Конечно, можно прикинуть на глазок и при некоторых способностях решить задачку в уме. Но давайте попытаемся предложить такое объяснение, которое будет понятно абсолютно всем. И для этого первым делом нам потребуется выяснить, что подразумевается под определением “средняя линия треугольника”. Для этого я предлагаю сначала изобразить сам прямоугольный треугольник со сторонами 6 и 8.
То, что мы его расположили на листочке в клеточку, позволяет легко и незамедлительно поставить риски на серединах сторон. Ведь именно это нам нужно для того, чтобы найти средние линии геометрической фигуры. Соединив полученные точки, мы увидим треугольник с теми же пропорциями, но существенно меньшими размерами. С длинами его сторон нам и предстоит разобраться.
Картинка наглядно демонстрирует следующее:
- Если AB = 8, то XZ = 4
- Если AC = 6, то YZ = 3
- Отрезок XY является гипотенузой прямоугольного треугольника со сторонами XZ и YZ.
Даже невооружённому глазу видно, что длина XY будет больше, чем любая из XZ и YZ. Ведь гипотенуза не может быть меньше катетов прямоугольного треугольника. Но нас интересует точное значение её длины. Для этого используем классический вариант – извлечём квадратный корень из суммы квадратов катетов красного треугольника.
- XY = Корень(XZ² + YZ²) = Корень(4² + 3²) = Корень(16 + 9) = Корень(25) = 5
Думаю, в том, что 5 больше 3-х и 4-х, ни у кого нет сомнений? Тогда можно дать однозначный ответ – наибольшей средней линией искомого треугольника является сторона XY, которая равна 5-ти.
P.S. Если кто-то не в курсе, то такая треугольная фигура со сторонами 3*4*5 издавна носит название “Египетский треугольник”. И опытные математики видят её издалека. Соответственно, они могут ответить на поставленный вопрос, не прибегая к банальным вычислениям. Но на то они и математики. 🙂
Катеты прямоугольного треугольника равны 16 и 30. Найдите наибольшую среднюю линию треугольника.
Решение
Средняя линия прямоугольного треугольника, соединяющая середину двух сторон (в нашем случае катетов), параллельна третьей стороне (в нашем случае гипотенузе) и равна его половине.
Найдем длину гипотенузы по формуле Пифагора (пусть (a) и (b) – катеты прямоугольного треугольника, а (c) – гипотенуза):
(c^2=a^2+b^2;)
(c^2=16^2+30^2;)
(c=34).
По определению наибольшая средняя линия делит гипотенузу пополам. Значит, она равна (34div2=17).
Ответ: (17).
Источник: ЕГЭ 2023 Математика. Базовый уровень. Типовые экзаменационные варианты. 30 вариантов (вариант 23) (Купить книгу)
В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.
- Определение средней линии треугольника
-
Свойства средней линии треугольника
- Свойство 1
- Свойство 2
- Свойство 3
-
Свойство 4
- Признак средней линии треугольника
- Пример задачи
Определение средней линии треугольника
Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.
- KL – средняя линия треугольника ABC
- K – середина стороны AB: AK = KB
- L – середина стороны BC: BL = LC
Свойства средней линии треугольника
Свойство 1
Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.
На рисунке выше:
- KL параллельна AC
- KL = 1/2 ⋅ AC
Свойство 2
Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.
На рисунке выше:
- △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
- Стороны △KBL в два раза меньше соответствующих сторон △ABC:
AB = 2KB, BC = 2BL, AC = 2KL. - S△ABC = 4 ⋅ S△KBL
Свойство 3
В любом треугольнике можно провести три средние линии.
KL, KM и ML – средние линии треугольника ABC.
- KL || AC, KL = 1/2 ⋅ AC
- KM || BC, KM = 1/2 ⋅ BC
- ML || AB, ML = 1/2 ⋅ AB
Свойство 4
Три средние линии треугольника делят его на 4 равных по площади треугольника.
S1 = S2 = S3 = S4
Признак средней линии треугольника
Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.
Пример задачи
Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.
Решение
Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.
Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.
BC2 = AB2 + AC2 = 62 + 82 = 100.
BC = 10.
Таким образом, средняя линия LM = 1/2 ⋅ BC = 1/2 ⋅ 10 = 5.
Как найти среднюю линию треугольника?
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие треугольника
Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, которые не лежат на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.
- Прямоугольный. Один угол прямой, то есть равен 90 градусам, два других меньше 90 градусов.
- Остроугольный. Градусная мера всех углов больше 0, но меньше 90 градусов.
- Тупоугольный. Один угол тупой, два других — острые.
Треугольник считают равнобедренным, если две его стороны равны. Эти стороны называют боковыми сторонами, а третью — основанием.
Треугольник, у которого все стороны равны, называется равносторонним или правильным.
Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, которая лежит напротив прямого угла — гипотенуза, а две другие стороны — катеты.
Правильный (равносторонний или равноугольный) треугольник — это правильный многоугольник, в котором все стороны равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Свойства треугольников:
- В треугольнике против большего угла лежит большая сторона — и наоборот.
- Сумма углов треугольника равна 180 градусов.
- Все углы равностороннего треугольника равны 60 градусам.
- В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Понятие средней линии треугольника
Определение средней линии треугольника подходит для любого вида этой фигуры.
Средняя линия треугольника — отрезок, который соединяет середины двух сторон. В любом треугольнике можно провести три средних линии.
Основанием считается сторона, которой параллельна средняя линия.
Как найти среднюю линию треугольника — расскажем дальше, а для начала еще немного разберемся со всеми определениями.
Понятие средней линии прямоугольного треугольника
Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.
Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.
В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.
Свойства средней линии треугольника
Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.
Свойства:
- Средняя линия равна половине длины основания и параллельна ему.
- Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
- Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
- Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.
Теорема о средней линии треугольника
Теорема о средней линии треугольника звучит так:
Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:
Докажем теорему:
По условию нам дано, что MA = MB, NA = NC
Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.
(по второму признаку подобия треугольников).
△ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.
△ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.
Параллельность средней линии и соответствующего ей основания доказана.
Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.
Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:
Ответ: периметр треугольника ΔMNK равен 10.
Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.
Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:
Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:
Значит, AC = 2MN = 2 × 3 = 6.
Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:
Значит, BC = 2NP = 2 × 4 = 8.
Тогда найдем площадь большого треугольника, используя формулу, указанную выше:
S = ½ × 6 × 8 = ½ × 48 = 24.
Ответ: площадь большого прямоугольного треугольника равна 24.
Что такое средняя линия треугольника
В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.
Определение средней линии треугольника
Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.
- KL – средняя линия треугольника ABC
- K – середина стороны AB: AK = KB
- L – середина стороны BC: BL = LC
Свойства средней линии треугольника
Свойство 1
Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.
На рисунке выше:
Свойство 2
Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.
На рисунке выше:
- △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
- Стороны △KBL в два раза меньше соответствующих сторон △ABC:
AB = 2KB, BC = 2BL, AC = 2KL. - S△ABC = 4 ⋅ S△KBL
Свойство 3
В любом треугольнике можно провести три средние линии.
KL, KM и ML – средние линии треугольника ABC.
Свойство 4
Три средние линии треугольника делят его на 4 равных по площади треугольника.
Признак средней линии треугольника
Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.
Пример задачи
Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.
Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.
Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
BC = 10.
Таким образом, средняя линия LM = 1 /2 ⋅ BC = 1 /2 ⋅ 10 = 5.
Средняя линия треугольника – свойства, признаки и формулы
Одним из важных понятий, с помощью которого легко решается целый класс задач по геометрии, является средняя линия треугольника.
Разберём данное понятие, рассмотрим свойства, и научимся правильно решать задачи на эту тему.
Определение и признаки средней линии треугольника
Отрезок, соединяющий середины двух сторон треугольника, называется его средней линией.
Отрезок, у которого один из концов совпадает с серединой одной из сторон, другой находится на второй стороне, проведённый параллельно третьей стороне, является средней линией треугольника.
Доказательство следует из теоремы Фалеса.
Теорема о средней линии треугольника
Средняя линия треугольника параллельна основанию (третьей стороне) и равна её половине.
Существует три вида доказательств этого положения. Каждое из них базируется на одной из ключевых позиций планиметрии.
Пусть дан треугольник ABC, M – середина стороны AB, N – середина BC.
По определению, MN – средняя линия ΔABC.
Необходимо доказать, что MN II AC, MN = ½AC.
Доказательства
Пусть прямая MK II AC. Тогда по теореме Фалеса MK пересекает сторону BC в её середине. В этом случае отрезок MN лежит на прямой MK.
Следовательно, MN II AC.
Тогда NP – средняя линия по теореме Фалеса, то есть AP = PC.
Так как AMNP – параллелограмм по определению, то AP = MN. Из этого и предыдущего утверждения следует, что длина MN равна ½AC.
Рассматриваются треугольники MBN и ABC. В них угол B является общим,
По второму признаку подобия треугольников ΔMBN ∼ ΔABC. Следовательно, углы BMN и BAC равны.
Поскольку эти углы являются соответственными, то прямые MN и AC параллельны.
Формула MN = ½AC следует из условий
поскольку пропорциональность двух пар сторон влечёт соответствующее отношение для третьей пары сторон.
Рассматривается сумма векторов
Поскольку в результате образуется замкнутая ломаная, то
Отсюда следует, что
Из последнего равенства следуют условия теоремы.
Следствия из теоремы с доказательствами
Следствие №1
Средняя линия отсекает треугольник, подобный данному, с коэффициентом подобия ½ и площадью, составляющий ¼ площади заданного треугольника.
По определению стороны AB и BC делятся пополам, поэтому
Из третьего признака подобия вытекает рассматриваемое свойство.
Поскольку площади подобных фигур относятся как квадрат коэффициента подобия, то получается вторая часть свойства, то есть площадь маленького треугольника относится к площади большого как
Следствие №2
Поскольку MN – средняя линия, то MN II AC, поэтому ∠BMN = ∠BAP, ∠BNM = ∠BCA как соответственные при MN II AC и секущей AB или BC соответственно.
Поскольку MP – средняя линия, то MP II BC, поэтому ∠MPA = ∠BCA как соответственные при MP II BC и секущей AC.
Таким образом: ∠BNM = ∠BCA = ∠MPA.
Так как MN – средняя линия, то сторона MN = ½AC, поэтому MN = AP.
Следовательно, ΔAMP = ΔMBN по второму признаку равенства треугольников.
Равенство остальных пар треугольников доказывается аналогично.
По основному свойству ΔMBN ∼ ΔABC с коэффициентом подобия ½. Так как все полученные маленькие треугольники равны между собой, то каждый из них, следовательно, подобен большому с тем же коэффициентом.
Свойства средней линии треугольника
Теорема и следствия из неё составляют основные свойства средней линии треугольника.
Согласно второму утверждению, вид большого треугольника такой же, как и у маленьких. То есть для равностороннего и равнобедренного треугольников средние линии отсекают равносторонние и равнобедренные треугольники.
Высоты тупоугольного треугольника, проведённые к тупому углу из вершин острых, располагаются вне треугольника. Поэтому часто рассматривают не саму среднюю линию, а её продолжение. Учитывая подобие получаемых фигур, можно утверждать, что точкой пересечения с продолжением средней линии высота делится на две равные части.
Биссектриса угла треугольника точкой пересечения со средней линией также делится пополам.
Средняя линия прямоугольного треугольника
Для прямоугольного треугольника две средние линии перпендикулярны катетам, а третья равна медиане, проведённой к гипотенузе.
Остроугольный разносторонний треугольник не имеет средних линий, обладающих подобными характеристиками.
Пример решения задачи
Доказать, что середины сторон произвольного выпуклого четырёхугольника являются вершинами параллелограмма.
Проводя диагональ четырёхугольника, получают разбиение на два треугольника, в каждом из которых построена средняя линия, параллельная по основной теореме диагонали, как основанию.
Так как две прямые, параллельные третьей, параллельны между собой, то противолежащие стороны образованного средними линиями четырёхугольника параллельны.
Аналогично доказывается параллельность двух других сторон нового четырёхугольника. По определению четырёхугольник, полученный соединением середин сторон заданного четырёхугольника, является параллелограммом.
[spoiler title=”источники:”]
http://nauka.club/matematika/geometriya/srednyaya-liniya-treugolnika.html
[/spoiler]
Треугольник — геометрическая фигура, составленная из трёх отрезков. Они объединены тремя точками, не
лежащие в единственной прямой. Такие отрезки обычно именуют сторонами, а заданные точки — вершинами.
Средняя линия такого многоугольника — отрезок, объединяющий средины двух сторон.
Во всяком
треугольнике можно проложить три средних линии. В прямоугольном многоугольнике такой отрезок
равняется половине основания. Средняя линия прямоугольного треугольника разделяет его на четыре
прямоугольных треугольника. Существует и признак срединного отрезка треугольника: если отрезок в
многоугольнике пролегает через средину одной из его сторон, пересекает вторую и параллелен ей, тогда
такой отрезок называется средней линией.
Выделяют свойства срединного отрезка:
- Средняя линия равняется половине длины основания и параллельна ему;
- Этот отрезок отделяет треугольник, подобный заданному с коэффициентом 0.5, а его площадь
равняется четверти площади заданной фигуры; - Три средние линии дробят заданный многоугольник на четыре других, эквивалентных друг другу.
Находящуюся по центру фигуру именуют дополнительной.
- Средняя линия треугольника через сторону
- Средняя линия равностороннего треугольника через высоту
- Средняя линия равностороннего треугольника через радиус
вписанной окружности - Средняя линия равностороннего треугольника через радиус
описанной окружности - Средняя линия треугольника через площадь и высоту
- Средняя линия равнобедренного треугольника через боковую
сторону и высоту - Средняя линия равностороннего треугольника через
площадь
Через сторону
Срединный отрезок равняется половине противолежащей стороны. Следовательно, формула выглядит так:
m = a/2
где a — противолежащая сторона.
Цифр после
запятой:
Результат в:
Следовательно, если такая сторона будет равна 50, то срединный отрезок будет равен m = 50/2 = 25. Если же сторона будет равна 20, тогда срединный отрезок
будет рассчитываться так: m = 20/2 = 10.
Средняя линия равностороннего треугольника через радиус вписанной окружности
Срединный отрезок равностороннего многоугольника через радиус вписанной окружности высчитывается
так:
m = r√3
где r — радиус вписанной окружности.
Цифр после
запятой:
Результат в:
Таким образом, если радиус такой окружности равняется 5, тогда m= 5√3 ≈ 8,66. Если же радиус будет равен, допустим, 9, в таком случае
m = 9√3 ≈ 15,59.
Средняя линия треугольника через площадь и высоту
Срединный отрезок многоугольника равен частному площади и высоты, перпендикулярной этой средней
линии. Таким образом, тождество имеет такой вид:
m = S/h
где S — это площадь, а h — перпендикуляр, ортогональный срединному отрезку.
Цифр после
запятой:
Результат в:
Если площадь некоторого многоугольника будет равна 25, а перпендикуляр — 5, тогда m = 25/5 = 5. Если
же в качестве площади взять число 60, а в качестве перпендикуляра — 3, получится следующий срединный
отрезок: m = 60/3 = 20.
Средняя линия равностороннего треугольника через высоту
Срединный отрезок равностороннего многоугольника через перпендикуляр высчитывается следующим
образом:
m = h/√3
где h — перпендикуляр равностороннего многоугольника.
Цифр после
запятой:
Результат в:
К примеру, если перпендикуляр равностороннего многоугольника равен 5, тогда срединный отрезок будет
такой: m = 5/√3 ≈ 2,89.
Если же перпендикуляр будет равен 10, тогда
срединный отрезок будет около m = 10/√3 ≈ 5,77.
Средняя линия равнобедренного треугольника через боковую сторону и высоту
Срединный отрезок равнобедренного многоугольника через боковую сторону и высоту вычисляется следующим
образом:
m = a2 – h2
где a — боковая сторона, а h — перпендикуляр.
Цифр после
запятой:
Результат в:
Допустим, если боковая сторона многоугольника равна 5, а перпендикуляр — 3, тогда m = 25 – 9 = 16.
Если же в качестве боковой стороны взять число 8, а в качестве перпендикуляра равнобедренного
многоугольника — 2, в таком случае m = 64 – 4 = 60.
Средняя линия равностороннего треугольника через площадь
Срединный отрезок равнобедренного многоугольника через площадь находится по следующей формуле:
m = 1/4 √(√3/S)
где S — это площадь равностороннего многоугольника.
Цифр после
запятой:
Результат в:
Допустим, если площадь равностороннего многоугольника будет равна 5, тогда m = 1/4 √(√3/5) ≈ 0,15.
Если выбрать равносторонний многоугольник побольше, к примеру, с площадью 25, в таком случае m = 1/4 √(√3/25) ≈ 0,065.
Средняя линия равностороннего треугольника через радиус описанной окружности
Срединный отрезок равностороннего многоугольника через радиус описанной окружности высчитывается
так:
m = R√3/2
где R — радиус описанной окружности.
Цифр после
запятой:
Результат в:
Следовательно, если радиус такой окружности будет равен 15, тогда m = 15√3/2 =12,99. Если в качестве
радиуса взять число 24, в таком случае m = 24√3/2 = 20,78.
Средняя линия фигур в планиметрии — отрезок, который объединяет средины двух сторон представленной
фигуры. Такой термин используется при описании треугольников, четырёхугольников и трапеций. В
некоторых случаях рассматривается вырожденный треугольник, три вершины которого пролегают на
единственной прямой. Треугольник считается одной из основных геометрических фигур, повсюду
применяемых в науке и технике, потому изучение его качеств велось с давних времён.