Как найти среднее значение напряжения в статистике

2.9. Действующее и среднее значения переменного тока и напряжения

Действующим значением переменного тока или напряжения называют корень квадратный от интеграла квадрата мгновенных значений тока или напряжения на периоде повторения.

Пользуясь определением, найдем действующее значение синусоидального тока:

После аналогичных вычислений для напряжения получим:

Таким образом, действующие значения переменного тока и напряжения меньше их амплитудных значений в раз.

Действующее значение переменного тока в одной и той же нагрузке r способствует выделению такой тепловой энергии, которая выделилась бы, если по нагрузке пропустить постоянный ток той же величины.

В комплексном виде действующие значения напряжения и тока имеют вид:

;

Средним по модулю значением напряжения или тока называют интеграл от модуля мгновенного значения тока или напряжения на периоде повторения.

Найдем среднее значение переменного напряжения:

Средние значения напряжения и тока меньше их амплитудных значений в раз. То есть для действующего значения тока: I = 0,707 Im, а для среднего значения

Источник

Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Среднее значение переменного синусоидального напряжения или тока

Говоря о величине, изменяющейся по синусоидальному (гармоническому) закону, можно за половину периода определить ее среднее значение. Поскольку ток в сети у нас в подавляющем большинстве случаев синусоидальный, то для этого тока также легко может быть найдена средняя его величина (за половину периода), достаточно прибегнуть к операции интегрирования, установив пределы от 0 до Т/2. В результате получим:

Подставив Пи = 3,14, найдем среднюю, за половину периода, величину синусоидального тока в зависимости от его амплитуды. Аналогичным образом находится среднее значение синусоидальной ЭДС или синусоидального напряжения U:

Действующее значение тока I или напряжения U

Однако среднее значение не так широко применяется на практике, как действующее значение синусоидального тока или напряжения. Действующее значение синусоидально меняющейся во времени величины — есть среднеквадратичное, другими словами — эффективное ее значение.

Эффективное (или действующее) значение тока или напряжения находится так же, путем интегрирования, но уже по отношению к квадратам, и с последующим извлечением квадратного корня, причем пределы интегрирования теперь — целый период синусоидальной функции.

Итак, для тока будем иметь:

Подставив значение корня из 2, получим формулу для нахождения эффективного (действующего, среднеквадратичного) значения тока, напряжения, ЭДС — по отношению к амплитудному значению. Эту формулу можно встретить очень часто, ее используют всюду в расчетах, связанных с цепями переменного синусоидального тока:

С практической точки зрения, если сравнить тепловое действие тока переменного синусоидального с тепловым действием тока постоянного непрерывного, на протяжении одного и того же периода времени, на одной и той же активной нагрузке, то выяснится, что выделенная за период синусоидального переменного тока теплота окажется равна выделенной за это же время теплоте от тока постоянного, при условии, что величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз:

Это значит, что действующее (эффективное, среднеквадратичное) значение синусоидального переменного тока численно равно такому значению постоянного тока, при котором тепловое действие (выделяемое количество теплоты) этого постоянного тока на активном сопротивлении за один период синусоиды равно тепловому действию данного синусоидального тока за тот же период.

Аналогичным образом находится действующее (эффективное, среднеквадратичное) значение синусоидального напряжения или синусоидальной ЭДС.

Подавляющее большинство современных портативных измерительных приборов, измеряя переменный ток или переменное напряжение, показывают именно действующее значение измеряемой величины, то есть среднеквадратичную величину, а не ее амплитуду и не среднее значение за полпериода.

Если других уточняющих настроек на приборе нет, а стоит значок

U – измерены будут действующие значения тока и напряжения. Обозначения для конкретно амплитуды или конкретно действующего — Im (m — maximum – максимум, амплитуда) или Irms (rms — Root Mean Square – среднеквадратичное значение).

Источник

Переменный электрический ток

Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC — Direct Current — постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz). Частота f = 1 /T

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = I ampsin(ωt); u = U ampsin(ωt)

i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1

Замечания и предложения принимаются и приветствуются!

Источник

Как найти среднее напряжение формула

Расчет среднего и среднеквадратичного значений тока и напряжения: формулы и калькулятор

Данный текст является расширенным и углубленным вариантом моей старой заметки на сайте we.easyelectronics.ru.

В рамках данной заметки рассмотрим способы вычисления среднего и среднеквадратичного значений тока и напряжения. При этом для простоты ограничимся формами сигнала, характерными для импульсных источников питания. Обращаю ваше внимание – все формулы, приводимые в заметке, даются без выводов, дабы не забивать головы читателей мутной и не особо нужной херней. С другой стороны, если кому-то интересно, откуда данные формулы взялись – можно скачать файл, в котором приведены все необходимые выводы с пояснениями.

Будучи в недавнем прошлом яростным разработчиком всевозможных импульсных источников питания (ИИП), интересовался всяким по данной теме (да и сейчас, бывает, трясу стариной). В частности, весьма важными мне всегда казались такие характеристики сигнала, как среднее и среднеквадратичное значение токов и напряжений в различных точках схемы, поскольку при расчетах ИИП данные параметры используются сплошь и рядом. Чтобы понять, где могут быть полезны данные характеристики, сначала определимся с тем, что мы под ними понимаем.

Естественно, существуют строгие «математические» определения как для среднего, так и для среднеквадратичного значений физических величин, периодически изменяющихся во времени по некоторому закону. Однако, больно уж они мутные и абстрактные, и, на мой взгляд, нужны только при выводе формул. Разработчику же гораздо важнее понимать физический смысл используемых в расчетах величин, поэтому приводимые ниже определения среднего и среднеквадратичного значений будут носить сугубо прикладной характер.

Среднее значение переменного тока или напряжения (во вражеских терминах AVG) – это просто их постоянная составляющая. Поэтому вполне очевидно, что среднее значение широко применяется при расчетах схем, выделяющих из переменного сигнала постоянный уровень. Простейший понижающий преобразователь (Step-Down) с LC-фильтром на выходе, RC-цепочка, призванная выделить постоянное напряжение из поступающего на вход ШИМ-сигнала – всё это примеры того, где без использования среднего значения физической величины ничего толком не посчитаешь.

Среднеквадратичное (действующее, эффективное) значение определяется немного сложнее. Как известно, любой переменный ток (напряжение), проходя через активную линейную нагрузку (например, резистор), выделяет на ней некоторое количество тепла. Но так поступает не только переменный сигнал – постоянный ток тоже будет греть резистор.

Так вот, среднеквадратичное значение переменного тока или напряжения (во вражеских терминах RMS) – это такой постоянный ток (напряжение), который за одинаковый промежуток времени нагреет один и тот же резистор точно так же, как и исходный переменный сигнал. Поэтому одно из важнейших применений среднеквадратичного значения – расчет потерь и соответствующего нагрева для различных элементов силовых цепей ИИП. Хочешь узнать статические потери на ключе флайбэка – будь добр посчитать среднеквадратичное значение тока первички. Надо узнать мощность токосчитывающего резистора – туда же. Даже потери (и приблизительный нагрев) в обмотках трансов и дросселей для хиленьких источников и невысоких частот преобразования в первом приближении можно посчитать при помощи среднеквадратичного значения тока, через эти обмотки протекающего.

В общем, среднее и среднеквадратичное значения используются довольно часто. Поэтому неплохо было бы уметь их рассчитывать для любого сигнала, который может нам встретиться в импульсном источнике питания. При этом лично я разделяю токи и напряжения в ИИП на две большие группы: сигналы с простой формой (элементарные) и сигналы со сложной формой (т.е. те, которые могут быть представлены в виде суммы нескольких элементарных). И поскольку принципы расчета среднего и среднеквадратичного значений для этих двух групп немного отличаются, предлагаю рассмотреть их по отдельности.

У сигналов простой формы вычислить среднее и среднеквадратичное значение довольно легко – для этого надо всего лишь взять соответствующую формулу и подставить в нее нужные значения. Чтобы постоянно не шариться по различным справочникам, я завел себе специальную табличку, в которую свел расчетные формулы для наиболее часто встречающихся элементарных сигналов:

(данные формулы, кстати, взяты не с потолка – их вывод при желании можно посмотреть в специальной заметке-пояснении).

Здесь хотелось бы заострить внимание на нескольких моментах. Во-первых, на приведенных выше рисунках рассматривается по два варианта каждого из простейших сигналов: «в общем виде» и «без смещения». При этом с точки зрения разработчика импульсных источников питания наиболее интересным обычно является именно второй вариант, поэтому для него и даны отдельные формулы (чтобы постоянно не подставлять С=0 в «общие» выражения). Во-вторых, пилообразное напряжение, вообще говоря, является сложным сигналом, поскольку может быть представлено в виде суммы двух простых (либо трапеций, либо треугольников). Однако, пила настолько часто встречается при расчетах ИИП, а выражения AVG и RMS для нее настолько лаконичны и красивы, что я в результате включил-таки ее в список сигналов, среднее и среднеквадратичное значение которых вычисляется тупо всего по одной формуле. Ну и в-третьих, вышеприведенная таблица, в принципе, могла бы состоять всего из одной трапеции, ибо из нее легко получить как прямоугольник, так и треугольник, поставляя соответствующие значения «H», «L» и «C». Однако практика показала, что постоянно этим заниматься весьма муторно, ибо мы рассчитываем источник, а не тренируем математические навыки. Поэтому в итоге я себе выписал готовые формулы AVG и RMS для прямоугольника и треугольника, что оказалось весьма и весьма удобным. Ну а в целом – как ни странно, представленные выше формулы для элементарных сигналов покрывают, наверное, 75-80% всех потребностей разработчика импульсных источников питания, что весьма немало. Однако, всё многообразие токов и напряжений в ИИП отнюдь не ограничивается вышеупомянутыми четырьмя (и даже тремя, если не учитывать пилу) формами. Поэтому рано или поздно любой разработчик импульсников сталкивается с необходимостью вычисления среднего и среднеквадратичного значения сложного сигнала (яркий пример – расчет пуш-пула).

Как было сказано выше, сигналы сложной формы – это такие, которые могут быть представлены в виде суммы нескольких элементарных сигналов. Применительно к импульсным источникам питания в качестве последних выступают прямоугольник, треугольник или трапеция, и значительно реже – синус, косинус и прочая «плавная» херня. Отметим, что в данном случае, в отличие от простейших форм, нахождение аналитических выражений для среднего и среднеквадратичного значений обычно превращается в неблагодарное занятие. Например, для вывода «среднеквадратичной» формулы нам надо разбить сложный сигнал на несколько простейших, а затем извлечь квадратный корень из суммы квадратов «элементарных» среднеквадратичных значений (думаю, даже понять, о чем говорится в данном предложении, у вас получится далеко не сразу). Найти среднее значение сложного сигнала немного проще (надо просто просуммировать средние «элементарные» значения), однако поверьте – сделать из этого удобоваримую формулу в подавляющем большинстве случаев не удается:

К счастью, готовая формула для нахождения AVG и RMS сложного сигнала обычно не требуется. Чаще всего нам надо просто узнать среднее или среднеквадратичное значение тока (напряжения) именно для нашего конкретного случая, а не вывести аналитическое выражение на все случаи жизни. А это существенно упрощает задачу, ибо посчитать числовое значение AVG или RMS для каждого элементарного сигнала на соответствующем временно́м интервале не так уж и сложно. В качестве примера можно рассмотреть нахождение среднего и среднеквадратичного значения напряжения, характерного для пушпульной, полумостовой и полномостовой схем (данный расчет есть и в специальной заметке-пояснении):

Как следует из предпоследнего рисунка, для начала нам надо разбить исходный сигнал на элементарные. Очевидно, что это будут три трапеции и один прямоугольник:

Дальше нам надо посчитать среднее и среднеквадратичное значение каждого из четырех элементарных сигналов, для чего воспользуемся формулами из вышеприведенной таблицы. Начнем с первого из них — трапеции №1. Как видно из последнего рисунка, это трапеция без смещения с параметрами

Поэтому в соответствии с формулами для трапеции, приведенными выше, будем иметь:

Сигнал №2 – это тоже трапеция без смещения. Параметры данной трапеции будут таковы:

Поэтому среднее и среднеквадратичное значение второго сигнала составят соответственно

Трапеция №3 полностью совпадает с трапецией №1, просто она сдвинута вправо на полпериода. Поэтому как параметры третьего сигнала, так и его среднее и среднеквадратичное значения будут равны соответствующим значениям первого сигнала:

Ну и остался сигнал №4. Данный сигнал представляет собой прямоугольник с параметрами

И после использования формул для вычисления среднего и среднеквадратичного значения сигнала №4, получим следующее:

Теперь у нас есть все данные для нахождения AVG и RMS исходного сигнала. Как было сказано выше, среднее значение находится как сумма средних значений элементарных сигналов, на которые был разложен «исходник», а среднеквадратичное – как квадратный корень из суммы квадратов «элементарных» среднеквадратичных значений. То есть в нашем случае будем иметь

Для проверки полученного результата используем широко распространенное бесплатное ПО LTSpice IV от компании Linear Technology Corporation (LTC). Сгенерировав сигнал с требуемыми параметрами, измерим в эмуляторе среднее и среднеквадратичное его значение за 5 периодов:

Как видим, результаты работы эмулятора полностью совпадают с расчетными AVG и RMS, т.е. предложенный способ вычисления среднего и среднеквадратичного значений для сложного сигнала вполне имеет право на жизнь. Более того, способ этот довольно прост и не требует от разработчика ИИП никаких особых математических навыков. С другой стороны, муторность рассмотренного алгоритма также налицо. Лично меня дичайше бесит постоянно считать на калькуляторе и выписывать на бумажку средние и среднеквадратичные значения для всех элементарных сигналов, на которые раскладывается исходный, а пото́м складывать их на том же калькуляторе (и это в лучшем случае, ибо если требуется RMS, всё становится еще волшебнее). Поэтому я принял решение сделать себе некий инструмент, упрощающий жизнь разработчика ИИП, которым и хотел бы поделиться с читателями.

Данный инструмент – это такая специальная «программа» (cko4aTb бесплатно). «Программа» представляет собой обычный экселовский файл (т.к. программист я тот еще), поэтому для работы нам потребуется «Excel» (у меня вот такой: Microsoft® Excel 2002 (10.4302.2625)). Изначальная и основная задача рассматриваемой «программы» – отрисовка формы трапецеидального сигнала с заданными параметрами (рисуется один период), а также вычисление среднего и среднеквадратичного значений для этого сигнала. Также «программа» умеет рисовать переменную составляющую заданной трапеции (она получается если из исходного сигнала вычесть постоянную составляющую) и вычислять ее RMS-значение (это уж так, чисто на всякий случай). Ну и еще предлагаемый софт позволяет быстро посчитать среднее и среднеквадратичное значения для сложного сигнала, состоящего максимум из 16-ти различных элементарных (большее количество в реальной жизни вряд ли потребуется):

Почему в качестве основы взята именно трапеция? Потому что, как было сказано выше, из нее легко получить все основные формы сигналов, встречающихся в импульсных источниках питания, а именно – прямоугольник и треугольник:

Ну а уж на основе этих базовых сигналов можно сляпать и пилу, и напряжение на стоке ключа во флайбэке, и то, что творится на вторичке пушпула и многое другое.

Пользоваться «программой» очень просто. Исходные данные для трапеции вводятся слева в ячейки, выделенные зеленым цветом. После этого чуть ниже можно посмотреть на форму сигнала с введенными параметрами, а еще ниже отобразятся рассчитанные среднее и среднеквадратичное значения этого сигнала. За переменную составляющую трапеции отвечает правый нижний угол экрана (здесь рисуется ее график и рассчитывается значение RMS). Ну а для работы со сложным сигналом предназначен правый верхний угол. Здесь в ячейки, выделенные зеленым цветом, вводятся средние и среднеквадратичные значения элементарных сигналов, из которых состоит «исходник», а ниже рассчитываются уже́ его собственные AVG и RMS.

Отмечу, что на всю «программу» наложена магическая защита, позволяющая редактировать только те ячейки, которые можно. При необходимости защита снимается элементарно («Сервис» => «Защита» => «Снять защиту листа»), однако делать это не рекомендую: можно по дури снести какую-нибудь нужную формулу, восстанавливать которую – лишний геморрой.

Вот, в принципе, и всё описание представленной «программы». Несмотря на свою простоту и очевидность, данный софт довольно существенно помогает и экономит время при расчетах ИИП (ну, во всяком случае, у меня происходит именно так). Например, на расчет среднего и среднеквадратичного значения сложного сигнала, приведенного в предыдущем пункте, понадобится менее минуты. Последовательность действий проста – вводим параметры первой трапеции, затем переписываем рассчитанные для нее значения AVG и RMS в ячейки секции сложного сигнала. Затем то же самое проделываем для остальных трех элементарных функций, из которых состоит «исходник». Всё, остальное «программа» сделает сама, не надо никаких шаманств с бумажками и калькуляторами:

Ну а у меня на сегодня всё. Желаю удачи при проектировании и изготовлении импульсных (и не только) источников питания!

Обсудить эту заметку можно здесь

Ссылки по теме, документация

Заметка-пояснение с выводом формул и примером расчета среднего и среднеквадратичного значений сложного сигнала:

Калькулятор для упрощения вычислений среднего и среднеквадратичного значений простых и сложных сигналов:

Место для разного (сдается)

Создание, «дизайн», содержание «сайта»: podkassetnik
Для писем и газет: Почта России электрическая

Место для &#169 (копирайта, понятно, нет, но ссылайтесь хотя бы на первоисточник)

Источник

Среднее
значение переменного напряжения, ЭДС
и тока за период равно нулю, так как
площадь отрицательных и положительных
полуволн синусоид равны по величине и
различны по знаку (рис.2.6).

е,u,i
e

u
i

0t

0

T/2

T

Рис.2.6

Поэтому,
когда говорят о среднем значении
переменного тока i,
напряжения u
или
ЭДС е,

под ним подразумевается среднее значение
за половину периода Т/2 между двумя
нулевыми значениями величины 0 и .

Например,
среднее значение переменной ЭДС любого
вида определяется так:

Если
ЭДС изменяется по синусоидальному
закону е
, то можно установить простую зависимость
между средним значением ЭДС Eср
и
его амплитудным значением Еm.

а
так как ,

то
=0,637.

Аналогично
получим средние значения напряжения и
тока:

2.1.4. Действующее значение переменного тока и напряжения.

В
электротехнике часто приходится иметь
дело с тепловыми и механическими
действиями переменного тока.

Механическая
сила взаимодействия двух проводников
с одинаковыми токами и тепловое действие
тока пропорциональны квадрату мгновенных
значений тока. Для переменного тока
тепловое или механическое действие
определяется средним значением квадратов
токов за период, называемым действующим
значением тока.

Иначе
говоря, действующее значение переменного
тока равняется постоянному току,
выделяющему за время, равное периоду,
в каком-либо проводнике такое же
количество тепла, что и данный переменный
ток.

Количество
теплоты, выделяемое постоянным током
в резисторе с активным сопротивлением
r
за промежуток времени Т, равный периоду
переменного тока, составляет:

=0,24

Количество
теплоты, выделяемое переменным током
в том же эелементе за промежуток времени
dt,
равно:

Количество
теплоты, выделяемое за период Т, равно:

Приравнивая
количество теплоты, выделяемое постоянным
и переменным током, получим:

=

Отсюда
получим действующее значение тока:

Аналогично
для напряжений и ЭДС переменного тока
имеем:

Выражения
для I,U
и Е определяют в общем виде действующие
периодические токи, напряжение и ЭДС
при любом законе их изменения.

Для
синусоидального переменного тока i=
будем иметь:

Второй
интеграл равен нулю, и для действующего
синусоидального тока имеем:

Аналогично
получим выражение для действующих
синусоидальных ЭДС и напряжения:

.

Градация
вольтметров и амперметров, предназначенных
для работы в цепи синусоидального тока,
обычно показывает непосредственно
действующие значения напряжения или
тока.

2.1.5.Векторные диаграммы переменного тока.

Как
было установлено, гармонически
изменяющееся напряжение в общем виде
определяется выражением:

Зная
амплитуду напряжения
и аргумент синусоидальной функции ,
можно с помощью несложных математических
операций определить мгновенные значения
напряжения u
в
любой момент времени. Наряду с аналитическим
способом расчета получить u
можно
графически, например, по временной
диаграмме гармонической переменной
(рис.2.7).

Однако
при различных расчетах бывает удобнее
пользоваться методом векторных диаграмм.
Применение векторных диаграмм при
исследовании цепей переменного тока
позволяет наглядно представить
рассматриваемые процессы и упрощать
производимые расчеты.

Y
U


u
Х u

0

u=0

Рис.2.7

Синусоидальный
ток и напряжение можно представить как
вектор, движущийся по окружности со
скоростью
Мгновенные значения будут равны проекции
этого вектора на ось Y.

Суть
данного метода заключается в следующем:
если какая-нибудь точка движется с
постоянной скоростью по окружности, то
её проекция на любой диаметр (горизонтальный-
воображаемая ось Х или вертикальная-
ось Y)
совершает гармонические(синусоидальные
колебания). Радиус-вектор ( в дальнейшем
для краткости будем называть просто
вектор) этой точки вращается с постоянной
угловой скоростью

Y
Um

U

X
0

Um

Рис.2.8

Если
этот вектор (рис.2.8) в известном, произвольно
выбранном масштабе изображающий
амплитуду напряжения (
тока и ЭДС), занимает в начальный момент
времени (t=0)
горизонтальное положение, вправо от
центра вращения 0 и вращается против
часовой стрелки с угловой скоростью
,
то в произвольный момент времени t,
когда он образует с горизонталью угол
,
проекция его на вертикальную ось Y
в том же масштабе покажет соответствующее
мгновенное напряжение:

Если
же вектор
в начальный момент расположен не
горизонтально, а образует с осью абсцисс
Х угол ,
то проекция на ось Y
покажет мгновенное значение напряжения
опережающее
предыдущее на часть периода .
Представим этот случай графически.
Расположим под углом
относительно положительной оси абсцисс
вектора ,длина
которого в заранее выбранном масштабе
равна амплитуде изображаемой гармонической
величины (рис.2.9).

Y

U


0 X

Рис.2.9

Положительные
углы ( начальные фазы напряжения ,
а так же только принято
откладывать в направлении против часовой
стрелки, а отрицательные( )-по
часовой стрелке ( рис.2.9, показана
положительная начальная фаза напряжения
).

Предположим,
что вектор
, начиная с момента времени t=0,
вращается вокруг начала координат
против часовой стрелки с постоянной
частотой вращения ,
равной угловой частоте изображаемого
напряжения.

В
момент времени t
вектор
повернется на угол
и будет расположен под углом
по отношению к оси абсцисс X.

Проекция
этого вектора на ось координат Y
в выбранном масштабе равна мгновенному
значению изображаемого напряжения .

Следовательно,
величину, изменяющуюся гармонически
во времени, можно изображать вращающимся
вектором. При начальной фазе, равной
нулю (
когда ,
вектор
для t=0.
(рис.2.8) расположен на оси абсцисс.

При

больше или меньше 0 положение вектора

для t=0
определяется знаком и величиной начальной
фазы напряжения.

Обычно
при расчете цепи используются действующие
ЭДС, напряжения и токи( или амплитуды
этих величин), а так же их сдвиг по фазе
относительно друг друга. Поэтому
рассматриваются неподвижные векторы
для некоторого момента времени, который
выбирается так, чтобы диаграмма была
наглядней. Такая диаграмма называется
векторной. Иными словами векторная
диаграмма является совокупностью
векторов, изображающих движущие
синусоидальные ЭДС, напряжение и токи
или их амплитудные значения. Углы сдвига
по фазе
откладываются в направлении вращении
векторов (против часовой стрелки), если
они положительны (например, ,
и в обратном направлении, если они
отрицательны (.
Если, например, начальный фазовый угол
ЭДС
больше начального фазового угла
(см.временную диаграмму на рис.2.10), то
соответственно сдвиг по фазе
и этот угол откладывается в положительном
направлении от вектора тока (рис.2.10).

Мгновенные
значения ЭДС и тока в начальный момент
отсчета
( для
определяются проекциями амплитудных
значений их векторов
на ось ординат Y
в заданном масштабе расчетных параметров
e
и i.

Рассмотрим
сложение ЭДС, токов и напряжений на
векторной диаграмме. При исследовании
цепи переменного тока часто приходится
складывать ЭДС, токи и напряжения одной
и той же частоты.

Y

e0 Em
e,i

e i

Im X

0


Рис.2.10

Предположим,
что требуется сложить две ЭДС:

Такое
сложение можно осуществить аналитически
( путем математических вычислений) и
графически с помощью векторных диаграмм.
Последний способ более нагляден и прост.
Две складываемые ЭДС е1
и е2
в определенном масштабе представлены
векторами
и

Y
e e1

e
2

e
Em

e1
E1

E2m Ψ2e E1m

E2m

e2

Ψe

Ψ1e

0
Ψ1e
Ψe
Ψ2e

Рис.2.11

При
вращении этих векторов с одинаковой
частотой вращения, равной угловой
частоте переменного тока ,
взаимное расположение вращающихся
векторов относительно друг друга
остается неизменным. Сумма проекций
вращающихся векторов
и
на ось ординат (е1
и е2)
равна проекции на ту же ось Y
вектора ,
равного геометрической сумме векторов

и :

.

Указанный
способ сложения двух ЭДС универсален,
его можно применить для сложения и
вычитания любого числа ЭДС, напряжений
и токов одной частоты. При этом операцию
вычитания можно представить в виде
сложения, проведя элементарные
преобразования.

Например,
,
то есть уменьшаемая величина складывается
с вычитаемой, взятой с обратным знаком.

На
практике векторные диаграммы, как
правило, строятся не для амплитудных
значений переменных ЭДС, напряжений и
токов, а для действующих величие E,U
и I,
пропорциональных амплитудных значениям
так
как все расчеты цепей выполняются для
действующих значений ЭДС, напряжений
и токов.

Как вы помните из предыдущей статьи, переменное напряжение — это напряжение, которое меняется со временем. Оно может меняться с каким-то периодом, а может быть хаотичным. Но не стоит также забывать, что и переменное напряжение обладает своими особенными параметрами.

Среднее значение напряжения

Среднее значение переменного напряжения Uср — это, грубо говоря, площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму.

среднее значение напряжения

среднее значение напряжения за период

Например,чему равняется среднее значение напряжения за эти два полупериода? В данном случае ноль вольт. Почему так? Площади S1 и S2 равны. Но все дело в том, что площадь S2 берется со знаком «минус». А так как площади равны, то в сумме они дают ноль: S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее значение напряжения также равняется нулю.

То же самое касается и других сигналов, например, двухполярного меандра. Меандр — это прямоугольный сигнал, у которого длительности паузы и импульса равны. В этом случае его среднее напряжение также будет равняться нулю.

меандр

меандр

Средневыпрямленное значение напряжения

Чаще всего используют средневыпрямленное значение напряжения Uср. выпр. То есть площадь сигнала, которая «пробивает пол» берут не с отрицательным знаком, а с положительным.

площадь под кривой

средневыпрямленное значение напряжения будет уже равняться не нулю, а S1+S2=2S1=2S2. Здесь мы суммируем площади, независимо от того, с каким они знаком.

На практике средневыпрямленное значение напряжения получить легко, использовав диодный мост. После выпрямления синусоидального сигнала, график будет выглядеть вот так:

напряжение после диодного моста

выпрямленное переменное напряжение после диодного моста

Для того, чтобы примерно узнать, чему равняется средневыпрямленное напряжение, достаточно узнать максимальную амплитуду синусоидального сигнала Umax и сосчитать ее по формуле:

Параметры переменного напряжения

Среднеквадратичное значение напряжения

Чаще всего используют среднеквадратичное значение напряжения или его еще по-другому называют действующим. В литературе обозначается просто буквой U. Чтобы его вычислить, тут уже  простым графиком не отделаешься. Среднеквадратичное значение —  это значение постоянного напряжения, который, проходя через  нагрузку (скажем, лампу накаливания), выделяет за тот же промежуток времени такое же количество мощности, какое выделит в этой нагрузке переменное напряжение. В английском языке среднеквадратичное напряжение  обозначается так: RMS (rms) — root mean square.

Связь между амплитудным и среднеквадратическим значением устанавливается через коэффициент амплитуды Ka:

Параметры переменного напряжения

Вот некоторые значения коэффициента амплитуды Ka для некоторых сигналов переменного напряжения:

Параметры переменного напряжения

Более точные значения 1,41 и 1,73 — это √2 и √3 соответственно.

Как измерить среднеквадратичное значение напряжения

Для правильного замера среднеквадратического значения напряжения у нас должен быть мультиметр с логотипом T-RMS. RMS — как вы уже знаете — это среднеквадратическое значение. А что за буква «T» впереди? Думаю, вы помните, как раньше была мода на одно словечко: «тру». «Она вся такая тру…», «Ты тру или не тру?» и тд. Тру (true) — с англ. правильный, верный.

Так вот, T-RMS  расшифровывается как True RMS —  «правильное среднеквадратическое значение». Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип «T-RMS».

true rms

мультиметр с True RMS

Проведем небольшой опыт. Давайте соберем вот такую схемку:

Параметры переменного напряжения

Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц

генератор частоты

генератор частоты

А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры

треугольный сигнал

треугольный сигнал

И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?

Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:

Параметры переменного напряжения

Итак, смотрим нашу табличку и находим интересующий нас сигнал:

Параметры переменного напряжения

Для нас не важно, пробивает ли сигнал «пол» или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды Ka= 1,73.

Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала

Параметры переменного напряжения

Параметры переменного напряжения

Параметры переменного напряжения

Проверяем нашим прибором, так ли оно на самом деле?

измерение true rms

Супер! И в правду Тrue RMS.

Замеряем это же самое напряжение с помощью моего китайского мультиметра

Параметры переменного напряжения

Он меня обманул :-(. Он умеет измерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.

Самый интересный сигнал в плане расчетов — это двуполярный меандр, ну тот есть тот, который «пробивает пол».

Параметры переменного напряжения

Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.

Вот вам небольшая картинка, чтобы не путаться

среднее, среднеквадратичное и пиковое значения напряжения

среднее, среднеквадратичное и пиковое значения напряжения
  • Сред.  — средневыпрямленное значение сигнала. Это и есть площадь под кривой
  • СКЗ — среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.
  • Пик. — амплитудное значение сигнала
  • Пик-пик. — размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.

Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее  и НЕ среднее выпрямленное напряжение, а среднее квадратическое, то есть действующее напряжение! Об этом всегда помним.

Как найти среднее значение переменного напряжения?

Серафим Казачков



Ученик

(212),
закрыт



1 год назад

Вольный ветер

Искусственный Интеллект

(283261)


1 год назад

Для частоты 50 гц, это амплитудное значение делить на 1,41….Для другой частоты делитель естественно другой….

ipИскусственный Интеллект (119992)

1 год назад

Извините, но если 36В/400Гц будет чистый синус, то ничего не должно измениться и со средним, ведь закон колебания остаётся неизменным, однако?

Вольный ветер
Искусственный Интеллект
(283261)
ip, Нет для 400 гц формула другая, временная составляющая полупериодов разная у 50 гц и 400гц, кстати график зависимости и интеграл вычисления в сети имеется….

Действующим значением переменного тока или напряжения называют корень квадратный от интеграла квадрата мгновенных значений тока или напряжения на периоде повторения.

Пользуясь определением, найдем действующее значение синусоидального тока:

После аналогичных вычислений для напряжения получим:

Таким образом, действующие значения переменного тока и напряжения меньше их амплитудных значений в раз.

Действующее значение переменного тока в одной и той же нагрузке r способствует выделению такой тепловой энергии, которая выделилась бы, если по нагрузке пропустить постоянный ток той же величины.

В комплексном виде действующие значения напряжения и тока имеют вид:

;

Средним по модулю значением напряжения или тока называют интеграл от модуля мгновенного значения тока или напряжения на периоде повторения.

Найдем среднее значение переменного напряжения:

Средние значения напряжения и тока меньше их амплитудных значений в раз. То есть для действующего значения тока: I = 0,707 Im, а для среднего значения

тока: Icp = 0,637 Im .

Добавить комментарий