Как найти среднюю генеральной совокупности задача

Приступим к изучению элементов математической статистики, в которой разрабатываются научно обоснованные методы сбора статистических данных и их обработки.

Пусть требуется изучить множество однородных объектов (это множество называют статистической совокупностью) относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить соответствие детали стандартам, а количественным — контролируемый размер детали.

Лучше всего осуществить сплошное обследование, т. е. изучить каждый объект. Однако в большинстве случаев по разным причинам это сделать невозможно. Препятствовать сплошному обследованию может большое число объектов, их недоступность и т. п. Если, например, нужно знать среднюю глубину воронки при взрыве снаряда из опытной партии, то, проводя сплошное обследование, мы должны будем уничтожить всю партию.

Если сплошное обследование невозможно, то из всей совокупности выбирают для изучения часть объектов.

Статистическая совокупность, из которой отбирают часть объектов, называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называется выборкой.

Число объектов генеральной совокупности и выборки называется соответственно объемом генеральной совокупности и объемом выборки.

Пример. Плоды одного дерева (200 шт.) обследуют на наличие специфического для данного сорта вкуса. Для этого отбирают 10 шт. Здесь 200 —объем генеральной совокупности, а 10 —объем выборки.

Если выборку отбирают по одному объекту, который обследуют и снова возвращают в генеральную совокупность, то выборка называется повторной. Если объекты выборки уже не возвращаются в генеральную совокупность, то выборка называется бесповторной. На практике чаще используется бесповторная выборка. Если объем выборки составляет небольшую долю объема генеральной совокупности, то разница между повторной и бесповторной выборками незначительна

Свойства объектов выборки должны правильно отражать свойства объектов генеральной совокупности, или, как говорят, выборка должна быть репрезентативной (представительной). Считается, что выборка репрезентативна, если все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку, т. е. выбор осуществляется случайно. Например, для того чтобы оценить будущий урожай, можно сделать выборку из генеральной совокупности еще не созревших плодов и исследовать их характеристики (массу, качество и пр.). Если вся выборка будет взята с одного дерева, то она не будет репрезентативной. Репрезентативная выборка должна состоять из случайно выбранных плодов со случайно выбранных деревьев.

Статистическое распределение выборки. Полигон. Гистограмма

Пусть из генеральной совокупности извлечена выборка, причем Генеральная совокупность и выборка, наблюдалось Генеральная совокупностьраз, Генеральная совокупность раз, Генеральная совокупностьраз и Генеральная совокупность объем выборки. Наблюдаемые значения Генеральная совокупность называются вариантами, а последовательность вариант, записанная в возрастающем порядке,— вариационным рядом. Числа наблюдений Генеральная совокупность называют частотами, а их отношения к объему выборки Генеральная совокупностьГенеральная совокупностьотносительными частотами. Отметим, что сумма относительных частот равна единице:

Генеральная совокупность

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (непрерывное распределение). В качестве частоты, соответствующей интервалу, принимают сумму частот вариант, попавших в этот интервал.

Заметим, что в теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — соответствие между наблюдаемыми вариантами и их частотами или относительными частотами.

Пример:

Перейдем от частот к относительным частотам в следующем распределении выборки объема n = 20:

Генеральная совокупность

Найдем относительные частоты:

Генеральная совокупность

Поэтому получаем следующее распределение:

Генеральная совокупность

Для графического изображения статистического распределения используются полигоны и гистограммы.

Для построения полигона в декартовых координатах на оси Ох откладывают значения вариант Генеральная совокупность на оси Оу— значения частот Генеральная совокупность (относительных частот Генеральная совокупность).

Пример:

Рис. 14 представляет собой полигон следующего распределения:

Генеральная совокупность

Полигоном обычно пользуются в случае небольшого количества вариант. В случае большого количества вариант и в случае непрерывного распределения признака чаще строят гистограммы. Для этого интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов шириной h и находят для каждого частичного интервала Генеральная совокупность — сумму частот вариант, попавших в і-й интервал. Затем на этих интервалах как на основаниях строят прямоугольники с высотами Генеральная совокупность (или Генеральная совокупность, где n —объем выборки). Площадь i-го частичного прямоугольника равна Генеральная совокупность

Генеральная совокупность

Генеральная совокупность

(или Генеральная совокупность). Следовательно, площадь гистограммы равна сумме всех частот (или относительных частот), т. е. объему выборки (или единице).

Пример:

Рис. 15 показывает гистограмму непрерывного распределения объема n =100, заданного следующей таблицей:

Генеральная совокупность

Оценки параметров генеральной совокупности по ее выборке

Выборка как набор случайных величин

Пусть имеется некоторая генеральная совокупность, каждый объект которой наделен количественным признаком X. При случайном извлечении объекта из генеральной совокупности становится известным значение х признака X этого объекта. Таким образом, мы можем рассматривать извлечение объекта из генеральной совокупности как испытание, X—как случайную величину, а х —как одно из возможных значений X.

Допустим, что из теоретических соображений удалось установить, к какому типу распределений относится признак X. Естественно, возникает задача оценки (приближенного определения) параметров, которыми описывается это распределение. Например, если известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить, т. е. приближенно найти математическое ожидание и среднее квадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение.

Обычно в распоряжении исследователя имеются лишь данные выборки генеральной совокупности, например значения количественного признака Генеральная совокупность полученные в результате n наблюдений (здесь и далее наблюдения предполагаются независимыми). Через эти данные и выражают оцениваемый параметр.

Опытные значения признака X можно рассматривать и как значения разных случайных величин Генеральная совокупность с тем же распределением, что и X, и, следовательно, с теми же числовыми характеристиками, которые имеет X. Значит, Генеральная совокупность Величины Генеральная совокупность можно считать независимыми в силу независимости наблюдений. Значения Генеральная совокупность в этом случае называются реализациями случайных величин Генеральная совокупность Отсюда и из предыдущего следует, что найти оценку неизвестного параметра — это значит найти функцию от наблюдаемых случайных величин Генеральная совокупностьГенеральная совокупность которая и дает приближенное значение оцениваемого параметра.

Генеральная и выборочная средние. Методы их расчета

Пусть изучается дискретная генеральная совокупность объема N относительно количественного признака X.

Определение:

Генеральной средней Генеральная совокупность (или а) называется среднее арифметическое значений признака генеральной совокупности.

Если все значения Генеральная совокупность признака генеральной совокупности объема N различны, то

Генеральная совокупность

Если же значения признака Генеральная совокупность имеют соответственно частоты Генеральная совокупность причем Генеральная совокупность то

Генеральная совокупность

или

Генеральная совокупность

Как уже отмечалось (п. 1), извлечение объекта из генеральной совокупности есть наблюдение случайной величины X.

Пусть все значения Генеральная совокупность различны. Так как каждый объект может быть извлечен с одной и той же вероятностью 1/N, то

Генеральная совокупность

т. е.

Генеральная совокупность

Такой же итог следует, если значения Генеральная совокупность имеют соответственно частоты Генеральная совокупность

В случае непрерывного распределения признака X по определению полагают Генеральная совокупность

Пусть для изучения генеральной совокупности относительно количественного признака X произведена выборка объема n.

Определение:

Выборочной средней Генеральная совокупность, называется среднее арифметическое значений признака выборочной совокупности.

Если все значения Генеральная совокупность признака выборки объема n различны, то

Генеральная совокупность

Если же значения признака Генеральная совокупность имеют соответственно частоты Генеральная совокупность причем Генеральная совокупность, то

Генеральная совокупность

или

Генеральная совокупность

Пример:

Выборочным путем были получены следующие данные о массе 20 морских свинок при рождении (в г): 30, 30, 25, 32, 30, 25, 33, 32, 29, 28^27, 36, 31, 34, 30, 23, 28, 31, 36, 30. Найдем выборочную среднюю Генеральная совокупность

Согласно формуле (4.4), имеем:

Генеральная совокупность

Итак, Генеральная совокупность

Далее, не уменьшая общности рассуждений, будем считать значения Генеральная совокупность признака различными.

Разумеется, выборочная средняя для различных выборок того же объема n из той же генеральной совокупности будет получаться, вообще говоря, различной. И это не удивительно — ведь извлечение і-го по счету объекта есть наблюдение случайной величины Генеральная совокупность а их среднее арифметическое

Генеральная совокупность

есть тоже случайная величина.

Таким образом, всевозможные получающиеся выборочные средние есть возможные значения случайной величины Генеральная совокупность, которая называется выборочной средней случайной величиной.

Найдем Генеральная совокупность, пользуясь тем, что Генеральная совокупность (см. п. 1).

С учетом свойств математического ожидания (см. гл. II) получаем:

Генеральная совокупность

Итак, Генеральная совокупность (математическое ожидание выборочной средней) совпадает с а (генеральной средней).

Теперь найдем Генеральная совокупность Так как Генеральная совокупность (п. 1) и Генеральная совокупность независимы, то, согласно свойствам дисперсии (см. гл. II), получаем

Генеральная совокупность

T. e.

Генеральная совокупность

Наконец, отметим, что если варианты Генеральная совокупность—большие числа, то для облегчения вычисления выборочной средней применяют следующий прием. Пусть С — константа.

Так как

Генеральная совокупность

то формулу (4.3) можно преобразовать к виду

Генеральная совокупность

За константу С (так называемый ложный нуль) берут некоторое среднее значение между наименьшим и наибольшим значениями х, (і- 1, 2, …, n).

Пример:

Имеется выборка:

Генеральная совокупность

Требуется найти Генеральная совокупность

Возьмем С =72,00 и вычислим разности Генеральная совокупность

Генеральная совокупность

Их сумма: Генеральная совокупность их среднее арифметическоеГенеральная совокупность Выборочная средняя

Генеральная совокупность

Генеральная и выборочная дисперсии

Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной совокупности вокруг своего среднего значения, вводят следующую характеристику — генеральную дисперсию.

Определение:

Генеральной дисперсией D, называется среднее арифметическое квадратов отклонений значений признака X генеральной совокупности от генеральной средней Генеральная совокупность

Если все значения Генеральная совокупность признака генеральной совокупности объема N различны, то

Генеральная совокупность

Если же значения признака Генеральная совокупность имеют соответственно
частоты Генеральная совокупность причем Генеральная совокупность то

Генеральная совокупность

Пример:

Генеральная совокупность задана таблицей распределения:

Генеральная совокупность

Найдем генеральную дисперсию.

Согласно формулам (4.1) и (4.7), имеем:

Генеральная совокупность

Генеральным средним квадратическим отклонением (стандартом) называется Генеральная совокупность

Пусть все значения Генеральная совокупностьразличны.

Найдем дисперсию признака X, рассматриваемого как случайная величина:

Генеральная совокупность

Так как Генеральная совокупность(см. п. 2), то

Генеральная совокупность

т. е.

Генеральная совокупность

Таким образом, дисперсия D(X) равна Генеральная совокупность

Такой же итог можно получить, если значения Генеральная совокупность имеют соотвественно частоты Генеральная совокупность

В случае непрерывного распределения признака X по определению полагают

Генеральная совокупность

С учетом формулы (4.8) формула (4.5) (п. 2) перепишется в виде

Генеральная совокупность

откуда Генеральная совокупность или Генеральная совокупность Величина Генеральная совокупность называется средней квадратической ошибкой.

Для того чтобы охарактеризовать рассеяние наблюдаемых значений количественного признака выборки вокруг своего среднего значения Генеральная совокупность вводят выборочную дисперсию.

Определение:

Выборочной дисперсией Генеральная совокупность, называется среднее арифметическое квадратов отклонений наблюдаемых значений признака X от выборочной средней Генеральная совокупность

Если все значения Генеральная совокупностьпризнака выборки объема n различны, то

Генеральная совокупность

Если же значения признака Генеральная совокупность имеют соответственно частоты Генеральная совокупность причем Генеральная совокупность то

Генеральная совокупность

Пример:

Пусть выборочная совокупность задана таблицей распределения:

Генеральная совокупность

Найдем выборочную дисперсию. Согласно формулам (4.4) и (4.10), имеем:

Генеральная совокупность

Выборочным средним квадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии:

Генеральная совокупность

В условиях примера 2 получаем, что Генеральная совокупность

Далее, не уменьшая общности рассуждений, будем считать значения Генеральная совокупностьпризнака различными.

Выборочную дисперсию, рассматриваемую нами как случайная величина, будем обозначать Генеральная совокупность

Генеральная совокупность

Теорема:

Математическое ожидание выборочной дисперсии равно Генеральная совокупность т.е.

Генеральная совокупность

Доказательство:

С учетом свойств математического ожидания (см. гл. II) получаем

Генеральная совокупность

Вычислим одно слагаемое Генеральная совокупность Имеем

Генеральная совокупность

Вычислим по отдельности эти математические ожидания.

Согласно свойству I дисперсии (см. гл. И) и формулам (4.2), (4.8) имеем

Генеральная совокупность

Далее, с учетом свойства 4 математического ожидания (см. гл. II)

Генеральная совокупность

но слагаемое этой суммы, у которого второй индекс равен і, т.е. Генеральная совокупность, равно Генеральная совокупность У всех остальных слагаемых Генеральная совокупность индексы разные. Поэтому в силу независимости Генеральная совокупность (см. гл. II)

Генеральная совокупность

Так как имеется n-1 таких слагаемых, то

Генеральная совокупность

В силу свойства 1 дисперсии (см. гл. П) получаем

Генеральная совокупность

Нами уже найден (см. пп. 2 и 3):

Генеральная совокупность

Поэтому

Генеральная совокупность

Таким образом,

Генеральная совокупность

и не зависит от индекса суммирования і. Поэтому

Генеральная совокупность

Что и требовалось доказать.

В заключение этого пункта отметим, что если варианты Генеральная совокупность— большие числа, то для облегчения вычисления выборочной дисперсии Генеральная совокупность, формулу (4.9) преобразуют к следующему виду:

Генеральная совокупность

где С—ложный нуль.

Действительно, с учетом формулы (4.3) имеем

Генеральная совокупность

откуда

Генеральная совокупность

Пример:

Для выборки, указанной в примере 2 из п. 2, найдем Генеральная совокупность (ложный нуль остается прежним С= 72,00)

Генеральная совокупность

Наконец, согласно формуле (4.11)

Генеральная совокупность

Оценки параметров распределения

Одной из задач статистики является оценка параметров распределения случайной величины X по данным выборки. При этом в теоретических рассуждениях считают, что генеральная совокупность бесконечна. Это делается для того, чтобы можно было переходить к пределу при Генеральная совокупность где n — объем выборки. Для оценки параметров распределения X из данных выборки составляют выражения, которые должны служить оценками неизвестных параметров. Например, Генеральная совокупность (см. п. 2) является оценкой генеральной средней, а Генеральная совокупность (см. п. 3) — оценкой генеральной дисперсии Генеральная совокупность Обозначим через Генеральная совокупность оцениваемый параметр, через Генеральная совокупность — оценку этого параметраГенеральная совокупность является выражением^ составленным из Генеральная совокупность (см. п. 1)]. Для того чтобы оценка Генеральная совокупность давала хорошее приближение, она должна удовлетворять определенным требованиям. Укажем эти требования.

Несмещенной называют оценку Генеральная совокупность математическое ожидание которой равно оцениваемому параметру Генеральная совокупность, т. е. Генеральная совокупность в противном случае оценка называется смещенной.

Пример:

Оценка Генеральная совокупность является несмещенной оценкой генеральной средней а, так как Генеральная совокупность (см. п. 2).

Пример:

Оценка Генеральная совокупность является смещенной оценкой генеральной дисперсии Генеральная совокупность так как, согласно установленной выше теореме (см. п. 3),

Генеральная совокупность

Пример:

Наряду с выборочной дисперсией Генеральная совокупность рассматривают еще так называемую исправленную дисперсию Генеральная совокупность которая является также оценкой генеральной дисперсии. Для Генеральная совокупность с учетом установленной выше теоремы (см. п. 3) имеем

Генеральная совокупность

Таким образом, оценка Генеральная совокупность в отличие от оценки Генеральная совокупность является несмещенной оценкой генеральной дисперсии. Явное выражение для Генеральная совокупность имеет вид

Генеральная совокупность

T. e.

Генеральная совокупность

Естественно в качестве приближенного неизвестного параметра брать несмещенные оценки для того, чтобы не делать систематической ошибки в сторону завышения или занижения.

Состоятельной называют такую оценку Генеральная совокупность параметра Генеральная совокупность, что для любого наперед заданного числа Генеральная совокупность вероятность Генеральная совокупность при Генеральная совокупностьстремится к единице*. Это значит, что при достаточно больших n можно с вероятностью, близкой к единице, т. е. почти наверное, утверждать, что оценка Генеральная совокупность отличается от оцениваемого параметра Генеральная совокупность меньше, чем на Генеральная совокупность

Очевидно, такому требованию должна удовлетворять всякая оценка, пригодная для практического использования.

Заметим, что несмещенная оценка Генеральная совокупность будет состоятельной, если при Генеральная совокупность дисперсия стремится к нулю: Генеральная совокупность Это следует из неравенства Чебышева ((2.33) см. § 2.8, п. 1).

Пример:

Как было установлено (см. п. 3), Генеральная совокупность. Отсюда следует, что несмещенная оценка Генеральная совокупность является и состоятельной, так как

Генеральная совокупность

Можно показать, что несмещенная оценка Генеральная совокупность является также состоятельной. Поэтому в качестве оценки генеральной дисперсии принимают исправленную дисперсию. Заметим, что оценки Генеральная совокупность отличаются множителемГенеральная совокупность, который стремится к 1 при Генеральная совокупность. На практике Генеральная совокупность не различают при n > 30.

Для оценки генерального среднего квадратического отклонения используют исправленное среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:

Генеральная совокупность

Левые части формул (4.12), (4.13), в которых случайные величины Генеральная совокупность заменены их реализациями Генеральная совокупностьвыборочной средней Генеральная совокупность будем обозначать соответственно через Генеральная совокупностьи s

Отметим, что если варианты Генеральная совокупность — большие числа, то для облегчения вычисления Генеральная совокупность формулу для Генеральная совокупность аналогично формуле (4.9) преобразуют к виду

Генеральная совокупность

где С—ложный нуль.

Оценки, обладающие свойствами несмещенности и состоятельности, при ограниченном числе опытов могут отличаться дисперсиями.

Ясно, что чем меньше дисперсия оценки, тем меньше вероятность грубой ошибки при определении приближенного значения параметра. Поэтому необходимо, чтобы дисперсия оценки была минимальной. Оценка, обладающая таким свойством, называется эффективной.

Из отмеченных требований, предъявляемых к оценке, наиболее важными являются требования несмещенности и состоятельности.

Пример:

С плодового дерева случайным образом отобрано 10 плодов. Их массы Генеральная совокупность (в граммах) записаны в первой колонке приведенной ниже таблицы. Обработаем статистические данные выборки. Для вычисления Генеральная совокупность и s пo формулам (4.6) и (4.14) введем ложный нуль С=250 и все необходимые при этом вычисления сведем в указанную таблицу:

Генеральная совокупность

Следовательно,

Генеральная совокупность

Генеральная совокупность

Отсюда Генеральная совокупность

Итак, оценка генеральной средней массы плода равна 243 г со средней квадратической ошибкой 9 г.

Оценка генерального среднего квадратического отклонения массы плода равна 28 г.

Пример:

Через каждый час измерялось напряжение в электросети. Результаты измерений (в вольтах) представлены в следующей таблице:

Генеральная совокупность

Найти оценки для математического ожидания и дисперсии результатов измерений. Оценки для математического ожидания и дисперсии найдем по формулам (6) и (14), положив С=220. Все необходимые вычисления приведены в нижеследующей таблице:

Генеральная совокупность

Следовательно,

Генеральная совокупность

Доверительные интервалы для параметров нормального распределения

Пусть Генеральная совокупность — оцениваемый параметр, Генеральная совокупность — его оценка, составленная из Генеральная совокупность

Если известно, что оценка Генеральная совокупность является несмещенной и состоятельной, то по данным выборки вычисляют значение Генеральная совокупность и считают его приближением истинного значения Генеральная совокупность. При этом среднее квадратическое отклонение (если его вообще вычисляют) оценивает порядок ошибки. Такие оценки называются точечными. Например, в предыдущем параграфе речь шла о точечных оценках генеральной средней и генеральной дисперсии. В общем случае, когда о распределении признака X ничего неизвестно, это уже немало.

Если же о распределении имеется какая-либо информация, то можно сделать больше.

Здесь речь будет идти об оценке параметров а и Генеральная совокупность случайной величины, имеющей нормальное распределение. Это очень важный случай. Например (см. § 2.7), результат измерения имеет нормальное распределение. В этом случае становится возможным применять так называемое интервальное оценивание, к изложению которого мы и переходим.

Пусть Генеральная совокупность — некоторое число. Если выполняется неравенство Генеральная совокупность что можно записать в виде Генеральная совокупностьГенеральная совокупность то говорят, что интервал Генеральная совокупность покрывает параметр Генеральная совокупность. Однако невозможно указать оценку Генеральная совокупность такую, чтобы событие Генеральная совокупность было достоверным, поэтому мы будем говорить о вероятности этого события. Число Генеральная совокупность называется точностью оценки Генеральная совокупность

Определение:

Надежностью (доверительной вероятностью) оценки Генеральная совокупность параметра Генеральная совокупность0 для заданного Генеральная совокупность называется вероятность Генеральная совокупность того, что интервал Генеральная совокупность покроет параметр Генеральная совокупность, т. е.

Генеральная совокупность

Заметим, что после того, как по данным выборки вычислена оценка Генеральная совокупность, событие Генеральная совокупность становится или достоверным, или невозможным, так как интервал Генеральная совокупность или покрывает Генеральная совокупность, или нет. Но дело в том, что параметр Генеральная совокупность нам неизвестен. Поэтому мы называем надежностью Генеральная совокупность уже вычисленной оценки Генеральная совокупность вероятность того, что интервал Генеральная совокупность, найденный для произвольной выборки, покроет Генеральная совокупность. Если мы сделаем много выборок объема n и для каждой из них построим интервал Генеральная совокупность, то доля тех выборок, чьи интервалы покроют Генеральная совокупность, равна Генеральная совокупность.

Иными словами, Генеральная совокупность есть мера нашего доверия вычисленной оценке Генеральная совокупность
Ясно, что, чем меньше число Генеральная совокупность, тем меньше надежность Генеральная совокупность.

Определение:

Доверительным интервалом называется найденный по данным выборки интервал Генеральная совокупность, который покрывает параметр Генеральная совокупность с заданной надежностью Генеральная совокупность.

Надежность Генеральная совокупность обычно принимают равной 0,95 или 0,99, или 0,999.

Конечно, нельзя категорически утверждать, что найденный доверительный интервал покрывает параметр Генеральная совокупность. Но в этом можно быть уверенным на 95% при Генеральная совокупность = 0,95, на 99% при Генеральная совокупность=0,99 и т. д. Это значит, что если сделать много выборок, то для 95% из них (если, например, Генеральная совокупность = 0,95) вычисленные доверительные интервалы действительно покроют Генеральная совокупность.

Доверительный интервал для математического ожидания при известном

Доверительный интервал для математического ожидания при известном Генеральная совокупность

В некоторых случаях среднее квадратическое отклонение о ошибки измерения (а вместе с нею и самого измерения) бывает известно. Например, если измерения осуществляются одним и тем же прибором при одних и тех же условиях.

Итак, пусть случайная величина X распределена нормально с параметрами а и Генеральная совокупность, причем Генеральная совокупность известно. Построим доверительный интервал, покрывающий неизвестный параметр а с заданной надежностью Генеральная совокупность. Данные выборки есть реализации случайных величин Генеральная совокупность имеющих нормальное распределение с параметрами а и Генеральная совокупность (§ 4.2, п. 1). Оказывается, что и выборочная средняя случайная величина Генеральная совокупность тоже имеет нормальное распределение (это мы примем без доказательства). При этом (см. § 4.2, пп. 2, 3)

Генеральная совокупность

Потребуем, чтобы выполнялось соотношение Генеральная совокупность где Генеральная совокупность—заданная надежность. Пользуясь формулой (2.27) (§ 2.7, п. 2), получим

Генеральная совокупность

или

Генеральная совокупность

где

Генеральная совокупность

Найдя из равенства (4.15) Генеральная совокупность можем написать

Генеральная совокупность

Так как Р задана и равна Генеральная совокупность, то окончательно имеем (для получения рабочей формулы выборочную среднюю заменяем на Генеральная совокупность):

Генеральная совокупность

Смысл полученного соотношения таков: с надежностью у можно утверждать, что доверительный интервал Генеральная совокупность покрывает неизвестный параметр а; точность оценки Генеральная совокупность. Здесь число t определяется из равенства Генеральная совокупность(оно следует из Генеральная совокупность по таблице приложения 3.

Как уже упоминалось, надежность Генеральная совокупность обычно принимают равной или 0,95 или 0,99, или 0,999.

Пример:

Признак X распределен в генеральной совокупности нормально с известным Генеральная совокупность = 0,40. Найдем по данным выборки доверительный интервал для а с надежностью Генеральная совокупность = 0,99, если n = 20, Генеральная совокупность = 6,34.

Для Генеральная совокупность находим по таблице приложения 3
t=2,58. Следовательно, Генеральная совокупность. Границы доверительного интервала 6,34 — 0,23 = 6,11 и 6,34 + 0,23 = 6,57. Итак, доверительный интервал (6,11; 6,57) покрывает а с надежностью 0,99.

Доверительный интервал для математического ожидания при неизвестном

Доверительный интервал для математического ожидания при неизвестном Генеральная совокупность.

Пусть случайная величина X имеет нормальное распределение с неизвестными нам параметрами а и Генеральная совокупность. Оказывается, что случайная величина (ее возможные значения будем обозначать через t)

Генеральная совокупность

где n —объем выборки; Генеральная совокупность — выборочная средняя; S—исправленное среднее квадратическое отклонение, имеет распределение, не зависящее от а и Генеральная совокупность. Оно называется распределением Стьюдента*.

Плотность вероятности распределения Стьюдента дается формулой

Генеральная совокупность

где коэффициент Генеральная совокупность зависит от объема выборки.

Потребуем, чтобы выполнялось соотношение

Генеральная совокупность

где Генеральная совокупность—заданная надежность.

Так как S(t, n) — четная функция от t, то, пользуясь формулой
(2.15) (см. § 2.5), получим

Генеральная совокупность

Отсюда

Генеральная совокупность

Следовательно, приходим к утверждению: с надежностью Генеральная совокупность можно утверждать, что доверительный интервал Генеральная совокупность покрывает неизвестный параметр а, точность оценки Генеральная совокупность-. Здесь случайные величины Генеральная совокупность и S заменены неслучайными величинами Генеральная совокупность и s, найденными по выборке.

В приложении 4 приведена таблица значений Генеральная совокупность для различных значений n и обычно задаваемых значений надежности.

Заметим, что при Генеральная совокупность распределение Стьюдента практически не отличается от нормированного нормального распределения
(см. § 2.7, п. 2). Это связано с тем, что Генеральная совокупность

Пример. Признак X распределен в генеральной совокупности нормально. Найдем доверительный интервал для Генеральная совокупность с надежностью Генеральная совокупность =0,99, если Генеральная совокупность Для надежности Генеральная совокупность =0,99 и n = 20 находим по таблице приложения 4 Генеральная совокупность Следовательно, Генеральная совокупность. Концы доверительного интервала 6,34-0,26 =
= 6,08 и 6,34 + 0,26 = 6,60. Итак, доверительный интервал (6,08; 6,60) покрывает Генеральная совокупность с надежностью 0,99.

Доверительный интервал для среднего квадратического отклонения

Для нахождения доверительного интервала для среднего квадратического отклонения Генеральная совокупность будем использовать следующее предложение, устанавливаемое аналогично двум предыдущим (пп. 2 и 3).

С надежностью Генеральная совокупность можно утверждать, что доверительный интервал Генеральная совокупность покрывает неизвестный параметр Генеральная совокупность; точность оценки Генеральная совокупность

В приложении 5 приведена таблица значений Генеральная совокупность для различных значений n и обычно задаваемых значений надежности Генеральная совокупность.

Пример:

Признак X распределен в генеральной совокупности нормально. Найдем доверительный интервал для Генеральная совокупность с надежностью Генеральная совокупность=0,95, если n = 20, s = 0,40.

Для надежности Генеральная совокупность=0,95 и n = 20 находим в таблице приложения 5 q = 0,37. Далее, sq = 0,40 0,37 = 0,15. Границы доверительного интервала 0,40-0,15 = 0,25 и 0,40 + 0,15 = 0,55. Итак, доверительный интервал (0,25; 0,55) покрывает Генеральная совокупность с надежностью 0,95.

Пример:

На ферме испытывалось влияние витаминов на прибавку в массе телят. С этой целью было осмотрено 20 телят одного возраста. Средняя масса их оказалась равной 340 кг, а «исправленное» среднее квадратическое отклонение — 20 кг.

Определим: 1) доверительный интервал для математического ожидания а с надежностью 0,95; 2) доверительный интервал для среднего квадратического отклонения с той же надежностью.

При решении задачи будем исходить из предположения, что данные пробы взяты из нормальной генеральной совокупности.

Решение:

1) Согласно условиям задачи, Генеральная совокупностьn = 20.

Пользуясь распределением Стьюдента, для надежности у=0,95 и n = 20 находим в таблице приложения 4 Генеральная совокупность Следовательно, Генеральная совокупность Границы доверительного интервала 340-9,4 =
= 330,6 и 340 + 9,4 = 349,4. Итак, доверительный интервал (330,6; 349,4) покрывает а с надежностью 0,95.

Можно считать, что в данном случае истинная масса измерена 9 4 достаточно точно (отклонение порядка Генеральная совокупность).

2) Для надежности у =0,95 и n = 20 находим в таблице приложения 5 q = 0,37. Далее, sq = 20 * 0,37 = 7,4. Границы доверительного интервала 20 — 7,4 = 12,6 и 20 + 7,4 = 27,4. Таким образом, 12,6 < Генеральная совокупность < 27,4, откуда можно заключить, что Генеральная совокупность определено неудовлетворительно (отклонение порядка Генеральная совокупность — почти половина!). Чтобы сузить доверительный интервал при той же надежности, необходимо увеличить число проб n.

Примечание. Выше предполагалось, что q<1. Если q> 1, то, учитывая, что Генеральная совокупность>0, получаем 0<Генеральная совокупность<s + sq. Значения q и в этом случае определяются по таблице приложения 5.

Пример:

Признак X генеральной совокупности распределен нормально. По выборке объема n = 10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найдем доверительный интервал для Генеральная совокупность с надежностью 0,999.

Для надежности у = 0,999 и n= 10 по таблице приложения 5 находим q=1,80.

Следовательно, искомый доверительный интервал таков’

Генеральная совокупность

или

Генеральная совокупность

Оценка истинного значения измеряемой величины

Пусть проводится n независимых равноточных измерений* некоторой физической величины, истинное значение а которой неизвестно. Будем рассматривать результаты отдельных измерений как случайные величины Генеральная совокупность Эти величины независимы (измерения независимы), имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии Генеральная совокупность (измерения равноточны) и распределены нормально (такое допущение подтверждается опытом). Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов в пп. 2 и 3 настоящего параграфа, выполняются, следовательно, мы вправе использовать полученные в них предложения. Так как обычно Генеральная совокупность неизвестно, следует пользоваться предложением, найденным в п. 3 данного параграфа.

Пример:

По данным девяти независимых равноточных измерений физической величины найдены среднее арифметическое результатов отдельных измерений Генеральная совокупность и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение а измеряемой величины с надежностью у = 0,99.

Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к оценке математического ожидания (при неизвестном Генеральная совокупность) при помощи доверительного интервала

Генеральная совокупность

покрывающего а с заданной надежностью у=0,99.

Пользуясь таблицей приложения 4 по у=0,99 и n = 9, находим Генеральная совокупность

Найдем точность оценки:

Генеральная совокупность

Границы доверительного интервала

Генеральная совокупность

и

Генеральная совокупность

Итак, с надежностью у=0,99 истинное значение измеренной величины а заключено в доверительном интервале 36,719<а< 47,919.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения Генеральная совокупность случайных ошибок измерений. Для оценки Генеральная совокупность используют «исправленное» среднее квадратическое отклонение s. Поскольку обычно результаты измерений независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то утверждение, приведенное в п. 4, применимо для оценки точности измерений.

Пример:

По 16 независимым равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s=0,4. Найдем точность измерений с надежностью у = 0,99.

Как отмечено выше, точность измерений характеризуется средним квадратическим отклонением о случайных ошибок измерений. Поэтому задача сводится к отысканию доверительного интервалаГенеральная совокупность покрывающего Генеральная совокупность с заданной надежностью у=0,99 (см. п. 4). По таблице приложения 5 по у = 0,99 и n=16 найдем q = 0,70. Следовательно, искомый доверительный интервал таков:

Генеральная совокупность

или

Генеральная совокупность

Решение заданий и задач по предметам:

  • Теория вероятностей
  • Математическая статистика

Дополнительные лекции по теории вероятностей:

  1. Случайные события и их вероятности
  2. Случайные величины
  3. Функции случайных величин
  4. Числовые характеристики случайных величин
  5. Законы больших чисел
  6. Статистические оценки
  7. Статистическая проверка гипотез
  8. Статистическое исследование зависимостей
  9. Теории игр
  10. Вероятность события
  11. Теорема умножения вероятностей
  12. Формула полной вероятности
  13. Теорема о повторении опытов
  14. Нормальный закон распределения
  15. Определение законов распределения случайных величин на основе опытных данных
  16. Системы случайных величин
  17. Нормальный закон распределения для системы случайных величин
  18. Вероятностное пространство
  19. Классическое определение вероятности
  20. Геометрическая вероятность
  21. Условная вероятность
  22. Схема Бернулли
  23. Многомерные случайные величины
  24. Предельные теоремы теории вероятностей
  25. Оценки неизвестных параметров

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Генеральная средняя

Пусть нам дана генеральная совокупность относительно случайной величины $X$. Для начала напомним следующее определение:

Определение 1

Генеральная совокупность — совокупность случайно отобранных объектов данного вида, над которыми проводят наблюдения с целью получения конкретных значений случайной величины, проводимых в неизменных условиях при изучении одной случайной величины данного вида.

Определение 2

Генеральная средняя — среднее арифметическое значений вариант генеральной совокупности.

Пусть значения вариант $x_1, x_2,dots ,x_k$ имеют, соответственно, частоты $n_1, n_2,dots ,n_k$. Тогда генеральная средняя вычисляется по формуле:

Рассмотрим частный случай. Пусть все варианты $x_1, x_2,dots ,x_k$ различны. В этом случае $n_1, n_2,dots ,n_k=1$. Получаем, что в этом случае генеральная средняя вычисляется по формуле:

Выборочная средняя

Пусть нам дана выборочная совокупность относительно случайной величины $X$. Для начала напомним следующее определение:

Определение 3

Выборочная совокупность — часть отобранных объектов из генеральной совокупности.

Определение 4

Выборочная средняя — среднее арифметическое значений вариант выборочной совокупности.

Пусть значения вариант $x_1, x_2,dots ,x_k$ имеют, соответственно, частоты $n_1, n_2,dots ,n_k$. Тогда выборочная средняя вычисляется по формуле:

Рассмотрим частный случай. Пусть все варианты $x_1, x_2,dots ,x_k$ различны. В этом случае $n_1, n_2,dots ,n_k=1$. Получаем, что в этом случае выборочная средняя вычисляется по формуле:

«Средняя выборки: генеральная, выборочная» 👇

!!! В случае, когда значение вариант не являются дискретными, а представляют из себя интервалы, то в формулах для вычисления генеральной или выборочной средних значений за значение $x_i$ принимается значение середины интервала, которому принадлежит $x_i.$

Примеры задач на нахождение средней выборки

Пример 1

В магазин завезли 10 видов шоколадных конфет. По ним проведена следующая выборка по цене за килограмм: 70, 65, 97, 83, 120, 107, 77, 88, 100, 86. Построить ряд распределения данной генеральной совокупности и найти её генеральное среднее.

Решение.

Видим, что все значения вариант различны, поэтому частоты равны единице. Ряд распределения можно записать следующим образом, перечислив значения вариант в порядке возрастания:

Рисунок 1.

Так как наша совокупность является генеральной и все варианты различны, то мы будем пользоваться следующей формулой:

[overline{x_г}=frac{sumlimits^k_{i=1}{x_i}}{n}]

Получим:

[overline{x_г}=frac{65+70+77+83+86+88+97+100+107+120}{10}=89,3]

Ответ: 89,3.

Пример 2

Выборочная совокупность задана следующей таблицей распределения:

Рисунок 2.

Найти среднее выборочное данной совокупности.

Решение.

Для нахождения значения выборочной средней будем пользоваться следующей формулой:

[overline{x_в}=frac{sumlimits^k_{i=1}{x_in_i}}{n}]

Обычно, для наглядности и удобности вычислений составляется расчетная таблица, в которую входят необходимые промежуточные вычисления. В нашем случае составим таблицу со следующей «шапкой»:

Рисунок 3.

Внизу таблицы также добавляется строка «итог», в которой подсчитывается сумма по всем значениям столбцов. Проведя необходимые вычисления, получим следующую расчетную таблицу:

Рисунок 4.

Используя формулу, получим:

[overline{x_в}=frac{sumlimits^k_{i=1}{x_in_i}}{n}=frac{305}{20}=15,25]

Ответ: 15,25.

Пример 3

Проводится социальный опрос среди 100 пенсионеров об уровне их пенсии. Получена следующая таблица распределения результатов опроса (размер пенсии указан в тысячах рублей):

Рисунок 5.

Найти среднее выборочное данной совокупности.

Данная совокупность является выборочной, поэтому будем пользоваться следующей формулой:

[overline{x_в}=frac{sumlimits^k_{i=1}{x_in_i}}{n}]

Составим, для начала, расчетную таблицу.

Рисунок 6.

Получаем:

[overline{x_в}=frac{sumlimits^k_{i=1}{x_in_i}}{n}=frac{964}{100}=9,64]

Ответ: 9,64.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Пусть изучается дискретная
генеральная совокупность относительно
количественного признака X.

Генеральной средней
называют среднее
арифметическое значений признака
генеральной совокупности.

Если все значения x1,
х2,
…, xN
признака генеральной
совокупности объема N
различны, то

.

Если же
значения признака
x1,
х2,
…, xk
имеют
соответственно частоты
N1,
N
2,
…, Nk
,
причем N1
+
N2+…+Nk=N
,то

,

т. е. генеральная средняя есть средняя
взвешенная значений признака с весами,
равными соответствующим частотам.

Замечание.
Пусть генеральная совокупность объема
N
содержит объекты с различными значениями
признака X,
равными
x1,
х2,
…,
xN.
Представим
себе, что из этой совокупности наудачу
извлекается один объект. Вероятность
того, что будет извлечен объект со
значением признака, например x1
очевидно, равна 1/N.
С этой же вероятностью может быть
извлечен и любой другой объект. Таким
образом, величину признака X
можно
рассматривать как случайную величину,
возможные значения которой x1,
х2,
…, xn
имеют одинаковые вероятности, равные
1 /N.
Найдем
математическое ожидание М(Х):

Итак,
если рассматривать обследуемый признак
X
генеральной
совокупности как случайную величину,
то математическое ожидание признака
равно генеральной средней этого признака:

.

Этот вывод мы
получили, считая, что все объекты
генеральной совокупности имеют различные
значения признака. Такой же итог будет
получен, если допустить, что генеральная
совокупность содержит по нескольку
объектов с одинаковым значением признака.

Обобщая
полученный результат на генеральную
совокупность с непрерывным распределением
признака
X,
и в этом
случае определим генеральную среднюю
как математическое ожидание признака:

.

§ 4. Выборочная средняя

Пусть для изучения генеральной
совокупности относительно количественного
признака X
извлечена выборка
объема п.

Выборочной средней
называют среднее
арифметическое значение признака
выборочной совокупности.

Если все значения x1,
х2,
…, xn
признака выборки
объема n
различны, то

Если же значения признака
x1,
х2,
…, xk
имеют соответственно
частоты n1,
n2,
…, nk,
причем п1
+ п
2+…
+ n
k
= n
,
то

,

или

,

т.е. выборочная средняя есть средняя
взвешенная значений признака с весами,
равными соответствующим частотам.

Замечание.
Выборочная средняя, найденная по данным
одной выборки, есть, очевидно, определенное
число. Если же извлекать другие выборки
того же объема из той же генеральной
совокупности, то выборочная средняя
будет изменяться от выборки к выборке.
Таким образом, выборочную среднюю можно
рассматривать как случайную величину,
а следовательно, можно говорить о
распределениях (теоретическом и
эмпирическом) выборочной средней и о
числовых характеристиках этого
распределения (его называют выборочным),
в частности о математическом ожидании
и дисперсии выборочного распределения.

Заметим, что в теоретических
рассуждениях выборочные значения x1,
х2,
…, xn
признака X,
полученные в итоге
независимых наблюдений, также рассматривают
как случайные величины Xl,
X
2,
…, Хn,
имеющие то же
распределение и, следовательно, те же
числовые характеристики, которые имеют
X.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


4.6. Оценка генеральной средней по повторной и бесповторной выборкам

Итак, вникаем: пусть из нормально распределенной (или около того) генеральной совокупности

объёма  проведена выборка объёма  и по её результатам найдена выборочная средняя . Тогда доверительный интервал для оценки

генеральной средней  имеет вид:
,  где  («дельта» большая) – точность

оценки, которую также называют предельной ошибкойвыборки.

Точность оценки рассчитывается как произведение  – коэффициента доверия  на среднюю ошибкувыборки («мю»).

Если известна дисперсия генеральной совокупности , то коэффициент доверия  отыскивается из лапласовского соотношения , а средняя ошибка рассчитывается по формуле:
 – для бесповторной выборки или  – для повторной.

Если же генеральная дисперсия не известна, то в качестве её приближения используют исправленную выборочную дисперсию . В этом случае коэффициент доверия  определяют с помощью распределения Стьюдента, а при  можно использовать  соотношение . Средняя же ошибка рассчитывается по аналогичным формулам:
 – для бесповторной или  – для повторной выборки.

Напоминаю, что доверительная вероятность (надёжность)  задаётся наперёд и показывает, с какой вероятностью построенный

доверительный интервал  накрывает истинное

значение .

С конспектом отмучились, теперь задачи 🙂

Модифицируем задание Примера 19, а именно уточним способ отбора попугаев:

Пример 25

Известно, что генеральная совокупность распределена нормально со средним квадратическим отклонением . По результатам 4%-ной бесповторной выборки объёма , найдена выборочная средняя  (условно средний рост птицы).

1) Найти доверительный интервал для оценки генеральной средней   с надежностью .

2) Выборку какого объёма нужно организовать, чтобы уменьшить данный интервал в два раза?

Не решение даже, а целое исследование впереди, начинаем. Прежде всего, найдём объём генеральной

совокупности:
 попугаев, и на самом деле нам предстоит

ответить на следующий вопрос: а достаточно ли выборки объёма ? Или для качественного исследования роста попугаев нужно выбрать побольше

птиц?

1) Доверительный интервал для оценки генеральной средней составим по формуле:

, где  – точность оценки. В задачах данного типа у коэффициента доверия часто

опускают подстрочный индекс и пишут просто ,

однако я не буду следовать мейнстриму, т. к. эта «кастрация» ухудшает понимание.

По условию, нам известна генеральная дисперсия, поэтому коэффициент доверия найдём из

соотношения  . По таблице значений функции Лапласа либо на макете (пункт 1*) определяем, что этому значению функции соответствует аргумент .

Поскольку выборка бесповторная, то среднюю ошибку рассчитаем по

формуле:

Таким образом, точность оценки  и

соответствующий доверительный интервал:


 – с вероятностью  данный интервал накроет истинное значение генерального среднего

роста  попугая.

Теперь предположим, что нас не устраивает точность полученного результата. Хотелось бы уменьшить интервал. Или оставить

его таким же, но повысить доверительную вероятность. Этим вопросам и посвящён следующий пункт решения:

2) Выясним, сколько попугаев нужно взять, чтобы уменьшить полученный интервал в два раза. Иными словами, была точность

0,96, а мы хотим . При условии сохранения

доверительной вероятности необходимый объём выборки можно рассчитать по формуле , которая выводится из .
А нашей задаче:
 и обязательно проверочка:
, ч.т.п.

Таким образом, чтобы обеспечить точность  при

надёжности  нужно провести выборку объёмом

не менее 358 попугаев  (округлили в бОльшую сторону). В этом случае получится доверительный

интервал в два раза короче:

И внимание! Здесь нельзя использовать значение  предыдущего пункта! Почему? Потому что в новой выборке мы почти

наверняка получим НОВУЮ выборочную среднюю. Вот её-то и нужно будет подставить.

Осталось прикинуть, а не много ли это – 358 попугаев? Объём выборки составит:  от генеральной совокупности – ну, в принципе, сносно, хотя и многовато. Поэтому здесь

можно использовать другой подход: оставить точность оценки  прежней, но повысить доверительную вероятность до . В этом случае нужно найти новый коэффициент доверия  (из соотношения ) и решить уравнение , получив в качестве корня необходимый объём выборки . Желающие могут выполнить этот пункт самостоятельно, в результате

получается выборка в  попугаев или  генеральной совокупности. Что лучше, конечно, ведь измерить

линейкой 358 попугаев – задача хлопотная, они явно будут сопротивляться, а некоторые ещё и говорить нехорошие слова J.

Теперь распишем доверительный интервал  подробно:

и ответим вот на какой вопрос: а что будет, если генеральная совокупность великА или даже бесконечна? В

этом случае дробь  близкА к нулю, и мы получаем

интервал:
, который фигурировал в Примере 19. То есть по

умолчанию (когда не сказано, бесповторная выборка или нет), считают именно так.
Следует отметить, что полученный выше интервал соответствует повторной выборке со

средней ошибкой , таким образом, при слишком

большом объёме  генеральной совокупности

математическое различие между бесповторной и повторной выборкой стирается.

Пришло время запланировать собственное статистическое исследование:

Пример 26

В результате многократных независимых измерений некоторой физической величины  в прошлом достаточно точно определена генеральная дисперсия  ед.; при этом средняя величина склонна изменениям (от исследования к

исследованию). Сколько измерений нужно осуществить, чтобы с вероятностью  заключить текущее истинное значение генеральной средней  в интервале длиной 0,5 ед. 

И это как раз только что описанный случай: данную выборку можно считать бесповторной, при этом ген. совокупность

теоретически бесконечна; либо повторной, так как округлённые результаты измерений могут повторяться.

Краткое решение в конце книги, числа можете выбрать по своему вкусу J. Но здесь есть одно «странное» значение . Оно не случайно и соответствует

правилу «трёх сигм», т. е.,

практически достоверным является тот факт, что построенный интервал накроет истинное значение .

Разумеется, на практике генеральная дисперсия чаще не известна, и поэтому за неимением лучшего, используют исправленную

выборочную дисперсию:

Пример 27

С целью изучения урожайности подсолнечника в колхозах области проведено 5%-ное выборочное обследование 100 га посевов,

отобранных в случайном порядке, в результате которого получены следующие данные:

С вероятностью 0,9974 определить предельную ошибку выборки и возможные границы, в которых ожидается средняя

урожайность подсолнечника в области.

Решение: в условии не указан тип отбора, но исходя из логики исследования, положим, что он

бесповторный. Поскольку выборка 5%-ная, то объем генеральной совокупности (общая посевная площадь области)

составляет:
 гектаров – не знаю, насколько это

реалистично, оставим этот вопрос на совести автора задачи.

По условию, требуется найти предельную ошибку выборки (точность оценки) , где  –

коэффициент доверия, соответствующий доверительной вероятности , и коль скоро выборка бесповторна и генеральной дисперсии мы не знаем, то средняя ошибка рассчитывается по формуле . Далее нужно составить интервал , который с вероятностью 99,74% (практически достоверно) накроет генеральную среднюю  урожайность

подсолнечника по области.

И если с коэффициентом «тэ гаммовое» трудностей никаких, то коэффициент «мю» здесь трудовой – по той причине, что нам не

известна исправленная выборочная дисперсия. Ну что же, хороший повод освежить пройденный материал. Смотрим на таблицу

выше и приходим к выводу, что нам предложен интервальный вариационный ряд с

открытыми крайними интервалами. Поскольку длина частичного интервала составляет  га, то вопрос закрываем так: 11-13 и 19-21 га.

Находим середины  интервалов (переходим к

дискретному ряду), произведения  и их суммы:

Вычислим выборочную среднюю:  центнеров с гектара.

Выборочную дисперсию вычислим по формуле:
 и этим частенько пренебрегают, но я

призываю поправлять дисперсию:
 – мелочь, а приятно.

Теперь составляем доверительный интервал ,

 где .

Найдём коэффициент доверия .

Поскольку нам известна лишь исправленная выборочная дисперсия (а не генеральная), то правильнее использовать распределение

Стьюдента. Но, к сожалению, в таблице нет значений для , но зато есть расчётный макет (пункт 2б). Для заданной надёжности и количества степеней свободы  получаем .

Поскольку объём выборки , то можно использовать

нормальное распределение, и тут получается конфетка:
, какой способ выбрать – зависит от вашей

методички, и я так подозреваю, второй :). Но сейчас выберем первый.

Вычислим среднюю ошибку бесповторной выборки:
 ц/га, таким образом, предельная ошибка

составляет  ц/га, и искомый доверительный

интервал:

 (ц/га) – границы, в которых ожидается

средняя урожайность подсолнечника в области с вероятностью  (практически достоверно).

Ответ:  ц/га,        (ц/га)

В рассмотренной задаче можно поставить вопросы, аналогичные Примеру 25, а именно попытаться улучшить исследование, в

частности, уменьшить точность оценки . В этом

случае для определения необходимого объема выборки используется та же формула , но она менее достоверна, поскольку в разных выборках мы будем получать разные значения

. Такие задачи, однако, встречаются, будьте

готовы. Да, и аналогичная формула для повторной выборки: .

Пример 28

По результатам 10%-ной бесповторной выборки объёма , найдены выборочная средняя  и дисперсия .

а) Найти пределы, за которые с доверительной вероятностью 0,954 не выйдет среднее значение генеральной совокупности.
б) Найти эти пределы, если выборка повторная. Какой способ точнее?

Значение 0,954 обусловлено тем, что автор задачи пощадил студентов, в методичке используется функция Лапласа и получается целое значение .

Решаем самостоятельно!

4.7. Оценка генеральной доли

4.5. Повторная и бесповторная выборка

| Оглавление |



Задача 55. Из генеральной совокупности извлечена выборка объема N, заданная вариантами ХI и соответствующими им частотами. Найти несмещенную оценку генеральной средней.

Варианта ХI

2

5

7

10

Частота Ni

16

12

8

14

Решение. Множество всех объектов, подлежащих изучению, называется Генеральной совокупностью. Множество случайно отобранных объектов называется выборочной совокупностью или Выборкой.

Для оценки неизвестных параметров теоретического распределения служат статистические оценки. Статистическая оценка, определяемая одним числом, называется Точечной оценкой.

Точечная статистическая оценка, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки, называется Несмещенной оценкой. Статистическая оценка, математическое ожидание которой не равно оцениваемому параметру является Смещенной.

Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя

(1),

Где ХI – варианта выборки (элемент выборки); Ni – частота варианты ХI (число наблюдений варианты ХI); – объем выборки (число элементов совокупности).

Объем данной выборки равен .

Далее по формуле (1) вычисляем несмещенную оценку генеральной средней:

Задача 56. По выборке объема N=41 найдена смещенная оценка генеральной дисперсии . Найти несмещенную оценку дисперсии генеральной совокупности.

Решение. Смещенной оценкой генеральной дисперсии служит выборочная дисперсия

Несмещенной оценкой генеральной дисперсии является «исправленная дисперсия»

или

Таким образом, мы получаем искомую несмещенную оценку дисперсии генеральной совокупности:

Задача 57. Найти доверительный интервал для оценки с надежностью P=0,95 неизвестного математического ожидания A нормально распределенного признака Х генеральной совокупности, если даны генеральное среднее квадратическое отклонение S=5, выборочная средняя , а объем выборки N=25.

Решение. Интервальной оценкой называется интервал, покрывающий оцениваемый параметр. Доверительным интервалом является интервал, который с данной надежностью покрывает оцениваемый параметр.

Для оценки математического ожидания A нормально распределенного количественного признака Х по выборочной средней при известном среднем квадратическом отклонении s генеральной совокупности служит доверительный интервал

,

Где – точность оценки, T – значение аргумента функции Лапласа (приложение, таблица 2).

В данной задаче T находим из условия . По таблице 2 определяем . Таким образом, T=1,96.

Далее получаем

Или

Задача 58. По данным N=9 независимых равноточных измерений некоторой физической величины найдены среднее арифметическое результатов измерений и исправленное среднее квадратическое отклонение S=6. Оценить истинное значение измеряемой величины при помощи доверительного интервала с надежностью =0,99.

Решение. Оценкой математического ожидания A нормально распределенного количественного признака Х в случае неизвестного среднего квадратического отклонения является доверительный интервал

.

По таблице 3 приложения, по заданным N и находим =3,36.

Таким образом

Окончательно получаем

Задача 59. Из генеральной совокупности извлечена выборка объема N. Оценить с надежностью =0,95 математическое ожидание A нормально распределенного признака Х генеральной совокупности по выборочной средней с помощью доверительного интервала.

Значение признака ХI

-2

1

1

3

4

5

Частота Ni

2

1

2

2

2

1

Решение. Объем данной выборки равен

По данным задачи находим выборочную среднюю:

Далее находим исправленное среднее квадратическое отклонение S:

Для оценки математического ожидания A нормально распределенного количественного признака Х в случае неизвестного среднего квадратического отклонения служит доверительный интервал

.

По таблице 3 приложения по заданным N и находим =2,26.

Таким образом

Окончательно получаем

Задача 60. Построить полигон частот и эмпирическую функцию по данному распределению выборки:

Варианты ХI

-3

0

1

4

6

7

Частоты Ni

3

6

1

2

5

1

Решение. Полигоном частот называют ломаную, отрезки которой соединяют точки ; ;…;, где ХI – варианты выборки, Ni – соответствующие им частоты.

Полигон частот для данного распределения изображен на рисунке 15.

Рис. 15

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого значения X относительную частоту события :

,

Где – число вариант, меньших Х; N – объем выборки.

Из определения следует, что .

Найдем эмпирическую функцию распределения.

Объем данной выборки равен =18.

Если , то =0 (так как -3 – наименьшая варианта). Если , то значение , а именно наблюдалось 3 раза, следовательно, . При значения , а именно и наблюдались 3+6=9 раз, следовательно, .

Аналогично получаем, что при функция распределения ; при функция распределения ; при функция распределения . Далее, если , то (так как 7 – наибольшая варианта).

Таким образом, эмпирическая функция распределения равна:

График полученной эмпирической функции распределения изображен на рисунке 16.

Задача 61. Найти методом сумм асимметрию и эксцесс по заданному распределению выборки объема N=100:

Варианта ХI

48

52

56

60

64

68

72

76

80

84

Частота Ni

2

4

6

8

12

30

18

8

7

5

Решение. Асимметрия эмпирического распределения определяется равенством:

,

Где – центральный эмпирический момент третьего порядка, вычисляемый по формуле:

Эксцесс эмпирического распределения определяется равенством:

,

Где – центральный эмпирический момент четвертого порядка, вычисляемый по формуле:

Асимметрия и эксцесс служат для оценки отклонения эмпирического распределения от нормального. Для нормального распределения эти характеристики равны нулю. Поэтому, если для изучаемого распределения асимметрия и эксцесс имеют небольшие значения, то можно предположить близость этого распределения к нормальному. Наоборот, большие значения асимметрии и эксцесса указывают на значительное отклонение от нормального. Кроме того, если эксцесс положительный, то распределение будет островершинным; если отрицательный, то распределение будет плосковершинным по сравнению с нормальным распределением.

Для практического расчета асимметрии и эксцесса непосредственно пользоваться вышеуказанными формулами довольно затруднительно, поэтому воспользуемся методом сумм. Составим расчетную таблицу 1, для этого:

1) Запишем варианты в первый столбец.

2) Запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца.

3) В качестве ложного нуля С выберем варианту (68), которая имеет наибольшую частоту (в качестве С можно взять любую варианту, расположенную примерно в середине столбца); в клетках строки, содержащей ложный нуль, запишем нули; в четвертом столбце над и под уже помещенным нулем запишем еще по одному нулю.

4) В оставшихся незаполненными над нулем клетках третьего столбца (исключая самую верхнюю) запишем последовательно накопленные частоты:

2; 2+4=6; 6+6=12; 12+8=20; 20+12=32.

Сложив все накопленные частоты, получим число B1=72, которое поместим в верхнюю клетку третьего столбца. В оставшихся незаполненными под нулем клетках третьего столбца (исключая самую нижнюю) запишем последовательно накопленные частоты:

5; 5+7=12; 12+8=20; 20+18=38.

Сложив все накопленные частоты, получим число A1=75, которое поместим в нижнюю клетку третьего столбца.

5) Аналогично заполняется четвертый столбец, причем суммируют частоты третьего столбца. Сложив все накопленные частоты, расположенные над нулем, получим число B2=70, которое поместим в верхнюю клетку четвертого столбца. Сумма накопленных частот, расположенных под нулем, равна числу A2=59, которое поместим в нижнюю клетку четвертого столбца.

6) Для заполнения столбца 5 запишем нуль в клетке строки, содержащей ложный нуль (68); над этим нулем и под ним поставим еще по два нуля. В клетках над нулями запишем накопленные частоты, для чего просуммируем частоты столбца 4 сверху вниз; в итоге будем иметь следующие накопленные частоты:

2; 2+8=10; 10+20=30.

Сложив накопленные частоты, получим число B3=42, которое поместим в верхнюю клетку пятого столбца. В клетках под нулями запишем накопленные частоты, для чего просуммируем частоты столбца 4 снизу вниз; в итоге будем иметь следующие накопленные частоты:

5; 5+17=22.

Сложив накопленные частоты, получим число A3=27, которое поместим в нижнюю клетку пятого столбца.

7) Аналогично заполняется столбец 6, причем суммируют частоты столбца 5.

В итоге получим расчетную таблицу 1:

Расчетная таблица 1

1

2

3

4

5

6

ХI

Ni

B1=72

B2=70

B3=42

B4=14

48

2

2

2

2

2

52

4

6

8

10

12

56

6

12

20

30

0

60

8

20

40

0

0

64

12

32

0

0

0

68

30

0

0

0

0

72

18

38

0

0

0

76

8

20

37

0

0

80

7

12

17

22

0

84

5

5

5

5

5

 

N=100

A1=75

A2=59

A3=27

A4=5

Теперь найдем Di (I=1, 2, 3) и si (I=1, 2, 3, 4):

; ; ;

; ;

; .

Найдем условные моменты первого, второго, третьего и четвертого порядков:

; ;

;

.

Найдем далее центральные эмпирические моменты третьего и четвертого порядков, учитывая, что шаг (разность между двумя соседними вариантами):

;

Так как дисперсия , то выборочное среднее квадратическое отклонение .

Учитывая определения асимметрии и эксцесса, окончательно получаем:

; .

< Предыдущая   Следующая >

Добавить комментарий