Как найти среднюю квадратичную скорость формула

Средняя скорость молекул

В физике выделяют 2 скорости, характеризующие движение молекул: средняя скорость движения молекул и средняя квадратичная скорость.

Средняя скорость движения молекул

Средняя скорость движения молекул называется также скоростью теплового движения молекул.

Определение 1

Формула средней относительной скорости молекул в физике представлена следующим выражением:

υotn=28kTπm0=2υ.

Средняя квадратичная скорость

Средняя квадратичная скорость движения молекул газа это следующая величина:

υkυ=1N∑i=1Nυi2

Формулу средней квадратичной скорости можно переписать так:

υkυ2=∫0∞υ2Fυdυ.

Проводя интегрирование, аналогичное интегрированию при получении связи средней скорости с температурой газа, получаем:

υkυ=3kTm0=3RTμ

Именно средняя квадратичная скорость поступательного движения молекул газа входит в состав основного уравнения молекулярно-кинетической теории:

p=13nm0υkυ,

где n=NV – это концентрация частиц вещества, N – это количество частиц вещества, V – это объем.

Пример 1

Необходимо определить, как изменяется средняя скорость движения молекул идеального газа с увеличением давления в процессе, изображенном на графике (рисунок 1).

Средняя квадратичная скорость

Рисунок 1

Решение

Запишем выражение для средней скорости движения молекул газа следующим образом:

υ=8kTπm0

Из графика видно, что p~ρ или p=Cρ,  где C – это некоторая константа.

m0=ρn, p=nkT=Cρ→kT=Cρn

Подставив m0=ρn, p=nkT=Cρ→kT=Cρn в υ=8kTπm0, получаем:

υ=8kTπm0=8Cρπnnρ=8Cπ

Ответ: В процессе, представленном на графике, с увеличением давления средняя скорость движения молекул не меняется.

Пример 2

Можно ли найти среднюю квадратичную скорость молекулы идеального газа, если известно: давление газа (p), молярная масса газа (μ), а также концентрация молекул газа (n)?

Решение

Применим выражение для υkυ:

υkυ=3RTμ

Помимо этого, из уравнения Менделеева-Клайперона и зная, что mμ=NNA:

pV=mμRT=NNART.

Поделим правую и левую части pV=mμRT=NNART на V, и зная NV=n, получаем:

p=nNART→RT=pNAn

Подставляем p=nNART→RT=pNAn в выражение для среднеквадратичной скорости υkυ=3RTμ, получаем:

υkυ=3pNAμn

Ответ: По заданным в условии задачи параметрам среднеквадратичная скорость движения молекул газа вычисляется при помощи формулы υkυ=3pNAμn.

Роман Адамчук

Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

Large vecupsilon =sqrt{frac{3kT}{m}}=sqrt{frac{3RT}{M}}


Таблица значений средней квадратичной скорости молекул некоторых газов

Средняя квадратичная скорость газа

Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):

large PV=nu RT

Где nu у нас количество вещества, для более легкого доказательства, возьмем на рассмотрение 1 моль вещества, тогда у нас получается:

large PV=RT

Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):

large PV=frac{2}{3}vec E_k

Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:

large vec E_k =frac{3}{2}RT

Но средняя кинетическая энергия, так же находится, как :

large vec E_k =frac{1}{2}N_a m vecupsilon^2

А вот теперь, если мы приравняем правые части и выразим из них скорость и возьмем квадрат,Число Авогадро на массу молекулы , получается Молярная масса N_a m = M то у нас и получится формула для средней квадратичной скорости молекулы газа:

Large vecupsilon =sqrt{frac{3RT}{M}}

А если расписать универсальную газовую постоянную, как R=N_ak , и за одно молярную массу  M=N_a m , то у нас получится?

Large vecupsilon =sqrt{frac{3kT}{m}}

В Формуле мы использовали :

 vecupsilon — Средняя квадратичная скорость молекул

k=1.38cdot10^{-23} — Постоянная Больцмана

T — Температура

 m — Масса одной молекулы

R=8.31 — Универсальная газовая постоянная

 M — Молярная масса

nu — Количество вещества

vec E_k — Средняя кинетическая энергия молекул

 N_a=6,02cdot10^{23} — Число Авогадро


Как найти среднюю квадратичную скорость?

Анонимный вопрос

1 февраля 2019  · 8,2 K

Engineer – programmer ⚡⚡ Разбираюсь в компьютерах, технике, электронике, интернете и…  · 9 февр 2019  ·

Средняя квадратичная скорость теплового движения молекулы в газе находится по формуле:

v = √ ((3*k*T) / m0), где

v — средняя квадратичная скорость, м/с;

k — 1,38 * 10(−23) — постоянная Больцмана, Дж/К;

T — температура, К;

m0 — масса одной молекулы, кг.

8,5 K

это скорость идеального газа, для конкретного газа i не = 3

Комментировать ответ…Комментировать…

Определение средней квадратичной скорости молекул газа

Содержание:

  • Средняя квадратичная скорость молекул газа — что это за параметр
  • От каких величин зависит в идеальном газе
  • Формула средней квадратичной скорости молекул

    • Как посчитать в зависимости от природы газа и температуры?

Средняя квадратичная скорость молекул газа — что это за параметр

Молекулы любого газа пребывают в постоянном движении. Его можно охарактеризовать с точки зрения средней их скорости или средней квадратичной скорости. Первое понятие имеет специальный термин — скорость теплового движения. Второе — средняя квадратичная скорость — величина, для которой существует специальная формула.

Для того, чтобы полностью разобраться в понятии средней квадратичной скорости молекул газа, вводится условный участник процесса — идеальный газ.

Определение

Идеальный газ — это математическая модель, потенциальную энергию которой принимают за ноль, а кинетическую характеризуют в полном объеме. Идеальный газ подходит в качестве  модели окружающих нас газов, например, обычного воздуха.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Средняя квадратичная скорость — физическая величина, отличная от средней арифметической скорости молекул, определяемая по формуле: корень квадратный из средней арифметической квадратов скоростей различных молекул.

Кинетическая энергия определяется скоростью движения молекул, поэтому зависит от температуры. Скорости молекул одного газа не одинаковы. Часть молекул движутся очень быстро, часть — с незначительной скоростью. Однако для большинства существует некое среднее значение. Если изобразить это на графике в виде параболы, такие молекулы со средней скоростью будут составлять ее верхнюю часть.

В единице объема газа содержится огромное число молекул. Поэтому, например, его давление на стенки сосуда — величина постоянная. В ином случае, если бы в единицу времени о стенку ударялось различное количество молекул, давление бы «скакало».

Из изложенного можно сделать вывод: скорость — свойство отдельной молекулы газа, а давление — характеристика их совокупности.

От каких величин зависит в идеальном газе

Для идеального газа средняя квадратичная скорость прямо пропорциональна его температуре и обратно пропорциональна молярной массе газа.

В математическом выражении данная зависимость выражается через корень квадратный:

(V=surd(3RT/mu)
)

где R — универсальная постоянная величина, Т — температура газа, μ — молярная масса.

Из формулы видно, что искомая величина (средняя квадратичная скорость) зависит от природных свойств газа и его температуры.

Формула средней квадратичной скорости молекул

Математическое выражение формулы выглядит следующим образом:

(V_{ср;кв}=surd(V_{12}+V_{22}+V_{n2})/N)

В формуле присутствуют следующие условные обозначения: V1, V2, Vn — скорости молекул, а N — их количество.

Формула может иметь и другой вид:

(V_{ср;кв}=surd1/Nastsum V_2)

или

(V_{ср;кв}=int V_2F(V)dV)

Как посчитать в зависимости от природы газа и температуры?

Проведенное интегрирование формулы, цель которого определить зависимость искомой единицы от природных свойств иттемпературы газа, приводит расчеты к формуле:

(V_{ср;кв}=surd(3kT/mo))

или

(V_{ср;кв}=surd(3RT/mu))

При поступательном движении молекул газа Vср кв — составляющая уравнения для молекулярно-кинетической теории.

Если n=N/V, где N — число частиц, а V — объем, то концентрация частиц n получает следующее формульное выражение:

(p=1/3ast nmo(V_{ср;кв})^2)

Насколько полезной была для вас статья?

Рейтинг: 2.33 (Голосов: 3)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Молекулярно-кинетическая теория позволяет, анализируя микроскопическое поведение системы и используя методы статистической механики, получить важные макроскопические характеристики термодинамической системы. Одной из микроскопических характеристик, которая связана с температурой системы, является средняя квадратичная скорость молекул газа. Формулу для нее приведем и рассмотрим в статье.

Газ идеальный

Сразу отметим, что формула квадратичной средней скорости молекул газа будет приведена именно для газа идеального. Под ним в физике полагают такую многочастичную систему, в которой частицы (атомы, молекулы) не взаимодействуют друг с другом (их кинетическая энергия на несколько порядков превышает потенциальную энергию взаимодействия) и не имеют размеров, то есть являются точками с конечной массой (расстояние между частицами на несколько порядков превышает их размеры линейные).

Экранирование магнитного поля: принципы и материалы. Относительная магнитная проницаемость материаловВам будет интересно:Экранирование магнитного поля: принципы и материалы. Относительная магнитная проницаемость материалов

Реальные и идеальные газы

Любой газ, который состоит из химически нейтральных молекул или атомов, и что находится под небольшим давлением и имеет высокую температуру, может считаться идеальным. Например, воздух – это идеальный газ, а водяной пар таковым уже не является (между молекулами воды действуют сильные водородные связи).

Теория молекулярно-кинетическая (МКТ)

Максвелл и Больцман

Изучая идеальный газ в рамках МКТ, следует обратить внимание на два важных процесса:

  • Газ создает давление за счет передачи стенкам сосуда, который его содержит, количества движения при столкновении с ними молекул и атомов. Такие столкновения являются абсолютно упругими.
  • Молекулы и атомы газа движутся хаотически во всех направлениях с разными скоростями, распределение которых подчиняется статистике Максвелла-Больцмана. Вероятность столкновения между частицами крайне низка, из-за их пренебрежимо малых размеров и больших расстояний между ними.
  • Несмотря на то, что индивидуальные скорости газовых частиц сильно отличаются друг от друга, среднее значение этой величины сохраняется постоянным во времени, если отсутствуют внешние воздействия на систему. Формулу средней квадратичной скорости молекул газа можно получить, если рассмотреть связь между кинетической энергией и температурой. Займемся этим вопросом в следующем пункте статьи.

    Вывод формулы квадратичной средней скорости молекул газа идеального

    Скорость и кинетическая энергия

    Каждый школьник знает из общего курса физики, что кинетическая энергия поступательного движения тела массой m рассчитывается так:

    Ek = m*v2/2

    Где v – линейная скорость. С другой стороны, кинетическую энергию частицы также можно определить через абсолютную температуру T, используя переводной множитель kB (постоянная Больцмана). Поскольку наше пространство является трехмерным, то Ek рассчитывается так:

    Ek = 3/2*kB*T.

    Приравнивая оба равенства и выражая из них v, получим формулу средней скорости квадратичной газа идеального:

    m*v2/2 = 3/2*kB*T =>

    v = √(3*kB*T/m).

    В этой формуле m – является массой газовой частицы. Ее значение неудобно использовать в практических расчетах, поскольку оно невелико (≈ 10-27 кг). Чтобы избежать этого неудобство вспомним об универсальной газовой постоянной R и молярной массе M. Постоянная R с kB связана равенством:

    kB = R/NA.

    Величина M определяется так:

    M = m*NA.

    Принимая во внимание оба равенства, получаем следующее выражение для средней квадратичной скорости молекул:

    v = √(3*R*T/M).

    Таким образом, средняя квадратичная скорость газовых частиц оказывается прямо пропорциональной квадратному корню из абсолютной температуры и обратно пропорциональна корню квадратному из молярной массы.

    Пример решения задачи

    Каждый знает, что воздух, которым мы дышим, на 99% состоит из азота и кислорода. Необходимо определить разницы в средних скоростях молекул N2 и O2 при температуре 15 oC.

    Воздух - идеальный газ

    Эту задачу будет решать последовательно. Сначала переведем температуру в абсолютные единицы, имеем:

    T = 273,15 + 15 = 288,15 К.

    Теперь выпишем молярные массы для каждой рассматриваемой молекулы:

    MN2 = 0,028 кг/моль;

    MO2 = 0,032 кг/моль.

    Поскольку значения молярных масс отличаются между собой незначительно, то средние их скорости при одинаковой температуре тоже должны быть близки. Пользуясь формулой для v, получаем следующие значения для молекул азота и кислорода:

    v (N2) = √(3*8,314*288,15/0,028) = 506,6 м/с;

    v (O2) = √(3*8,314*288,15/0,032) = 473,9 м/с.

    Поскольку молекулы азота немного легче, чем молекулы кислорода, то движутся они быстрее. Разница средних скоростей составляет:

    v (N2) – v (O2) = 506,6 – 473,9 = 32,7 м/с.

    Полученное значение составляет всего 6,5 % от средней скорости молекул азота. Обращаем внимание на большие значения скоростей молекул в газах даже при невысоких температурах.

    Автор:

    Алина Шевченко

    16-01-2019 19:51

    Жду ваши вопросы и мнения в комментариях

    Добавить комментарий