmospheric pressure varies directly with altitude was in determining the height of hills and mountains, thanks to reliable pressure measurement devices. In 1774, Maskelyne was confirming Newton’s theory of gravitation at and on Schiehallion mountain in Scotland, and he needed to measure elevations on the mountain’s sides accurately. William Roy, using barometric pressure, was able to confirm Maskelyne’s height determinations, the agreement being to be within one meter (3.28 feet). This method became and continues to be useful for survey work and map making.[18]
See also[edit]
- Atmospheric density – Mass per unit volume of earths atmosphere
- Atmosphere of Earth – Gas layer surrounding Earth
- Barometric formula – Formula used to model how air pressure varies with altitude
- Barotrauma – Injury caused by pressure – physical damage to body tissues caused by a difference in pressure between an air space inside or beside the body and the surrounding gas or liquid.
- Cabin pressurization – Process to maintain internal air pressure in aircraft
- Cavitation – Low-pressure voids formed in liquids
- Collapsing can – an aluminium can is crushed by the atmospheric pressure surrounding it
- Effects of high altitude on humans – Environmental effects on physiology
- High-pressure area – In meteorology, an anticyclone
- International Standard Atmosphere – Atmospheric model, a tabulation of typical variations of principal thermodynamic variables of the atmosphere (pressure, density, temperature, etc.) with altitude, at middle latitudes.
- Low-pressure area – Area with air pressures lower than adjacent areas
- Meteorology – Interdisciplinary scientific study of the atmosphere focusing on weather forecasting
- NRLMSISE-00, an empirical, global reference atmospheric model of the Earth from ground to space
- Plenum chamber – Chamber containing a fluid under pressure
- Pressure – Force distributed over an area
- Pressure measurement – Analysis of force applied by a fluid on a surface
- Standard atmosphere (unit) – Unit of pressure defined as 101325 Pa
- Horse latitudes – Latitudes 30–35 degrees north and south of the Equator
References[edit]
- ^ “Statement (2001)”. BIPM. Retrieved 2022-03-19.
- ^ International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere, Doc 7488-CD, Third Edition, 1993. ISBN 92-9194-004-6.
- ^ “atmospheric pressure (encyclopedic entry)”. National Geographic. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
- ^ “Q & A: Pressure – Gravity Matters?”. Department of Physics. University of Illinois Urbana-Champaign. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
- ^ Jacob, Daniel J. (1999). Introduction to Atmospheric Chemistry. Princeton University Press. ISBN 9780691001852. Archived from the original on 2021-10-01. Retrieved 2020-10-15.
- ^ Sample METAR of CYVR Archived 2019-05-25 at the Wayback Machine Nav Canada
- ^ Montreal Current Weather, CBC Montreal, Canada, archived from the original on 2014-03-30, retrieved 2014-03-30
- ^ Jacob, Daniel J. Introduction to Atmospheric Chemistry Archived 2020-07-25 at the Wayback Machine. Princeton University Press, 1999.
- ^ A quick derivation relating altitude to air pressure Archived 2011-09-28 at the Wayback Machine by Portland State Aerospace Society, 2004, accessed 05032011
- ^ a b World: Highest Sea Level Air Pressure Above 750 m, Wmo.asu.edu, 2001-12-19, archived from the original on 2012-10-17, retrieved 2013-04-15
- ^ World: Highest Sea Level Air Pressure Below 750 m, Wmo.asu.edu, 1968-12-31, archived from the original on 2013-05-14, retrieved 2013-04-15
- ^ Kramer, MR; Springer C; Berkman N; Glazer M; Bublil M; Bar-Yishay E; Godfrey S (March 1998). “Rehabilitation of hypoxemic patients with COPD at low altitude at the Dead Sea, the lowest place on earth” (PDF). Chest. 113 (3): 571–575. doi:10.1378/chest.113.3.571. PMID 9515826. Archived from the original (PDF) on 2013-10-29.
- ^ Court, Arnold (1969). “Improbable Pressure Extreme: 1070 Mb”. Bulletin of the American Meteorological Society. 50 (4): 248–50. JSTOR 26252600.
- ^ Chris Landsea (2010-04-21). “Subject: E1), Which is the most intense tropical cyclone on record?”. Atlantic Oceanographic and Meteorological Laboratory. Archived from the original on 6 December 2010. Retrieved 2010-11-23.
- ^ Vapour Pressure, Hyperphysics.phy-astr.gsu.edu, archived from the original on 2017-09-14, retrieved 2012-10-17
- ^ High Altitude Cooking, Crisco.com, 2010-09-30, archived from the original on 2012-09-07, retrieved 2012-10-17
- ^ Berberan-Santos, M. N.; Bodunov, E. N.; Pogliani, L. (1997). “On the barometric formula”. American Journal of Physics. 65 (5): 404–412. Bibcode:1997AmJPh..65..404B. doi:10.1119/1.18555.
- ^ Hewitt, Rachel, Map of a Nation – a Biography of the Ordnance Survey ISBN 1-84708-098-7
External links[edit]
- 1976 Standard Atmosphere from NASA
- Source code and equations for the 1976 Standard Atmosphere
- A mathematical model of the 1976 U.S. Standard Atmosphere
- Calculator using multiple units and properties for the 1976 Standard Atmosphere
- Calculator giving standard air pressure at a specified altitude, or altitude at which a pressure would be standard
- Current map of global mean sea-level pressure
- Calculate pressure from altitude and vice versa
Experiments[edit]
- Movies on atmospheric pressure experiments from Georgia State University’s HyperPhysics website – requires QuickTime
- Test showing a can being crushed after boiling water inside it, then moving it into a tub of ice-cold water.
Атмосферное давление
Собственный вес столба воздуха создает атмосферное давление, которое уменьшается по мере удаления от поверхности Земли.
Вблизи земной поверхности: При подъеме на каждые 8 м атмосферное давление падает на 100 Па = 1 мбар.
Если предположить, что температура воздуха с высотой не меняется, то атмосферное давление уменьшается с высотой по экспоненциальному закону.
Если
p0 | атмосферное давление у поверхности Земли, | Па |
---|---|---|
ph | атмосферное давление на высоте, | Па |
h | высота над поверхностью Земли, | м |
ρ0 | плотность воздуха у поверхности Земли, | кг.м3 |
g | ускорение свободного падения, | м/c2 |
e | 2.71828, |
то для высот примерно до 100 км давление (при постоянной температуре) рассчитывается по формуле
[ p_h = p_0 e^{frac{-ρ_0 gh}{p_0}} ]
График — Атмосферное давление в зависимости от высоты
Если давление у поверхности Земли p0 = pн = 101.325 кПа (до 1980 г. — 760 мм рт. ст.)
и температура воздуха на любой высоте равна 0°С, то из формулы следует:
[ p_h = p_0 e^{frac{-h}{7.99}} ]
или
[ h = 18.4 lgbigg(frac{p_0}{p_h}bigg) ]
где высота h выражена в километрах.
Формула (1) называется барометрической формулой высоты.
При точных вычислениях атмосферного давления следует учитывать понижение температуры воздуха по мере увеличения высоты.
При pн = 101.325 кПа (среднегодовое значение атмосферного давления на уровне моря) и t = 15°С
(среднегодовое значение температуры на уровне моря) для высот до 11 000 м (тропосфера)
следует пользоваться международной формулой:
[ p_h = 101.3 bigg(1 – frac{6.5h}{288}bigg)^{5.255} ]
где давление выражено в килопаскалях, высота h — в километрах, или
[ ρ_h = 1.2255 bigg(1 – frac{6.5h}{288}bigg)^{4.255} ]
где плотность выражена в кг/м3, высота — в километрах.
Зависимость среднегодового давления от высоты.
Атмосферное давление |
стр. 509 |
---|
Атмосферное давление | |
---|---|
Размерность | L−1MT−2 |
Единицы измерения | |
СИ | Па |
СГС | дин·см-2 |
Примечания | |
скаляр |
Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней[1]. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени[2]. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.
Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па)[2].
История[править | править код]
Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).
В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.
Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.
Изменчивость и влияние на погоду[править | править код]
На земной поверхности атмосферное давление изменяется время от времени и от места к месту. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[6] (в центральной части смерча давление падает и может достигать значения 560 мм ртутного столба)[7].
На картах атмосферное давление изображается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря[8].
Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.
-
1 Па = 0,0075 мм рт. ст., или 1 мм рт. ст. = 133,3 Па
Стандартное давление[править | править код]
В химии стандартным атмосферным давлением с 1983 года по рекомендации IUPAC считается давление, равное 100 кПа[9].
Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышестоящего столба воздуха с единичным сечением.
В системе СГС 760 мм рт. ст. эквивалентно 1,01325 бар (1013,25 мбар) или 101 325 Па в Международной системе единиц (СИ).
Барическая ступень[править | править код]
Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень равна:
При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.
С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.
Изменения давления с высотой[править | править код]
Изменение давления с высотой.
С высотой атмосферное давление уменьшается. Например, горная болезнь начинается на высоте около 2-3 км, а атмосферное давление на вершине Эвереста составляет примерно 1/4 от показателя на уровне моря.
В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой[10].
Уравнение статики выражает закон изменения давления с высотой:
где: — давление, — ускорение свободного падения, — плотность воздуха, — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты () изменение давления отрицательное, то есть давление уменьшается. Так как плотность газа зависит от его давления, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха , в котором плотность воздуха почти не изменяется. На практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.
Приведение к уровню моря[править | править код]
Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, METAR). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.
При приведении давления к уровню моря используют сокращенную формулу Лапласа:
То есть, зная давление и температуру на уровне , можно найти давление на уровне моря .
Вычисление давления на высоте по давлению на уровне моря и температуре воздуха :
где — давление Па на уровне моря [Па];
— молярная масса сухого воздуха, M = 0,029 кг/моль;
— ускорение свободного падения, g = 9,81 м/с²;
— универсальная газовая постоянная, R = 8,31 Дж/моль·К;
— абсолютная температура воздуха, К, , где — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C);
— высота, м.
На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается[5].
Более простые расчёты (без учёта температуры) дают:
где — высота в километрах.
Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.
Речь идёт об изменении на 0,1 от значения на предыдущей высоте. Это значит, что при подъёме на один километр давление уменьшается до 0,9 (точнее 0,87[прим 1]) от давления на уровне моря.
В ещё более грубом приближении, двукратному изменению давления соответствует изменение высоты на каждые пять километров.
В прогнозах погоды и сводках, распространяемых для населения через интернет и по радио, используется неприведённое давление, то есть, фактическое давление на уровне местности.
См. также[править | править код]
Видеоурок: атмосферное давление
- Фактическая погода
- Атмосфера
- Разгерметизация
Примечания[править | править код]
Источники[править | править код]
- ↑ Давление Архивная копия от 20 декабря 2016 на Wayback Machine // Метеорологический словарь
- ↑ 1 2 Атмосферное давление // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
- ↑ Перышкин А. В. Измерение атмосферного давления. Опыт Отто Герике // Физика. 7 класс / Е. Н Тихонова. — 16-е изд. — М.: Дрофа, 2013. — С. 190. — 189 с.
- ↑ 1 2 Атмосферное давление. Класс!ная физика. Дата обращения: 9 июня 2015. Архивировано 16 марта 2015 года.
- ↑ Метеочувствительность: что это такое и как с ней бороться. РИА Новости. Дата обращения: 9 июня 2015. Архивировано 18 августа 2013 года.
- ↑ Смерч. pogoda.by. Дата обращения: 7 июня 2015. Архивировано 25 апреля 2015 года.
- ↑ Изобары (в физике) // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Standard pressure (англ.). IUPAC. Дата обращения: 18 августа 2013. Архивировано 18 августа 2013 года.
- ↑ Барометрическая формула // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
Сноски[править | править код]
- ↑ Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.
Литература[править | править код]
- Хргиан А. Х. Физика атмосферы. — 2 изд. — М., 1958.
- Бургесс Э. К границам пространства, пер. с англ.. — М.: Изд. иностранной литературы, 1957. — 223 с.
Ссылки[править | править код]
- Медиафайлы по теме Атмосферное давление на Викискладе
- Атмосферное давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- График изменения атмосферного давления при изменении высоты