Как найти среднюю линию треугольника или трапеции

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 мая 2021 года; проверки требуют 16 правок.

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон данной фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

Средняя линия треугольника[править | править код]

Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины боковых сторон этого треугольника[1].

Свойства[править | править код]

  • средняя линия отсекает треугольник, подобный и гомететичный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника.
  • три средние линии делят исходный треугольник на четыре равных треугольника. Центральный из этих треугольников называется дополнительным или серединным треугольником.
  • Если из двух вершин треугольника провести сразу две пары биссектрис (две внутренние и две внешние), а затем на четыре полученные биссектрисы ортогонально спроектировать третью вершину, тогда полученные четыре точки проекций вершины на биссектрисы будут лежать на одной прямой (коллинеарными)[2]. Эта прямая является средней линией треугольника, параллельной той стороне, концами которой являются упомянутые выше две вершины. Точнее, часть этой средней линии оказывается её продолжением за пределы треугольника.

Признаки[править | править код]

  • Если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок — средняя линия.

Средняя линия четырёхугольника[править | править код]

Средняя линия четырёхугольника — отрезок, соединяющий середины противолежащих сторон четырёхугольника.

Свойства[править | править код]

Первая линия соединяет 2 противоположные стороны.
Вторая соединяет 2 другие противоположные стороны.

  • Если в выпуклом четырёхугольнике средняя линия образует равные углы с диагоналями четырёхугольника, то диагонали равны.
  • Длина средней линии четырёхугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника — вершины параллелограмма. Его площадь равна половине площади четырёхугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;
  • Последний пункт означает следующее: В выпуклом четырёхугольнике можно провести четыре средние линии второго рода. Средние линии второго рода — четыре отрезка внутри четырёхугольника, проходящие через середины его смежных сторон параллельно диагоналям. Четыре средние линии второго рода выпуклого четырёхугольника разрезают его на четыре треугольника и один центральный четырёхугольник. Этот центральный четырёхугольник является параллелограммом Вариньона.
  • Точка пересечения средних линий четырёхугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырёхугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции[править | править код]

Средняя линия трапеции — отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Она рассчитывается по формуле: EF=frac{AD+BC}{2}, где AD и BC — основания трапеции.

Свойства[править | править код]

  • средняя линия параллельна основаниям
  • средняя линия равна полусумме оснований
  • средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как [1] Архивная копия от 12 августа 2017 на Wayback Machine
{displaystyle {frac {S_{1}}{S_{2}}}={frac {3,BC+AD}{BC+3,AD}}}

См. также[править | править код]

  • Теорема Вариньона (геометрия)

Примечания[править | править код]

  1. Справочник. Треугольники. Дата обращения: 14 апреля 2008. Архивировано из оригинала 20 апреля 2016 года.
  2. Дмитрий Ефремов. Новая геометрия треугольника Архивная копия от 25 февраля 2020 на Wayback Machine. — Одесса, 1902. — С. 6. Глава I, п.8

 Средняя линии треугольника. Средняя линия трапеции.

Средней линией треугольника называют отрезок, соединяющий середины двух сторон треугольника.

На рисунке средней линией является отрезок DE.

Теорема. Средняя линия треугольника параллельна не пересекающейся с ней стороне треугольника и равна половине этой стороны.

Доказательство. Рассмотрим треугольники ABC и DBE. Они подобны, так как имеют две пары пропорциональных сторон (AB = 2BD, BC = 2BE) и общий угол B. Значит, все углы в этих треугольниках равны. ∠BDE = ∠BAC, следовательно, DE||AC по признаку параллельности: соответствующие углы равны. Коэффициент подобия равен 2, значит, AC = 2DE.

Следствие. Три средних линии делят треугольник на 4 равных треугольника ADF, DBE, ECF, DEF.

Каждый из четырёх треугольников ADF, DBE, ECF, DEF подобен треугольнику ABC с коэффициентом подобия 0,5.

Напомним, что трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны. Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции. Отрезки, соединяющие противоположные вершины трапеции, называют диагоналями трапеции.

Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции.

На рисунке средней линией трапеции является отрезок EF.

Теорема. Средняя линия трапеции параллельна основаниям трапеции и равна половине суммы этих оснований.

Дано: ABCD – трапеция, E – середина AB, F – середина CD.

Доказать: EF||BC||AD, EF = (BC+AD):2.

Доказательство. Проведем через вершину B и середину боковой стороны F трапеции прямую линию. Обозначим точку пересечения прямых BF и AD буквой G.

Рассмотрим треугольники BCF и FDG. В них CF = FD (по условию), ∠BFC = ∠DFG (вертикальные углы), ∠BCF = ∠GDF (накрест лежащие при параллельных прямых). Следовательно, треугольники равны по второму признаку.

Из равенства треугольников следует BF = FG и DG = BC. Значит, отрезок EF является средней линией треугольника ABG. Отсюда следует параллельность: EF||AD||BC.

Найдем длину EF. По теореме о средней линии треугольника EF = AG:2 = (AD+DG):2 = (AD+BC):2, что и требовалось доказать.

Средняя линия треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией этого треугольника.

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

строка 57.png

В каждом треугольнике — три средних линии.

строка 58.png

Средние линии (DE), (EF), (DF).

Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией этой трапеции.

Средняя линия трапеции параллельна основаниям и равна их полусумме.

строка 59.png

У трапеции — только одна средняя линия.

Источники:

Рис. 1-3. Треугольник, трапеция, © ЯКласс.

Все формулы средней линии трапеции

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются – верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Средняя линия трапеции – отрезок соединяющий середины боковых сторон и расположен параллельно к основаниям. Длина средней линии, равна полу сумме оснований.

1. Формула средней линии трапеции через основания

b – верхнее основание

a – нижнее основание

m – средняя линия

Формула средней линии, ( m ):

2. Формулы средней линии через основание, высоту и углы при нижнем основании

b – верхнее основание

a – нижнее основание

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, ( m ):

3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

α , β – углы между диагоналями

d 1 , d 2 – диагонали трапеции

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции , ( m ):

4. Формула средней линии трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

m – средняя линия

Как найти среднюю линию треугольника?

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие треугольника

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, которые не лежат на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

  • Прямоугольный. Один угол прямой, то есть равен 90 градусам, два других меньше 90 градусов.
  • Остроугольный. Градусная мера всех углов больше 0, но меньше 90 градусов.
  • Тупоугольный. Один угол тупой, два других — острые.

Треугольник считают равнобедренным, если две его стороны равны. Эти стороны называют боковыми сторонами, а третью — основанием.

Треугольник, у которого все стороны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, которая лежит напротив прямого угла — гипотенуза, а две другие стороны — катеты.

Правильный (равносторонний или равноугольный) треугольник — это правильный многоугольник, в котором все стороны равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Свойства треугольников:

  • В треугольнике против большего угла лежит большая сторона — и наоборот.
  • Сумма углов треугольника равна 180 градусов.
  • Все углы равностороннего треугольника равны 60 градусам.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Понятие средней линии треугольника

Определение средней линии треугольника подходит для любого вида этой фигуры.

​Средняя линия треугольника — отрезок, который соединяет середины двух сторон. В любом треугольнике можно провести три средних линии.

​Основанием считается сторона, которой параллельна средняя линия.

Как найти среднюю линию треугольника — расскажем дальше, а для начала еще немного разберемся со всеми определениями.

Понятие средней линии прямоугольного треугольника

Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.

Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.

В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.

Свойства средней линии треугольника

Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.

Свойства:

  1. Средняя линия равна половине длины основания и параллельна ему.
  2. Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
  3. Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
  4. Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.

Теорема о средней линии треугольника

Теорема о средней линии треугольника звучит так:

Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:

Докажем теорему:

По условию нам дано, что MA = MB, NA = NC

Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.

(по второму признаку подобия треугольников).

△ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.

△ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.

Параллельность средней линии и соответствующего ей основания доказана.

Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.

Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:

Ответ: периметр треугольника ΔMNK равен 10.

Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.

Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:

Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:

Значит, AC = 2MN = 2 × 3 = 6.

Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:

Значит, BC = 2NP = 2 × 4 = 8.

Тогда найдем площадь большого треугольника, используя формулу, указанную выше:

S = ½ × 6 × 8 = ½ × 48 = 24.

Ответ: площадь большого прямоугольного треугольника равна 24.

Средние линии

Средние линии треугольника

Определение . Средней линией треугольника называют отрезок, соединяющий середины двух сторон треугольника (рис. 1).

На рисунке 1 средней линией является отрезок DE .

Утверждение 1 . Средняя линия треугольника параллельна не пересекающейся с ней стороне треугольника и равна половине этой стороны.

Доказательство . Рассмотрим произвольный треугольник ABC и обозначим буквой D середину стороны AB (рис. 2). Проведем через точку D до пересечения с прямой BC прямую, параллельную прямой AC . Обозначим буквой E точку пересечения прямых DE и BC .

Поскольку AD = DB , а прямые AC и DE параллельны, то выполнены все условия теоремы Фалеса, и можно заключить, что выполнено равенство: CE = EB . Отсюда вытекает, что точка E является серединой стороны CB , а отрезок DE является средней линией треугольника.

Первую часть утверждения 1 мы доказали.

Для того, чтобы доказать вторую часть утверждения 1, заметим, что в любом треугольнике можно провести три средних линии – отрезки DE , EF и FD (рис.3).

Но поскольку AF = FC , то отсюда вытекает равенство

что и требуется доказать.

Доказательство утверждения 1 закончено.

  • Три средних линии делят треугольник на 4 равных треугольника ADF , DBE , ECF , DEF (рис. 4).
  • Каждый из четырёх треугольников ADF , DBE , ECF , DEF подобен треугольнику ABC с коэффициентом подобия 0,5 .

Средняя линия трапеции

Напомним, что трапецией трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями , а непараллельные стороны – боковыми сторонами трапеции.

Отрезки, соединяющие противоположные вершины трапеции, называют диагоналями трапеции.

Определение . Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции (рис. 5).

На рисунке 5 средней линией трапеции является отрезок EF .

Утверждение 2 . Средняя линия трапеции параллельна основаниям трапеции и равна половине суммы этих оснований.

Доказательство . Проведем через вершину B и середину боковой стороны F трапеции прямую линию (рис. 6). Обозначим точку пересечения прямых BF и AD буквой G . Рассмотрим треугольники BCF и FDG . У этих треугольников стороны CF и FD равны, поскольку точка F – середина стороны CD . Углы BCF и FDG равны, поскольку они являются внутренними накрест лежащими углами, образованными при пересечении параллельных прямых BC и AD с секущей CD . Углы BFC и DFG равны, поскольку они являются вертикальными. Тем самым выполнены все условия признака равенства треугольников «По стороне и прилежащим к ней углам», и можно заключить, что треугольники BCF и FDG равны. Из равенства треугольников BCF и FDG следует равенство отрезков BF и FG , откуда вытекает, что отрезок EF является средней линией треугольника ABG . Поэтому

что и требовалось доказать.

Задача 1 . Доказать, что средняя линия трапеции делит пополам любой отрезок с концами на основаниях трапеции.

Решение . Пусть ABCD – трапеция, EF – её средняя линия, LM – указанный отрезок (рис.7). Поскольку AE = EB , то, в силу теоремы Фалеса, выполнено равенство: LN = NM , что и требовалось доказать.

Задача 2 . Доказать, что отрезок, который диагонали трапеции высекают на средней линии трапеции, равен половине разности оснований трапеции.

Решение . Пусть ABCD – трапеция, EF – её средняя линия, KL – указанный отрезок (рис.8). В соответствии с задачей 1 можем заключить, что точка K – середина отрезка AC , а точка L – середина отрезка BD . Поэтому отрезок EK – средняя линия треугольника BAC , а отрезок EL – средняя линия треугольника ABD . В силу утверждения 1 выполнены равенства:

что и требовалось доказать.

Утверждение 3 . Прямая, проходящая через середины оснований трапеции, проходит через точку пересечения боковых сторон трапеции.

Доказательство . Пусть K и L – середины оснований BC и AD трапеции ABCD соответственно (рис.9). Обозначим буквой M точку пересечения боковых сторон AB и CD . Проведем через точки M и K прямую и обозначим точку пересечения этой прямой с основанием AD символом N . Докажем, что точки N и L совпадают. Для этого заметим, что треугольник BMK подобен треугольнику AMN . Следовательно, выполнено равенство:

Из этих соотношений получаем:

откуда вытекает, что точки N и L совпадают. Доказательство завершено.

Почти те же рассуждения позволяют доказать следующий факт, который мы предоставляем читателю в качестве упражнения.

Утверждение 4 . Прямая, проходящая через точку пересечения диагоналей и середину одного из оснований трапеции, проходит через середину другого основания трапеции.

Следствие . Точка пересечения диагоналей, середины оснований и точка пересечения боковых сторон трапеции лежат на одной прямой.

Средние линии четырехугольника. Теорема Вариньона

Определение . Средней линией четырехугольника называют отрезок, соединяющий середины непересекающихся сторон четырёхугольника.

Поскольку у каждого четырехугольника имеются две пары непересекающихся сторон, то у каждого четырехугольника имеются две средних линии (рис.10).

На рисунке 10 средние линии – это отрезки EF и GH .

Замечание 1 . Приведенное определение средней линии относится не только к плоским четырехугольникам, но и к «пространственным четырехугольникам» (рис.11). «Пространственным четырехугольником» мы называем замкнутую ломаную линию из 4 звеньев без самопересечений, не лежащую в одной плоскости.

На рисунке 11 изображен «пространственный четырёхугольник» ABCD , средними линиями которого являются отрезки EF и GH .

Замечание 2 . Несмотря на то, что трапеция является четырехугольником, принято средней линией трапеции называть только отрезок, соединяющий середины её боковых сторон.

Замечание 3 . В данном разделе справочника не рассматриваются невыпуклые четырёхугольники и четырёхугольники с самопересечениями.

Теорема Вариньона . Середины сторон произвольного плоского или «пространственного» четырёхугольника являются вершинами параллелограмма параллелограмма .

Доказательство . Рассмотрим плоский четырёхугольник ABCD , изображенный на рисунке 12. Точки E, G, F, H – середины сторон, отрезок AC – диагональ четырёхугольника.

Поскольку отрезок EG – средняя линия треугольника ABC , то отрезок EG параллелен диагонали AC и равен её половине. Поскольку отрезок FH – средняя линия треугольника CDA , то отрезок FH параллелен диагонали AC и равен её половине. Таким образом, в четырёхугольнике EGFH противоположные стороны EG и FH равны и параллельны. В силу признака параллелограмма признака параллелограмма признака параллелограмма отсюда вытекает, что четырёхугольник EGFH – параллелограмм, что и требовалось доказать.

Замечание 4 . В случае «пространственного четырёхугольника» ABCD доказательство остаётся тем же (рис. 13).

Утверждение 5 . Средние линии произвольного четырёхугольника пересекаются и в точке пересечения делятся пополам (рис. 14).

Утверждение 6 . Рассмотрим произвольный плоский или «пространственный» четырёхугольник ABCD , у которого отрезок EF является одной из средних линий (рис. 15). Тогда будет выполнено векторное равенство:

что и требовалось доказать.

Следствие . Средняя линия четырёхугольника меньше или равна половине суммы не пересекающих её сторон четырёхугольника, причём равенство достигается лишь в том случае, когда указанные стороны четырёхугольника параллельны.

Другими словами, средняя линия четырёхугольника равна половине суммы не пересекающих её сторон четырёхугольника лишь в том случае, когда этот четырехугольник является трапецией трапецией , а не пересекающие среднюю линию стороны четырёхугольника – основания трапеции.

Средние линии тетраэдра

Тетраэдром называют произвольную треугольную пирамиду (рис.17).

У каждого тетраэдра имеется 4 вершины, 4 грани и 6 рёбер, причем все рёбра делятся на 3 пары непересекающихся рёбер . На рисунке 17 каждая пара непересекающихся рёбер выделена отдельным цветом. Каждые два непересекающихся ребра тетраэдра лежат на скрещивающихся прямых скрещивающихся прямых .

Определение . Средней линией (бимедианой) тетраэдра называют отрезок, соединяющий середины двух непересекающихся рёбер тетраэдра.

У каждого тетраэдра имеется 3 средних линии. Изображённый на рисунке 18 отрезок EF является одной из средних линий тетраэдра.

Утверждение 7 . Все средние линии тетраэдра пересекаются в одной точке и делятся этой точкой пополам.

Доказательство . Выберем какую-нибудь среднюю линию тетраэдра, например, EF и докажем, что любая другая средняя линия тетраэдра проходит через середину отрезка EF . Для этого рассмотрим, например, среднюю линию GH , соединяющую середины рёбер AC и BD , и соединим отрезками точки E, H, F, G (рис.19).

Заметим, что отрезок EH является средней линией треугольника ADB , поэтому

Определение . Точку пересечения средних линий тетраэдра называют центроидом тетраэдра .

Утверждение 8 . Рассмотрим в пространстве декартову систему координат с началом в точке O и произвольный тетраэдр ABCD . Если обозначить буквой M центроид этого тетраэдра (рис. 20), то будет выполнено векторное равенство:

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kak-najti-srednyuyu-liniyu-treugolnika

http://www.resolventa.ru/spr/planimetry/mline.htm

[/spoiler]

В данной публикации мы рассмотрим определение, свойства и признак средней линии трапеции, а также разберем пример решения задачи для лучшего понимания изложенного материала.

  • Определение средней линии трапеции

  • Свойства средней линии трапеции

    • Свойство 1

    • Свойство 2

    • Свойство 3

  • Признак средней линии трапеции

  • Вторая средняя линия

  • Пример задачи

Определение средней линии трапеции

Отрезок, соединяющий середины боковых сторон трапеции, называется ее средней линией.

Средняя линия трапеции

  • LM – средняя линия трапеции ABCD
  • L – середина стороны AB, т.е. AL = LB
  • M – середина стороны CD, т.е. CM = MD

Свойства средней линии трапеции

Свойство 1

Средняя линия трапеции параллельна ее основаниям и равняется их полусумме.

Для рисунка выше:

Формула для нахождения средней линии трапеции через длины ее оснований

Свойство 2

Средняя линия трапеции делит пополам любой отрезок, концы которого лежат на основаниях данной трапеции.

Средняя линия трапеции

Свойство 3

Средняя линия трапеции делит ее на две другие трапеции, площади которых соотносятся следующим образом (см. первый чертеж публикации):

Соотношение площадей трапеций образованных путем деления средней линией исходной трапеции

Соотношение площадей трапеций образованных путем деления средней линией исходной трапеции

Соотношение площадей трапеций образованных путем деления средней линией исходной трапеции

Признак средней линии трапеции

Если отрезок, выходящий из середины боковой стороны трапеции, пересекает ее вторую боковую сторону и, при этом, параллелен основаниям фигуры, то он является средней линией этой трапеции.

Вторая средняя линия

Иногда дополнительно выделяют вторую среднюю линию трапеции – отрезок, соединяющий середины ее оснований. При этом следует помнить, что к ней не применимы Свойства 1-3 и Признак, рассмотренные выше.

Вторая средняя линия трапеции

Вторая средняя линия равнобедренной трапеции одновременно является ее высотой.

Вторая средняя линия равнобедренной трапеции

Пример задачи

Средняя линия трапеции равняется 25 см, а ее высота – 7 см. Найдите площадь фигуры.

Решение

Как мы знаем, площадь трапеции равняется полусумме оснований, умноженной на высоту h: S = (a+b)/2 ⋅ h

В данном случае полусумма оснований – это и есть средняя линия. Обозначим ее буквой m. То есть m = (a+b)/2.

Таким образом, S = m ⋅ h = 25 см ⋅ 7 см = 175 см2.

Добавить комментарий