Как найти среднюю квадратичную скорость атомов

Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

Large vecupsilon =sqrt{frac{3kT}{m}}=sqrt{frac{3RT}{M}}


Таблица значений средней квадратичной скорости молекул некоторых газов

Средняя квадратичная скорость газа

Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):

large PV=nu RT

Где nu у нас количество вещества, для более легкого доказательства, возьмем на рассмотрение 1 моль вещества, тогда у нас получается:

large PV=RT

Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):

large PV=frac{2}{3}vec E_k

Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:

large vec E_k =frac{3}{2}RT

Но средняя кинетическая энергия, так же находится, как :

large vec E_k =frac{1}{2}N_a m vecupsilon^2

А вот теперь, если мы приравняем правые части и выразим из них скорость и возьмем квадрат,Число Авогадро на массу молекулы , получается Молярная масса N_a m = M то у нас и получится формула для средней квадратичной скорости молекулы газа:

Large vecupsilon =sqrt{frac{3RT}{M}}

А если расписать универсальную газовую постоянную, как R=N_ak , и за одно молярную массу  M=N_a m , то у нас получится?

Large vecupsilon =sqrt{frac{3kT}{m}}

В Формуле мы использовали :

 vecupsilon — Средняя квадратичная скорость молекул

k=1.38cdot10^{-23} — Постоянная Больцмана

T — Температура

 m — Масса одной молекулы

R=8.31 — Универсальная газовая постоянная

 M — Молярная масса

nu — Количество вещества

vec E_k — Средняя кинетическая энергия молекул

 N_a=6,02cdot10^{23} — Число Авогадро


Средняя скорость молекул

В физике выделяют 2 скорости, характеризующие движение молекул: средняя скорость движения молекул и средняя квадратичная скорость.

Средняя скорость движения молекул

Средняя скорость движения молекул называется также скоростью теплового движения молекул.

Определение 1

Формула средней относительной скорости молекул в физике представлена следующим выражением:

υotn=28kTπm0=2υ.

Средняя квадратичная скорость

Средняя квадратичная скорость движения молекул газа это следующая величина:

υkυ=1N∑i=1Nυi2

Формулу средней квадратичной скорости можно переписать так:

υkυ2=∫0∞υ2Fυdυ.

Проводя интегрирование, аналогичное интегрированию при получении связи средней скорости с температурой газа, получаем:

υkυ=3kTm0=3RTμ

Именно средняя квадратичная скорость поступательного движения молекул газа входит в состав основного уравнения молекулярно-кинетической теории:

p=13nm0υkυ,

где n=NV – это концентрация частиц вещества, N – это количество частиц вещества, V – это объем.

Пример 1

Необходимо определить, как изменяется средняя скорость движения молекул идеального газа с увеличением давления в процессе, изображенном на графике (рисунок 1).

Средняя квадратичная скорость

Рисунок 1

Решение

Запишем выражение для средней скорости движения молекул газа следующим образом:

υ=8kTπm0

Из графика видно, что p~ρ или p=Cρ,  где C – это некоторая константа.

m0=ρn, p=nkT=Cρ→kT=Cρn

Подставив m0=ρn, p=nkT=Cρ→kT=Cρn в υ=8kTπm0, получаем:

υ=8kTπm0=8Cρπnnρ=8Cπ

Ответ: В процессе, представленном на графике, с увеличением давления средняя скорость движения молекул не меняется.

Пример 2

Можно ли найти среднюю квадратичную скорость молекулы идеального газа, если известно: давление газа (p), молярная масса газа (μ), а также концентрация молекул газа (n)?

Решение

Применим выражение для υkυ:

υkυ=3RTμ

Помимо этого, из уравнения Менделеева-Клайперона и зная, что mμ=NNA:

pV=mμRT=NNART.

Поделим правую и левую части pV=mμRT=NNART на V, и зная NV=n, получаем:

p=nNART→RT=pNAn

Подставляем p=nNART→RT=pNAn в выражение для среднеквадратичной скорости υkυ=3RTμ, получаем:

υkυ=3pNAμn

Ответ: По заданным в условии задачи параметрам среднеквадратичная скорость движения молекул газа вычисляется при помощи формулы υkυ=3pNAμn.

Роман Адамчук

Средняя квадратичная скорость — среднее квадратическое значение скоростей всех молекул данного количества газа. Измеряется в (м^2/с^2.)

Что оказывает влияние на скорость молекул

На быстроту движения молекул в газе оказывают влияние следующие параметры:

  1. Давление (возникает в результате ударов частиц о стенки сосуда).
  2. Концентрация частиц (количество частиц в единице объема).
  3. Температура (с увеличением температуры, частицы начинают двигаться быстрее, с уменьшением — замедляются).
  4. Масса молекул.

Эта взаимозависимость выражается главным уравнением молекулярно-кинетической теории идеального газа:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

(P=frac13times m_0times ntimes V^2)

Где P — давление газа в Паскалях,  (m_0) — масса молекулы в килограммах, n — концентрация частиц в (м^3), V — скорость движения молекул в м/с.

Расчет по формуле

Для определения средней квадратичной скорости (обозначение — v) всех молекул в газе, нужно вычислить квадратный корень из средней арифметической величины квадратов скоростей каждой частицы.

В виде формулы это выглядит так: 

(v=sqrt{frac{v_1^2+v_2^2+…v_n^2}N})

Где (v_1)(v_n) — это скорости молекул, N — их число в газе.

Расчет значения по такой формуле очень громоздок и сложен, поэтому для определения значения средней квадратичной скорости используют следующее уравнение:

(v=sqrt{frac{3times Rtimes T}M})

Где R — универсальная газовая постоянная, равная примерно 8,31 Дж/Кхмоль, T — температура в Кельвинах, M — молярная масса в кг/моль.

Получается такое уравнение путем преобразования основного уравнения кинетической теории газов. 

Значительная часть явлений молекулярной физики определяется скоростями молекул. Несмотря на это, нахождение скоростей молекул газа приобретает как теоретического, так и практического значения.

Виды скоростей молекул газа

Скорости газовых молекул в результате их хаотического движения отличаются как по величине, так и по направлению. Скорость данной молекулы газа в данный момент времени есть величина случайная. В молекулярно-кинетической теории газов пользуются понятиями средней (vv), средней квадратичной (vквv_{кв}) и наиболее вероятной (νHν_H) скоростей. Эти скорости задаются для равновесных состояний газа.

Средняя (или среднеарифметическая) скорость определяется уравнением

v=1n∑i=1nviv=frac{1}{n}sumlimits_{i=1}^{n}{{{v}_{i}}}

где viv_i – скорость ii-й молекулы;

nn –количество молекул.

Средняя квадратичная скорость определяется как:

vкв=v2=3kTm{{v}_{кв}}=sqrt{{{v}^{2}}}=sqrt{frac{3kT}{m}}

По этой формуле можно вычислить также скорость броуновских частиц. Конечно, при этом mm –масса броуновской частицы.

Выражению vквv_{кв} можно придать более удобный вид, умножив числитель и знаменатель под корнем на число Авогадро и учитывая, что kN=RkN = R и mN=МmN = М,

vкв=3RTM{{v}_{кв}}=sqrt{frac{3RT}{M}}

Среднюю квадратичную скорость называют еще тепловой. Значение vкв для газов достаточно велики. Так, для водорода при комнатной температуре vкв=1,9⋅103v_{кв} = 1,9 · 10^3 м/с, то есть около 2 км/с.

Тепловая скорость, как видно из уравнения, пропорциональна корню температуры и обратно пропорциональна корню массы. Это обстоятельство определяет, что тепловое движение– достаточно интенсивно для молекул, заметно для микроскопически малых частиц, которые осуществляют броуновское движение, и совершенно незаметно для тяжелых тел.

Экспериментальное определение скоростей газовых молекул

Большой интерес представляет непосредственное экспериментальное определение скоростей газовых молекул. Оно является прямым подтверждением многих результатов и положений молекулярно-кинетической теории. Впервые такое исследование провел А. Штерн в 1920 г. Источником атомов, скорость которых измерялась, в опыте Штерна был молекулярный пучок атомов серебра Ag. Схема установки приведены на рис. 1. На оси системы двух коаксиальных цилиндрических поверхностей натянуто платиновый провод, покрытый слоем серебра.

Примечание

В других опытах использовали также висмут, кадмий, цезий.

Проволока разогревается электрическим током. Так, при температуре около 1300°С серебро с поверхности проволоки испаряется. Таким образом создавался линейный источник «Ag-лучей» и в камере цилиндров, воздух из которой предварительно откачивался при давлении 1,3 · 10-4 Па, образовывался одноатомный газ серебра. Часть атомов серебра через диафрагмы s1 и s2 проходила, образуя молекулярный пучок, к поверхности внешнего цилиндра, где оседала на прозрачной пластинке, создавая слой в виде узкой полосы.

Скорость молекул газа1.svg

Рис. 1

На первой стадии опыта Штерна установка находится в состоянии покоя. При достижении равновесного состояния (температура проволоки достигала определенного значения, которое определяли по её свечению) атомы серебра оседали у точки а1. На второй стадии опыта оба цилиндра приводились в достаточно быстрое вращение с частотой 41,7 с-1.

При этом атомы серебра, двигаясь в вакууме прямолинейно, оседали у точки b. Смещение полосы объясняется тем, что пока атомы серебра пролетают по инерции путь r, внешний цилиндр успевает вернуться на угол φ=ωtφ = ωt, то есть каждая точка внешнего цилиндра смещается на расстояние Δs=ωrtΔs = ωrt, где ωω –угловая скорость его вращения; tt –время, за который атомы серебра проходят путь r. Таким образом,

t=rv=Δsωrt=frac{r}{v}=frac{Delta s}{omega r}

где vv – скорость атомов серебра.

Отсюда

v=ωr2Δsv=frac{omega {{r}^{2}}}{Delta s}

Измеряя смещение полос атомов серебра ΔsΔs и угловую скорость вращения прибора, можно определить скорость атомов серебра. Она приблизительно описывалась выражением

(3,5kTm)12{{left( 3,5frac{kT}{m} right)}^{frac{1}{2}}}

что согласуется со средней скоростью молекул, которые определяются по формуле

v=8kTπmv=sqrt{frac{8kT}{pi m}}

Результаты опытов Штерна показали, что на самом деле картина структуры полосы сложнее.

Смещенная возле точки b полоса была не резко ограниченной, а размытой (рис. 2).

Скорость молекул газа2.svg

Рис. 2

Несмотря на то, что атомы серебра имеют разные скорости, более быстрым атомам должны соответствовать меньшие смещения, а тем более медленным – большие. Таким образом, результаты опыта Штерна вполне передают реальную картину теплового движения молекул.

Тест по теме «Скорость движения молекул»

Для характеристики движения молекул в физике используют две скорости: среднюю и среднюю квадратичную скорость молекул.

Важно. Следует обязательно понимать, что в реальных условиях мы не можем точно знать ни конкретное число молекул в системе, ни тем более скорость каждой из них в конкретный момент времени. Это обусловлено неимоверно гигантским числом частиц в реальных и даже сколько-нибудь приближенных к ним системах. Например, в 1 см3 при давлении 200 мм. рт. ст. содержится 4,18*1018 молекул водорода. Говоря более понятными категориями, это более чем 4 миллиарда миллиардов. Заметим, что указанное давление меньше атмосферного почти в 4 раза. Последнее в среднем равняется 760 мм. рт. ст. Разрежённый водород по своим свойствам наиболее близок к идеальному газу. В данном случае физика вынуждена иметь дело с распределениями скоростей и энергий частиц.

Что такое средняя скорость движения молекул

Среднюю скорость движения молекул часто именуют скоростью их теплового движения.

Определение 1

Вид формулы средней относительной скорости молекул в физике можно представить выражением:

[text { Vотн }=sqrt{2} sqrt{frac{8 R T}{pi m_{0}}}]

Выражение под корнем – средняя скорость молекул идеального газа.

Как определить среднюю квадратичную скорость движения молекул

Определение 2

Средней квадратичной скоростью молекул идеального газа называют величину равную квадратному корню из среднего арифметического величины квадратов скоростей каждой из молекул.

Средняя скорость молекул равна:

[leftlanglemathrm{V}_{mathrm{KB}}rightrangle=sqrt{frac{1}{N} sum_{i=1}^{N} v_{i}^{2}}]

Если обе её части возвести в квадрат и проинтегрировать, то получим выражение:

[langlemathrm{VKB}rangle^{2}=int_{0}^{infty} v^{2} F(v) d v]

Ещё одно выражение для среднеквадратичной скорости:

[leftlangle V_{K B}rightrangle=sqrt{frac{3 k T}{m_{0}}}=sqrt{frac{3 R T}{mu}}]

Именно она присутствует в уравнении, именуемом основным уравнением молекулярно-кинетической теории

P = (1/3)nm*<Vкв>

Где n – концентрация молекул, которая вычисляется делением их общего числа на объём.

Пример. 1.

Рассмотрим простейший случай, чтобы использование интегрирования не затруднило понимание сути явления и помогло лучше понять материал. Вычислим как меняется средняя скорость движения молекул в идеальном газе при линейном увеличении его давления. График следующий:

Где P — давление, ρ — плотность

Напомним, что средняя скорость частиц:

[mathrm{Vcp}=sqrt{frac{8 R T}{pi m_{0}}}]

Если присмотреться к представленному графику, то можно заметить, что P приблизительно равно ρ‎. Эти две величины можно связать соотношением

P=C*ρ‎

Где С – некоторая постоянная величина, константа.

Далее считаем m0= ρ/n, p = n*k*T = C* ρ. Отсюда следует, что k*T = (C*ρ)/n.

Нужно лишь подставить эти значения в формулу для средней скорости:

[V c p=sqrt{8 mathrm{kT} / pi mathrm{m}}=sqrt{(8 mathrm{C} rho / pi mathrm{n})(mathrm{n} / rho)}=sqrt{8 mathrm{C} / pi}]

В полученном выражении нет ни одной переменной величины, т. е. при увеличении давления, вопреки ожиданиям, скорость оказалась неизменной.

Ответ: В процессе, который был дан нам на графике, при увеличении давления средняя скорость молекул никак не меняется.

Нет времени решать самому?

Наши эксперты помогут!

Пример. 2.

Определим среднюю квадратичную скорость молекул газа при условии, что нам известны его давление (P), молярная масса (M) и концентрация частиц (n).

Воспользуемся формулой:

[leftlanglemathrm{V}_{kappa в}rightrangle=sqrt{frac{3 k T}{m_{0}}}=sqrt{frac{3 R T}{mu}}]

Также нам потребуется уравнение Менделеева-Клайперона

Здесь мы воспользовались тем, что:

m/μ = N/Na

PV = (m/μ)*RT = (N/Na)*RT

Если обе части этого уравнения поделить на V и принять во внимание, что

(N/V) = n, то можно получить

P = (n/Na)*RT. Отсюда находим, что RT = (p*N)/n

Если мы это подставим в выражение для среднеквадратичной скорости [leftlangle V_{K B}rightrangle=sqrt{3 mathrm{kT} / mathrm{m}_{0}}=sqrt{3 mathrm{RT} / mu}], получим, что средняя квадратичная скорость движения молекул газа: [leftlangle V_{K B}rightrangle=sqrt{left(3 rho N_{a}right) /(mu mathrm{n})}]

Ответ: Формула средней квадратичной скорости молекул исходя из данный нам условий следующая:

[leftlangle V_{K B}rightrangle=sqrt{left(3 rho N_{a}right) /(mu mathrm{n})}]

Добавить комментарий