Как найти среднюю линию трапеции через периметр

Около окружности описана трапеция, периметр которой равен 30. Найдите длину её средней линии.

Боковые стороны трапеции, описанной около окружности, равны 7 и 4.

Источник: Ященко ЕГЭ 2023 (36 вар)

Решение №3186 Около окружности описана трапеция, периметр которой равен 30.

Дано:
ABCD – трапеция, описанная около окружности;
PABCD = 30;
MK  средняя линия;
Найти: MK.

Решение:

    Длина средней линии трапеции равна полусумме её оснований.

MK = frac{DC + AB}{2}

    В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противоположных сторон равны.

DC + AB = DA + CB

    То, зная PABCD, найдём сумму оснований DC и АВ:

PABCD = DC + AB + DA + CB = DC + AB + DC + AB = 2·(DC + AB) = 30
DC + AB = frac{30}{2} = 15

    Средняя линия MK равна:

MK = frac{DC + AB}{2}=frac{15}{2}=7,5

Ответ: 7,5.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.8 / 5. Количество оценок: 62

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Перейти к содержанию

На чтение 2 мин. Просмотров 456

Простая задача по геометрии из сборника типовых заданий ЕГЭ. Простая – если знать свойство четырехугольника, в который вписана окружность. А если не знать – практически нерешаемая.

Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.

Около окружности описана трапеция периметр которой равен 30

Решение: Не в каждую трапецию можно вписать окружность. Если это возможно, то стороны такой трапеции обладают следующим свойством:

Рисунок к задаче с обозначениями

Таким образом, сумма длин сторон трапеции равна половине ее периметра. Так как a+b=c+d, и a+b+c+d=30. Заменим c+d на a+b, получим:

a+b+a+b=30

или

2a+2b=30

или 2(a+b)=30.

Отсюда:

a+b=15.

Так как средняя линия трапеции равна половине суммы ее оснований, то находим:
m=displaystyle frac{a+b}{2}=frac{15}{2}=7,5.

Ответ: 7,5

( 1 оценка, среднее 5 из 5 )

Решение №281 Около окружности описана трапеция, периметр которой равен 28. Найдите длину её средней линии.

Около окружности описана трапеция, периметр которой равен 28. Найдите длину её средней линии.

Дано:

P ABCD = 28 ;

MK – средняя линия;

Найти: MK .

Решение:

Длина средней линии трапеции равна полусумме её оснований.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противоположных сторон равны.

То, зная P ABCD , найдём сумму оснований DC и АВ:

P ABCD = DC + AB + DA + CB ;

P ABCD = 2•(DC + AB) = 28 ;

DC + AB = 28 / 2 = 14 ;

Средняя линия равна:

MK = (DC + AB) / 2 = 14 / 2 = 7 ;

Ответ: 7.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

Как найти периметр трапеции со вписанной окружностью

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab — a ( d 2 — c 2 )
a — b
d 2 = c 2 + ab — a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 — ( ( a — b ) 2 + c 2 — d 2 ) 2
2 2( a — b )

5. Формула Герона для трапеции

S = a + b √ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |
p = a + b + c + d — полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

a — большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Периметр трапеции

Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:

Периметр плоской фигуры — есть сумма всех сторон фигуры.

Чему равен периметр равнобедренной трапеции — то же самое — сумме всех ее сторон.

Найти периметр трапеции в задачах ЕГЭ

В задачах ЕГЭ вы найдете периметр трапеции. Например,

Задача 1

Около окружности описана трапеция, периметр которой равен 60. Найдите длину ее средней линии.

Решение:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противолежащих сторон равны:

Где PABCD — периметр трапеции. В самом деле PABCD =AD+CB+DC+AB=2(DC+AB), а значит, DC+AB=PABCD /2

Средняя линия трапеции — это полусумма ее оснований, то есть MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 60/4=15 .

Ответ: 15.

Задача 2

Около окружности описана трапеция, периметр которой равен 44. Найдите длину ее средней линии.

Решение. Рассуждаем аналогично и получаем MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 44/4=11.

Ответ: 11.

То есть мы сами с вами вывели лайфхак для решения этой задачи:

И обратный лайфхак:

Применим наш лайфхак 1 к решению следующей задачи?

Задача 3

Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.

Ответ: 7,5.

Задача 4

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 37, найдите радиус окружности.

Решение. Периметр трапеции равен: АD+DC+CB+AB=PABCD (1)

В трапецию можно вписать окружность, если суммы длин противоположных сторон равны. То есть, имеем: AD+CB=DC+AB (2)

С учетом (2) равенство (1) можно записать в виде: 2(АD+CB)=PABCD (3)

Теперь давайте посмотрим на вот такой рисунок:

Видно, что сторона AD=2R, где R — радиус окружности.

Тогда, AD+CB=2R+37, тогда равенство (3): 2(2R+37)=100.

Решаем уравнение, относительно R:

Ответ: 6,5

Задача 5

Из сборника ЕГЭ по математике профильный уровень 2020 год вариант 19 задание 6.
Около окружности описана трапеция, периметр которой равен 28. Найдите длину ее средней линии.
Решение: пользуясь лайфхаком, который мы вывели выше, вычисляем длину средней линии трепеции: делим периметр трапеции на 4.
Получаем 28:4=7
Ответ: 7.

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 – 2 ad· cos β

d 2 = √ a 2 + c 2 – 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab – a ( d 2 – c 2 )
a – b
d 2 = c 2 + ab – a ( c 2 – d 2 )
a – b

d 1 = √ h 2 + ( a – h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a – h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab – d 2 2

d 2 = √ c 2 + d 2 + 2 ab – d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 – ( ( a – b ) 2 + c 2 – d 2 ) 2
2 2( a – b )

5. Формула Герона для трапеции

S = a + b √ ( p – a )( p – b )( p – a – c )( p – a – d )
| a – b |

где

p = a + b + c + d – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p – a )( p – c )( p – d 1)

где

a – большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/kak-nayti-perimetr-trapetsii-so-vpisannoy-okruzhnostyu

http://ru.onlinemschool.com/math/formula/trapezium/

[/spoiler]

выар ыаро



Ученик

(95),
на голосовании



10 лет назад

Дополнен 10 лет назад

У трапеции вроде основания не могут быть одинаковыми, это уже не трапеция, а фиг знает что. Если БОКОВЫЕ! стороны 13 и 15 см, а основания по 10 см – это уже четырёхугольник, т. к основания у трапеции не будут параллельны.

Дополнен 10 лет назад

Блин, я сам что-то напутал, простите.

Голосование за лучший ответ

Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:

Периметр плоской фигуры – есть сумма всех сторон фигуры.

Периметр трапеции

Периметр трапеции – есть сумма всех сторон трапеции.

Чему равен периметр равнобедренной трапеции – то же самое – сумме всех ее сторон.

Найти периметр трапеции в задачах ЕГЭ

В задачах ЕГЭ вы найдете периметр трапеции. Например,

Задача 1

Около окружности описана трапеция, периметр которой равен 60. Найдите длину ее средней линии.

Решение:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противолежащих сторон равны:

Периметр трапеции и средняя линия

АD+CD=DC+AB=PABCD /2,

Где PABCD  – периметр трапеции. В самом деле PABCD =AD+CB+DC+AB=2(DC+AB), а значит, DC+AB=PABCD /2

Средняя линия трапеции – это полусумма ее оснований, то есть MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 60/4=15 .

Ответ: 15.

Задача 2

Около окружности описана трапеция, периметр которой равен 44. Найдите длину ее средней линии.

Решение. Рассуждаем аналогично и получаем MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 44/4=11.

Ответ: 11.

То есть мы сами с вами вывели лайфхак для решения этой задачи:

Лайфхак 1

Если в трапецию вписана окружность, и дан периметр трапеции, то для того чтобы найти среднюю линию трапеции, нужно периметр разделить на 4.

И обратный лайфхак:

Лайфхак 2

Если в трапецию можно вписать окружность, и дана средняя линия трапеции (l), то формула периметра трапеции P:

P=4l

Применим наш лайфхак 1 к решению следующей задачи?

Задача 3

Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.

Вычисление

Делим периметр на 4 и получаем среднюю линию трапеции: 30/4=7,5.

Ответ: 7,5.

Задача 4

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 37, найдите радиус окружности.

Периметр прямоугольной трапеции описанной около окружности

Решение. Периметр трапеции равен:  АD+DC+CB+AB=PABCD       (1)

В трапецию можно вписать окружность, если суммы длин противоположных сторон равны. То есть, имеем: AD+CB=DC+AB   (2)

С учетом (2) равенство (1) можно записать в виде:  2(АD+CB)=PABCD       (3)

Теперь давайте посмотрим на вот такой рисунок:

Периметр трапеции 6 задание ЕГЭ рис 2

Видно, что сторона AD=2R, где R – радиус окружности.

Тогда, AD+CB=2R+37, тогда равенство (3): 2(2R+37)=100.

Решаем уравнение, относительно R:

4R+74=100

4R=100-74

4R=26

R=26/4

R= 6,5

Ответ: 6,5

Задача 5

Из сборника ЕГЭ по математике профильный уровень 2020 год вариант 19 задание 6.
Около окружности описана трапеция, периметр которой равен 28. Найдите длину ее средней линии.
Решение: пользуясь лайфхаком, который мы вывели выше, вычисляем длину средней линии трепеции: делим периметр трапеции на 4.
Получаем 28:4=7
Ответ: 7.

Добавить комментарий