Как найти средний коэффициент теплоотдачи

Согласно
уравнению конвективной теплоотдачи,
называемому также законом Ньютона-Рихмана,
тепловой поток прямо пропорционален
разности температур стенки и жидкости
и площади поверхности теплообмена.
Коэффициент пропорциональности

в этом уравнении называют средним
коэффициентом конвективной теплоотдачи:

,
(1)

или

,
(2)

или

,
(3)

где
Q – тепловой поток, Вт; q = Q/F – поверхностная
плотность теплового потока, Вт/м2;

– средний коэффициент конвективной
теплоотдачи, Вт/(м2∙К);


температурный напор теплоотдачи,оС;


температура поверхности теплообмена
(стенки),оС;

– температура жидкости вдали от стенки,оС;
F – площадь поверхности теплообмена
(стенки), м2.

Независимо
от направления теплового потока (от
стенки к жидкости или наоборот) будем
считать его положительным, то есть будем
использовать модуль разности температур.

Величина
коэффициента теплоотдачи зависит от
большого числа различных факторов: а)
физических свойств жидкости ; б) скорости
движения жидкости ; в) формы, размеров
и ориентации в пространстве поверхности
теплообмена; г) величины температурного
напора, направления теплообмена и т.п.
Поэтому его теоретическое определение
в большинстве случаев невозможно.

Выражения
(1)-(3) позволяют опытным путем определить
средний коэффициент теплоотдачи
посредством измерения величин Q, F,
и:

,
(4)

то
есть средний коэффициент теплоотдачи
численно равен тепловому потоку,
передаваемому через единицу поверхности
теплообмена при единичном температурном
напоре (1 оС
или 1 К).

3. Локальный (местный) коэффициент конвективной теплоотдачи

Средний
коэффициент теплоотдачи является
важной, но не всегда достаточной
характеристикой процессов теплообмена.
Во многих случаях требуются значения
коэффициентов теплоотдачи в отдельных
точках поверхности теплообмена, то есть
локальные (местные) значения. Локальные
коэффициенты характеризуют теплоотдачу
в окрестности заданной точки (x)
и входят в состав локального уравнения
теплоотдачи:

,
(5)

или

,
(6)

где
dF
– элементарная (бесконечно малая)
поверхность теплообмена в окрестности
точки x,
м2;

– элементарный тепловой поток, Вт ;
локальная плотность теплового потока,
Вт/м2;

– локальный коэффициент конвективной
теплоотдачи, Вт/(м2∙К);
– локальный температурный напор,оС;


локальная температура поверхности
(стенки),оС;


температура жидкости вдали от стенки
(полагаем, что она постоянна вдоль всей
поверхности теплообмена),оС.

Из
выражений (5) и (6) следует, что локальные
коэффициенты теплоотдачи в принципе
могут быть найдены опытным путем
посредством измерения величин
,dF,
и,
относящихся к соответствующему бесконечно
малому участку:

.
(7)

На
практике вдоль поверхности выделяют
необходимое количество конечных, но
достаточно малых участков и производят
измерения для каждого i-го участка
поверхности:

,
(8)

где

среднее для i-го участка значение
коэффициента теплоотдачи, Вт/(м2∙К);

площадь поверхности i-го участка, м2;


тепловой поток в пределах i-го участка,
Вт;
среднее для i-го участка значение
температуры поверхности;
средняя плотность теплового потока в
пределах i-го участка, Вт/м2;
i = 1,2,…,n – номер очередного участка; n
– количество участков.

При
теплоотдаче на вертикальной поверхности
выделяют n
одинаковых по высоте участков (см.
рис.4). Если измерять температуру
поверхности на границах выделенных
участков, начиная с ее нижней кромки
(i=1),
то средняя для i-го участка температура
определится по формуле

. (9)

Среднее
для малого i-го участка значение
коэффициента теплоотдачи (8) является
приближенным значением локального
коэффициента теплоотдачи (7). Чем меньше
размеры участка, тем точнее получаемый
результат.

Результаты
большого количества опытов по определению
коэффициентов теплоотдачи (8) обобщают
в виде эмпирических (опытных) критериальных
уравнений (см.разд.5). В дальнейшем
эти уравнения используют в инженерных
расчетах для определения коэффициентов
теплоотдачи.

Во многих инженерных задачах, связанных с теплопередачей, например, при проектировании теплообменных аппаратов и радиаторов охлаждения, важное значение имеет расчет коэффициента теплоотдачи. Коэффициент теплоотдачи, который чаще всего рассчитывается с помощью эмпирических формул, характеризует интенсивность теплообмена на поверхности твердого тела. В этой статье мы расскажем и покажем, как рассчитать коэффициент теплоотдачи на плоской поверхности с помощью среды численного моделирования COMSOL Multiphysics®.

Что такое коэффициент теплоотдачи?

Рассмотрим нагретую стенку или поверхность, находящуюся в контакте с потоком жидкости. Перенос теплоты в жидкости определяется преимущественно конвекцией. Аналогично, конвекцией определяется перенос теплоты через твердую стенку, омываемую с двух сторон двумя разными жидкостями, например, в теплообменных аппаратах. Интенсивность теплопередачи в обоих случаях пропорциональна разности температур, а коэффициент пропорциональности, собственно, и является коэффициентом теплоотдачи. Коэффициент теплоотдачи характеризует теплообмен между поверхностью твердого тела и жидкостью.

В математическом смысле h— это отношение плотности теплового потока на стенке к разности температур стенки и жидкости; таким образом,

(1)

h=dfrac

{qprime prime}
{(T_w {-} T_

{infty}
)}

где q^{prime prime}— плотность теплового потока, T_w— температура стенки, а T_infty— характерная температура жидкости.

В качестве характерной температуры жидкости могут выступать температура жидкости вдали от стенки или среднемассовая температура в трубе.

Если объект находится в неограниченно большом объеме воздуха, можно предположить, что температура воздуха вдали от поверхности объекта является постоянной и известной величиной. Такие задачи теплообмена называются внешними.

Рассмотрим пристеночную область (пусть плоскость стенки расположена по нормали к оси y, и y = 0 соответствует поверхности стенки). С учетом сделанного выше допущения очевидно, что при выполнении условия прилипания на стенке (то есть отсутствия проскальзывания) вблизи стенки образуется тонкая пленка почти неподвижной жидкости. Следовательно, перенос теплоты в этой пленке осуществляется исключительно за счет теплопроводности.

Математически этот процесс описывается уравнением [1]:

(2)

q ^{prime prime}
=-kbigg(dfrac

{partial T}{partial y}bigg)_{y=0}

Здесь k— коэффициент теплопроводности жидкости, а производная от T рассчитывается в области жидкости.

Из уравнений (1) и (2) следует, что коэффициент теплоотдачи можно определить следующим образом:

(3)

h=dfrac{-k bigg(dfrac{partial T} {partial y}
bigg)_{y=0}}{T_w {-} T_infty}

Расчет коэффициента теплоотдачи в COMSOL Multiphysics®

На практике измерить градиент температуры на стенке довольно затруднительно. Кроме того, хотелось бы эффективно анализировать процессы теплообмена вблизи твердой поверхности без привлечения значительных вычислительных ресурсов. Поэтому для расчета коэффициента теплоотдачи, как правило, используются неаналитические методы.

Широко признанным методом расчета коэффициента теплоотдачи является использование уравнений подобия для безразмерного числа Нуссельта. Эти уравнения позволяют быстро рассчитать коэффициент теплоотдачи для разных условий теплообмена, в том числе при свободной и вынужденной конвекции в задачах внешнего обтекания и при течении в каналах. Однако этот подход можно использовать только для объектов правильной геометрической формы: для горизонтальных и вертикальных плоских поверхностей, цилиндров и сфер.

Если поверхность теплообмена в задаче имеет более сложную форму, коэффициент теплоотдачи можно рассчитать с помощью моделирования сопряженного теплообмена.

Рассмотрим эти два варианта решения задачи:

  1. Расчет коэффициента теплоотдачи на поверхностях простой геометрической формы (например, на плоской пластине):
    • Моделирование сопряженного теплообмена
    • Расчетные формулы; область течения не моделируется
  2. Вычисление коэффициента теплоотдачи на поверхностях сложной геометрической формы (например, на гофрированной пластине)

Отметим, что очень важно принимать во внимание режим течения жидкости, поскольку коэффициент теплоотдачи зависит от механизмов переноса теплоты в жидкости. В обоих случаях рассмотрим наиболее реалистичный вариант быстрого течения, например, в системе вентиляции или устройстве охлаждения электронной микросхемы. Таким образом, модель должна учитывать дополнительные механизмы переноса теплоты, обусловленные турбулентностью.

Пример 1. Теплообмен при вынужденном обтекании плоской горизонтальной пластины

Рассмотрим задачу об обтекании горизонтальной плоской пластины длиной 5 м, на которой задана постоянная плотность теплового потока 10 Вт/м2. Пластина обдувается воздухом со средней скоростью 0,5 м/с и температурой 283 K. На рисунке ниже представлена схема области течения и показаны профили скорости и температуры в пределах динамического (delta ) и температурного (delta {T}) пограничных слоев при ламинарном режиме обтекания.

Схематическое изображение ламинарного течения у горизонтальной поверхности.
Схематическое изображение турбулентного течения у горизонтальной поверхности.
Схематическое изображение ламинарного (сверху) и турбулентного (снизу) пограничных слоев на горизонтальной пластине.

Моделирование сопряженного теплообмена

В COMSOL Multiphysics поставленную задачу можно решить численно, если воспользоваться интерфейсом Conjugate Heat Transfer (Сопряженный теплообмен), который позволяет рассчитать поля течения и температуры в жидкости. Поля скорости и давления рассчитываются в области, занятой воздухом, а поле температуры ещё и в самой пластине.

На следующем рисунке показано распределение температуры в пределах расчетной области, включающей пластину и воздух. В области течения формируются температурный и динамический погранслои, которые занимают область над пластиной толщиной около 2 см.

Распределение температуры в горизонтальной пластине и в жидкости.
Распределение температуры (график скалярного поля), изотерма на 11 °C (красная линия) и поле скорости (стрелки), показывающие температурный и динамический погранслои у поверхности пластины (масштабы осей не совпадают).

По результатам моделирования можно рассчитать плотность теплового потока, если обратиться к соответствующей встроенной переменной постобработки. Если разделить найденное значение на разность температур (T_w-T_infty), получим коэффициент теплоотдачи (уравнение 3). На графике ниже показано, как изменяется рассчитанное значение коэффициента теплоотдачи вдоль пластины.

Расчет коэффициента теплоотдачи по формулам для числа Нуссельта

Уравнение для расчета числа Нуссельта при вынужденном обтекании плоской пластины можно найти в литературных источниках (например, в [1]).

Во втором варианте расчета мы решим ту же задачу, но без моделирования области течения; то есть мы воспользуемся формулами для расчета коэффициента теплоотдачи. В этом случае расчетная область включает в себя только твердое тело (пластину). Плотность теплового потока, передаваемая с поверхности нагретой пластины холодной жидкости, задается с помощью граничного условия Heat Flux (Тепловой поток). В настройках этого граничного условия предусмотрен вариант, позволяющий задать коэффициент теплоотдачи на границе с помощью встроенных формул для расчета числа Нуссельта, как показано ниже. Еще раз отметим, что эти формулы уже имеются в COMSOL Multiphysics.

На рисунке показано окно настроек граничного условия Heat Flux (Тепловой поток).
Настройки граничного условия Heat Flux (Тепловой поток).

С помощью этого условия можно рассчитать поле температуры в пластине. Зная коэффициент теплоотдачи на поверхности пластины, заданный в граничном условии Heat Flux (Тепловой поток), можно рассчитать плотность теплового потока: q=hcdot(T_infty-T).

Расчет коэффициента теплоотдачи

Рассчитать, как изменяется коэффициент теплоотдачи по длине пластины, можно с помощью любого из двух описанных выше методов. На рисунке ниже показано сравнение результатов расчета коэффициента теплоотдачи двумя методами.

Результаты расчета коэффициента теплоотдачи двумя методами в COMSOL Multiphysics®.
Сравнение значений коэффициента теплоотдачи на плоской пластине, рассчитанных методом моделирования сопряженного теплообмена (синяя линия) и с помощью уравнений для числа Нуссельта (зеленая линия).

Как видно на графике, значения, полученные с помощью уравнений для числа Нуссельта, и значения, рассчитанные на основе численного моделирования сопряженного теплообмена, почти идентичны.

Интерес представляет интенсивность теплообмена на пластине, рассчитанная этими двумя методами:

  1. Формула для расчета числа Нуссельта: 50 Вт/м
  2. Сопряженный теплообмен: 49,884 Вт/м

В некоторых задачах эмпирические формулы для числа Нуссельта позволяют рассчитать плотность теплового потока с достаточно высокой точностью. Теперь рассмотрим ситуацию, когда теплообмен происходит на поверхностии сложной формы, для которой нет формул расчета числа Нуссельта, и решить задачу можно только численно.

Пример 2. Течение у гофрированной поверхности горизонтальной пластины

Рассмотрим задачу с теми же исходными условиями, что и в первом случае, но только теперь верхняя поверхность пластины пусть будет гофрированной. На рисунке ниже представлена схема, иллюстрирующая постановку задачи. В этой модели одна из секций верхней поверхности пластины гофрирована. Остальные части пластины плоские.
Схематическое изображение течения у гофрированной поверхности горизонтальной пластины.
Схема течения на горизонтальной пластине.

При такой форме поверхности стенки в пристеночной области появляются зоны рециркуляции, в результате чего интенсивность теплообмена повышается. На рисунке ниже представлено распределение температуры и линии тока.

Распределение температуры и поле скорости, рассчитанные для горизонтальной пластины.
Распределение температуры в градусах Цельсия (поверхность) и поле скорости (линии тока).

На графике слева показано изменение коэффициента теплоотдачи вдоль гофрированной пластины. В задачах со сложной формой поверхности теплообмена, как например при обтекании гофрированной пластины, коэффициент теплоотдачи зависит от нескольких факторов: поля температуры, поля скорости и геометрических параметров поверхности теплообмена (например, высоты гофры). Таким образом, коэффициент теплоотдачи оказывается выше, чем в случае плоской пластины (см. рисунок справа).

Изменение коэффициента теплоотдачи вдоль гофрированной пластины.

Изменение коэффициента теплоотдачи вдоль гофрированной пластины.

Изменение коэффициента теплоотдачи вдоль гофрированной пластины (слева) и вдоль плоской пластины (справа).

Для моделирования сопряженного теплообмена в моделях со сложной формой поверхностей могут потребоваться значительные вычислительные ресурсы, поэтому иногда предпочтение отдается альтернативным методам решения задачи. Хорошим вариантом решения является замена поверхности сложной формы на простую и подстановка значений коэффициента теплоотдачи, полученных на поверхности сложной формы с учетом геометрических параметров, поля скорости и разности температур. Следует отметить, что, даже если поверхность не является изотермической или если плотность теплового потока не постоянна, значение коэффициента теплоотдачи все равно представляет интерес для некоторых конфигураций, не слишком сильно отличающихся от исходной модели.

Для проверки рассмотрим простой вариант задачи о расчете коэффициента теплоотдачи на омываемой потоком гофрированной поверхности пластины. На основе полученных данных можно определить средний коэффициент теплоотдачи, который затем легко использовать в модели с плоской поверхностью пластины. Корректность такого приближенного подхода можно проверить, если проанализировать полный тепловой поток с поверхности или коэффициент теплоотдачи на основе моделирования сопряженного теплообмена.

Заключение

В этой статье мы рассказали о двух методах расчета коэффициента теплоотдачи. При моделировании сопряженного теплообмена можно использовать встроенные переменные COMSOL Multiphysics, содержащие значения плотности теплового потока. Применение граничного условия Heat Flux (Тепловой поток) и формул для расчета числа Нуссельта позволяет решать задачи о теплообмене на поверхностях простой формы. Также мы кратко обсудили, как использовать упрощенную геометрическую модель для получения данных о коэффициенте теплоотдачи на поверхностях сложной формы.

Дальнейшие шаги

Нажмите на кнопку ниже, чтобы получить дополнительную информацию о специализированных функциях моделирования теплообмена в среде численного моделирования COMSOL®.

Опробуйте рассмотренные методы с помощью учебных моделей:

  • Свободно-конвективное охлаждение сосуда Дьюара
  • Неизотермические турбулентное течение вдоль плоской пластины
  • Неизотермическое ламинарное течение в круглой трубе

Список литературы

  1. A. Bejan et al., Heat Transfer Handbook (Справочник по теплопередаче), John Wiley & Sons, 2003.

Расчет коэффициентов теплоотдачи

Интенсивность теплоотдачи зависит от динамического вида течения, определяющего структуру пограничного слоя у поверхности теплообмена, который в свою очередь зависит от скорости потока. Увеличение скорости потока ведет к уменьшению пограничного слоя, повышает турбулентность и приводит к увеличению интенсивности теплоотдачи.

Теплоотдача так же зависит от характеристик теплоносителя. Высокая теплопроводность уменьшает термическое сопротивление пограничного слоя и увеличивает теплоотдачу.

Снижение вязкости жидкости уменьшает пограничный слой, что так же благоприятно влияет на теплообмен между поверхностью и потоком теплоносителя.

Уменьшение пограничного слоя происходит так же в случае повышения кинематической вязкости или увеличения плотности рабочей среды, что так же повышает теплоотдачу.

Так же интенсивность теплоотдачи зависит от теплоемкости жидкости. При повышении теплоемкости повышается и теплоотдача, поскольку жидкость с большей теплоемкостью способна переносить большее количество теплоты.

Дополнительными факторами, влияющими на теплоотдачу, являются форма поверхности теплоотдачи, химические реакции и фазовые переходы в теплоносителе.

Онлайн расчеты, выполняемые в данном разделе, включают в себя определение коэффициентов теплоотдачи для наиболее распространенных случаев: плоской поверхности, внутренней и наружной стенки трубы, а так же расчет коэффициента теплоотдачи наружной поверхности группы параллельных труб. Для расчета необходимо задать определяющие размеры поверхностей, их температуру, температуру теплоносителя, скорость потока а так же такие характеристики рабочей среды как динамическая вязкость, плотность, коэффициент теплопроводности и удельная теплоемкость.

Расчет коэффициента теплоотдачи плоской стенки

Вычислить коэффициент теплоотдачи плоской поверхности можно с помощью уравнения подобия:

Nul = 0,66×Rel 0,5 ×Pr 0,33 ; при ламинарном пограничном слое

Nul = 0,037×Rel 0,8 ×Pr 0,43 ; при турбулентном пограничном слое

Rel – число Рейнольдса, Pr – число Прандтля.

Исходные данные:

L – размер поверхности в направлении потока, миллиметрах;

w – скорость потока, метрах в секунду;

μ – динамическая вязкость теплоносителя, в паскаль×секунда;

ρ – плотность теплоносителя, в килограммах / метр 3 ;

λ – коэффициент теплопроводности теплоносителя, в ваттах / метр×°C×сек;

Cp – удельная теплоемкость теплоносителя, в джоулях / килограмм×°C.

КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ПЛОСКОЙ СТЕНКИ

Размер поверхности L, мм

Скорость потока, w, м/c

Динамическая вязкость, μ, Па*с

Плотность теплоносителя, ρ, кг/м 3

Теплопроводность, λ, Вт/(м* 0 C×сек)

Удельная теплоемкость, Сp, Дж/(кг* 0 C)

Уравнение конвективной теплоотдачи. Средний коэффициент конвективной теплоотдачи

Согласно уравнению конвективной теплоотдачи, называемому также законом Ньютона-Рихмана, тепловой поток прямо пропорционален разности температур стенки и жидкости и площади поверхности теплообмена. Коэффициент пропорциональности в этом уравнении называют средним коэффициентом конвективной теплоотдачи:

, (1)

или , (2)

или , (3)

где Q – тепловой поток, Вт; q = Q/F – поверхностная плотность теплового потока, Вт/м 2 ; – средний коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); – температурный напор теплоотдачи, о С; – температура поверхности теплообмена (стенки), о С; – температура жидкости вдали от стенки, о С; F – площадь поверхности теплообмена (стенки), м 2 .

Независимо от направления теплового потока (от стенки к жидкости или наоборот) будем считать его положительным, то есть будем использовать модуль разности температур.

Величина коэффициента теплоотдачи зависит от большого числа различных факторов: а) физических свойств жидкости ; б) скорости движения жидкости ; в) формы, размеров и ориентации в пространстве поверхности теплообмена; г) величины температурного напора, направления теплообмена и т.п. Поэтому его теоретическое определение в большинстве случаев невозможно.

Выражения (1)-(3) позволяют опытным путем определить средний коэффициент теплоотдачи посредством измерения величин Q, F, и :

, (4)

то есть средний коэффициент теплоотдачи численно равен тепловому потоку, передаваемому через единицу поверхности теплообмена при единичном температурном напоре (1 о С или 1 К).

3. Локальный (местный) коэффициент конвективной теплоотдачи

Средний коэффициент теплоотдачи является важной, но не всегда достаточной характеристикой процессов теплообмена. Во многих случаях требуются значения коэффициентов теплоотдачи в отдельных точках поверхности теплообмена, то есть локальные (местные) значения. Локальные коэффициенты характеризуют теплоотдачу в окрестности заданной точки (x) и входят в состав локального уравнения теплоотдачи:

, (5)

или , (6)

где dF – элементарная (бесконечно малая) поверхность теплообмена в окрестности точки x, м 2 ; – элементарный тепловой поток, Вт ; – локальная плотность теплового потока, Вт/м 2 ; – локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); – локальный температурный напор, о С; – локальная температура поверхности (стенки), о С; – температура жидкости вдали от стенки (полагаем, что она постоянна вдоль всей поверхности теплообмена), о С.

Из выражений (5) и (6) следует, что локальные коэффициенты теплоотдачи в принципе могут быть найдены опытным путем посредством измерения величин , dF, и , относящихся к соответствующему бесконечно малому участку:

. (7)

На практике вдоль поверхности выделяют необходимое количество конечных, но достаточно малых участков и производят измерения для каждого i-го участка поверхности:

, (8)

где – среднее для i-го участка значение коэффициента теплоотдачи, Вт/(м 2 ∙К); – площадь поверхности i-го участка, м 2 ; – тепловой поток в пределах i-го участка, Вт; – среднее для i-го участка значение температуры поверхности; – средняя плотность теплового потока в пределах i-го участка, Вт/м 2 ; i = 1,2,…,n – номер очередного участка; n – количество участков.

При теплоотдаче на вертикальной поверхности выделяют n одинаковых по высоте участков (см. рис.4). Если измерять температуру поверхности на границах выделенных участков, начиная с ее нижней кромки (i=1), то средняя для i-го участка температура определится по формуле

. (9)

Среднее для малого i-го участка значение коэффициента теплоотдачи (8) является приближенным значением локального коэффициента теплоотдачи (7). Чем меньше размеры участка, тем точнее получаемый результат.

Результаты большого количества опытов по определению коэффициентов теплоотдачи (8) обобщают в виде эмпирических (опытных) критериальных уравнений (см.разд.5). В дальнейшем эти уравнения используют в инженерных расчетах для определения коэффициентов теплоотдачи.

4. Характер изменения локального коэффициента теплоотдачи

Локальное уравнение теплоотдачи (5)-(6) можно записать в следующем виде:

, (10)

где – локальное термическое сопротивление теплоотдачи, м 2 ∙К/Вт.

Таким образом, при теплоотдаче локальная поверхностная плотность теплового потока ( ) прямо пропорциональна локальному температурному напору и обратно пропорциональна локальному термическому сопротивлению теплоотдачи .

Практически все термическое сопротивление теплоотдачи сосредоточено около поверхности стенки в пределах теплового пограничного слоя, при этом локальное термическое сопротивление пропорционально локальной толщине этого слоя.

При теплоотдаче в условиях свободной конвекции около нагретой вертикальной поверхности (рис.2) пограничный слой формируется вдоль поверхности по ходу потока. Толщина слоя возрастает снизу вверх, и при достаточной высоте поверхности первоначально ламинарный пограничный слой постепенно преобразуется в турбулентный.

В области ламинарного (слоистого) течения локальный коэффициент теплоотдачи уменьшается по высоте поверхности в силу увеличения толщины пограничного слоя и, следовательно, в силу увеличения его локального термического сопротивления (см. рис.2).

В переходной области наблюдается увеличение коэффициента теплоотдачи вопреки возрастанию толщины пограничного слоя. Это происходит из-за дополнительного конвективного переноса теплоты образующимися вихрями.

В области развитого турбулентного течения толщина пограничного слоя продолжает расти, но в такой же степени возрастает вихревой конвективный перенос теплоты, поэтому термическое сопротивление и коэффициент теплоотдачи остаются постоянными, то есть перестают меняться по высоте поверхности (см. рис.2).

Рис.2. Пограничный слой и локальная теплоотдача:

1 – стенка (поверхность теплообмена); 2 – гидродинамический пограничный слой; 3 – гидродинамическое “ядро потока”

5. Расчет локального коэффициента теплоотдачи

с помощью критериальных уравнений

При свободной конвекции локальный коэффициент теплоотдачи на вертикальной поверхности можно рассчитать по критериальным эмпирическим формулам следующего вида:

, (11)

где C, n и 0,25 – эмпирические (определяемые из опыта) постоянные; – локальное число Нуссельта; – локальное число Релея; Pr, – числа Прандтля, взятые при определяющей температуре и при температуре стенки соответственно. Подробнее см. в разд. 6.

Значения эмпирических постоянных (табл.1) зависят от режима свободного движения жидкости. Режим свободного движения в данной точке x поверхности теплообмена определяется величиной локального числа Релея в этой точке.

Таблица 1. Значения эмпирических постоянных [1]

Rax Режим движения С n
Rax 9 Ламинарный 0,60 0,25
Rax >6·10 10 Турбулентный 0,15 1/3

Для газов сомножитель близок к единице, так как в силу слабой зависимости числа Прандтля газов от температуры, поэтому для газов формула (11) принимает более простой вид:

. (11а)

Рассчитав локальное число Нуссельта, определяют входящий в него локальный коэффициент теплоотдачи (см. разд. 6).

Числа (критерии) подобия

Каждый критерий подобия представляет собой безразмерный комплекс (комбинацию), составленный из физических величин, влияющих на процесс: определяющей температуры (разности температур), определяющей скорости (при вынужденной конвекции), определяющего размера, – и физических свойств жидкости. В итоге каждый критерий подобия характеризует определенное соотношение физических эффектов, характерных для рассматриваемого явления.

Один из критериев подобия в уравнении является определяемым (искомым), все другие являются определяющими критериями, то есть играют роль независимых переменных, влияющих на теплоотдачу.

Рассмотрим локальные числа (критерии) подобия.

Число Нуссельта: , (12)

где – локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); x – координата, в которой ищется локальный коэффициент теплоотдачи, м (см. разд.7); – коэффициент теплопроводности жидкости, Вт/(м∙К).

Это определяемый критерий подобия, так как в его состав входит искомый коэффициент теплоотдачи . Число Нуссельта можно рассматривать как относительный коэффициент теплоотдачи: , где – масштаб отнесения, имеющий ту же размерность, что и коэффициент теплоотдачи . То есть число Нуссельта характеризует интенсивность теплоотдачи или, точнее, соотношение интенсивностей теплоотдачи и теплопроводности жидкости . Если найдено число Нуссельта, например, с помощью (11) или (11 а), то

. (13)

Число Прандтля: , (14)

где – кинематический коэффициент вязкости жидкости, м 2 /с; а – коэффициент температуропроводности жидкости, м 2 /с.

Это один из определяющих критериев подобия. Он характеризует влияние физических свойств жидкости на теплоотдачу. В частности, соотношение толщин гидродинамического и теплового пограничных слоев зависит от соотношения величин и а , то есть от числа Прандтля. Сомножитель в формуле (11) учитывает для капельных жидкостей влияние на теплоотдачу величины температурного напора и его знака (направления теплообмена).

Число Релея: , (15)

где – локальное число Грасгофа.

Это главный определяющий критерий подобия. По его численному значению определяется режим свободного движения жидкости: ламинарный, переходный, турбулентный. Различным режимам движения соответствует различный физический механизм переноса теплоты, что выражается в различных значениях эмпирических постоянных С и n в уравнениях типа (11) и (11а) (см. также разд.9).

Число Релея можно рассматривать как отношение подъемной силы теплового пограничного слоя к силе трения, обусловленной вязкостью.

Число Грасгофа: , (16)

где g – ускорение силы тяжести, м/с 2 ; – термический коэффициент объемного расширения жидкости, 1/К; – локальный температурный напор, о С ( – локальная температура поверхности (стенки), о С; – температура жидкости вдали от стенки, о С).

Это определяющий критерий подобия в составе числа Релея. Он эквивалентен числу Релея при условии Pr = const.

1. Физические свойства жидкости ( , , , а, Pr и др.) берут из справочных таблиц 2 при так называемой определяющей (характерной) температуре (см. разд.8). Значение числа (для капельных жидкостей) берут там же, но при температуре стенки .

2. Для газов коэффициент объемного расширения в таблицах физических свойств не приводится, так как его легко рассчитать:

. (17)

Уравнения подобия

Уравнения подобия

  • Уравнение подобия Уравнение подобия относится к связи между определенным числом подобия и другими определенными числами подобия. Количество, необходимое для расчета теплового оборудования — это коэффициент теплопередачи a и гидравлическое сопротивление dr. Конвективный теплообмен характеризуется пятью сходствами: Nu, Eu, Pr, Gr и Re. Числовое значение Nu содержит

неизвестный коэффициент теплопередачи a, а числовое значение Ei содержит целевое значение Ap. Это характеризует гидравлическое сопротивление при движении жидкости. Следовательно, числа Nu и Ei определяются числами подобия, а числа Pr, Gr и Re являются решающими и. Для конвективного теплообмена уравнение подобия может быть выражено как: Nu = f, (Re, Gr, Pr); • (26-44) Eu = f2 (Re, Gr, Pr). ^ (26-45) Эта связь между числами подобия является результатом

второй теоремы теории подобия. Соотношение между числами подобия определяется в основном опытным путем. свободная конвекция очень мала по сравнению с принудительной конвекцией, что упрощает уравнение подобия теплопередачи. • Nu = / (Re, Pr). (26-46) Для некоторых газов значение числа Прандтля Pr во время конвективного теплообмена мало меняется с температурой, поэтому формула подобия принимает более простую форму. Nu = f (Re). (26-47)

При вынужденном движении жидкости и в развитом турбулентном режиме Людмила Фирмаль

Когда жидкость движется свободно, число Грасгофа необходимо ввести в уравнение подобия теплопередачи, когда нет принудительной конвекции вместо числа Рейнольдса. Отсюда U = / (Gr, Pr) ..- (26-48) Экспериментальные исследования теплопередачи капающей жидкости показали, что коэффициент теплопередачи ce имеет различные значения в условиях нагрева и охлаждения стенки. Это явление связано с изменением физических параметров жидкости в пограничном слое. Чтобы получить уравнение подобия, которое

одинаково справедливо как для зрелости, так и для охлаждения, дополнительно введено следующее соотношение: ^ /) K // CT, ai / | lst, Prz / Prst. Первое соотношение обычно используется для расчета теплопередачи газа, а два других соотношения используются для расчета теплопередачи капающей жидкости. Ученый М.А. Михеев рекомендует учитывать направление тепла: отношение теплового потока Rg / Prgst до 0,25. В этом случае общая формула для подобия конвективного теплообмена следующая: Nu = c Re «, Gr *, Prm, (Prz / Prst) 0-25. (26-49) Все уравнения в особых случаях могут отображаться

в одном формате. Количественная связь между показателями сходства [предмет экспериментальных исследований. моделирование Экспериментальные исследования различных физических явлений, особенно тепловых и тепловых явлений, могут проводиться путем изучения явлений, которые должны быть исследованы либо непосредственно на образце, либо на моделях. Условие, что модель и процессы, происходящие в ней, должны соответствовать теории

  • подобия. Применимость: теория сходства с опытом практически безгранична. В предыдущем разделе было установлено, что все подобные явления в определенной группе являются идентичными явлениями, приведенными в разных масштабах. Вывод: где взять; изучение любого явления в группе может быть распространено на все явления в этой группе. Таким образом, изучение конкретного конкретного явления в определенной группе эквивалентно изучению

других явлений в той же группе. Поэтому, если прямое экспериментальное исследование конкретного явления в природе образца затруднительно по техническим или экономическим причинам, оно будет заменено исследованием аналогичного явления в модели. Моделирование — это экспериментальный метод исследования, при котором изучение физических явлений проводится в сокращенной модели. Идея моделирования основана на

том факте, что [все явления описываются безразмерными переменными [отражают признаки группы похожих явлений]. Чтобы модель была похожа на модель, Вы можете моделировать процессы, которые имеют одинаковые физические свойства и описываются одними и теми же дифференциально-дифференциальными уравнениями. Явные

должны быть выполнены следующие условия: Людмила Фирмаль

условия должны быть одинаковыми во всех, кроме постоянных чисел, содержащихся в этих условиях. Требования двусмысленности требуют комфорта. Геометрическое сходство образца и модели, сходство условия G движения жидкости во входном сечении образца и модели, сходство физических параметров при сходстве образца и модели, Сходство температурного поля на границе жидкой среды. Кроме того, сходные числа сходства для похожих участков образца и модели должны быть численно одинаковыми. , ■ ч Перечисленные

условия сходства для образцов и моделей являются необходимыми и достаточными. Однако практически все условия моделирования трудно реализовать практически точно. По этой причине была разработана приближенная методика моделирования, состоящая из стабильности и надежности. Применение потоковых методов самоподобия и локальности. Геометрическое сходство от модели к модели легко реализовать. Аналогичное распределение скорости.

Тент на входе относительно легкий. Сходство физических параметров модели и потока жидкости образца является лишь приблизительным, и подобие поля температуры на нагретой поверхности модели и образца очень сложно реализовать. В связи с этим используется метод аппроксимации локального моделирования. Локальное моделирование основано на том факте, что подобие температурного поля выполняется не на всем устройстве, а в отдельном месте, то есть

на участке, где изучается теплообмен. Эквивалентность критериев выбора образца и модели может быть выполнена приблизительно. -Стабильность является характеристикой вязкости жидкости, которая всегда принимает одинаковое распределение скорости по площади поперечного сечения на одном и том же расстоянии от впускного отверстия, независимо от характера скорости входной площади поперечного сечения. Явление самоподобия связано с тем, что существует распределение скоростей, которое практически не изменяется в этом сечении, когда жидкость движется с довольно

широким диапазоном скоростей. Другими словами, он практически не зависит от Re. В настоящее время моделирование является одним из основных методов научных исследований и широко используется во многих областях науки и техники. Он стал мощным инструментом для выявления различных недостатков в существующем техническом оборудовании и поиска путей их устранения. Кроме того, моделирование в настоящее время широко используется для тестирования вновь созданных устройств, улучшая новые

конструкции, которые еще не реализованы на практике. XXVI глава вопросы безопасности 1. Что такое конвективный теплообмен? -2 Какие бывают типы конвекции? 3. Динамические и тепловые пограничные слои и их физические значения. • 4: Какая разница между типом движения жидкости и #? «» 5. Число Рейнольдса и его обозначение. 6. Что такое измерение числа Рейнольдса? 7. Критическое значение числа Рейнольдса. 8. Каков механизм теплообмена при ламинарном и турбулентном движении * жидкостей? 9. Обеспечивает определение динамических и

кинематических коэффициентов. Класс вязкости. «» LO. Какие факторы влияют на конвективный теплообмен? П. Определение коэффициента теплопередачи. * 12. Какова функция коэффициента теплопередачи? 13. Создать систему дифференциальных уравнений для конвективного теплообмена. 14. Что называется условием уникальности? 15. Почему теория подобия используется для определения коэффициента теплопередачи? • ‘•• 16. Какие условия лежат в основе теории подобия? 17. Зависит ли коэффициент

теплопередачи от такого количества? , 18. Три теоремы подобия. — 19. Из какого дифференциального уравнения можно получить сходство? •. ’20. Какое сходство можно получить из дифференциального уравнения конвективного теплообмена? •• ■ — • • 21. Что такое уравнение называется похожим уравнением? 22. Какое же число конвективных теплообменов между газом и капающей жидкостью? 23. Какое соотношение учитывает направление теплового потока?

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

[spoiler title=”источники:”]

http://allrefrs.ru/4-40778.html

http://lfirmal.com/uravneniya-podobiya/

[/spoiler]

Добавить комментарий