Содержание:
Мощность:
Одинаковую работу можно совершить за разные промежутки времени. Например, можно поднять груз за минуту, а можно поднимать этот же груз в течение часа.
Физическую величину, равную отношению совершенной работы
Единицей мощности в SI является джоуль в секунду (Дж/с), или ватт (Вт), названный так в честь английского изобретателя Дж. Уатта. Один ватт — это такая мощность, при которой работу в 1 Дж совершают за 1 с. Итак,
Человек может развивать мощность в сотни ватт. Чтобы оценить, насколько могущество человеческого разума, создавшего двигатели, больше «могущества» человеческих мускулов, приведем такие сравнения:
- мощность легкового автомобиля примерно в тысячу раз больше средней мощности человека;
- мощность авиалайнера примерно в тысячу раз больше мощности автомобиля;
- мощность космического корабля примерно в тысячу раз больше мощности самолета.
Мощность
Механическая работа всегда связана с движением тел. А движение происходит во времени. Поэтому и выполнение работы, как и превращение механической энергии, всегда происходит на протяжении определенного времени.
Работа выполняемая на протяжении определенного времени:
Простейшие наблюдения показывают, что время выполнения работы может быть разным. Так, школьник может подняться по лестнице на пятый этаж за 1-2 мин, а пожилой человек — не меньше чем за 5 мин. Грузовой автомобиль КрАЗ может перевезти определенный груз на расстояние 50 км за 1 ч. Но если этот груз частями начнет перевозить легковой автомобиль с прицепом, то потратит на это не меньше 12 ч.
Для описания процесса выполнения работы, учитывая его скорость, используют физическую величину, которая называется мощностью.
Что такое мощность
Мощность – это физическая величина, которая показывает скорость выполнения работы и равна отношению работы ко времени, за которое эта работа выполняется.
Так как при выполнении работы происходит превращение энергии, то можно считать, что мощность характеризует скорость превращения энергии.
Как рассчитать мощность
Для расчета мощности нужно значение работы разделить на время, за которое эта работа была выполнена:
Если мощность обозначить латинской буквой , то формула для расчета мощности будет такой
Единицы мощности
Для измерения мощности используется единица ватт (Вт). При мощности 1 Вт работа 1 Дж выполняется за 1 с:
Единица мощности названа в честь английского механика Джеймса Уатта, который внес значительный вклад в теорию и практику построения тепловых двигателей.
Джеймс Уатт (1736-1819) – английский физик и изобретатель.
Главная заслуга Уатта в том, что он отделил водяной конденсатор от нагревателя и сконструировал насос для охлаждения конденсатора. Фактически он увеличил разность температур между нагревателем и конденсатором (холодильником), благодаря чему увеличил экономичность паровой машины. Позже теоретически это обоснует Сади Карно.
Он один из первых высказал предположение, что вода – это сложное вещество, состоящее из водорода и кислорода.
Как и для других физических величин, для единицы мощности существуют производные единицы:
Пример №1
Определить мощность подъемного крана, если работу 9 МДж он выполняет за 5 мин.
Дано:
Решение
По определению поэтому
Ответ. Мощность крана 30 кВт.
Пример №2
Человек массой 60 кг поднимается на пятый этаж дома за 1 мин. Высота пяти этажей дома равна 16 м. Какую мощность развивает человек?
Дано:
Решение
По определению
Работа определяется
Тогда
Ответ. Человек развивает мощность 160 Вт.
Зная мощность и время, можно рассчитать работу:
Скорость движения зависит от мощности
Мощность связана со скоростью соотношением:
где — сила, которая выполняет работу; — скорость движения.
Если известны мощность двигателя и значения сил сопротивления, то можно рассчитать возможную скорость автомобиля или другой машины, которая выполняет работу:
Таким образом, из двух автомобилей при равных силах сопротивления большую скорость будет иметь тот, у которого мощность двигателя больше.
Каждый конструктор знает, что для увеличения скорости движения автомобиля, самолета или морского корабля нужно или увеличивать мощность двигателя, или уменьшать силы сопротивления. Поскольку увеличение мощности связано с увеличением потребления топлива, то средствам современного транспорта, как правило, придают специфическую обтекаемую форму, при которой сопротивление воздуха будет наименьшим, а все подвижные части изготавливают так, чтобы сила трения была минимальной.
Итоги:
- Существуют два вида механической энергии: кинетическая и потенциальная.
- Если тело перемещается или деформируется под действием силы, то выполняется механическая работа.
- Простыми механизмами являются рычаги и блоки.
- Ни один простой механизм не дает выигрыша в работе.
- Качество механизма определяется коэффициентом полезного действия, который определяет часть полезной работы в общей выполненной работе.
- Тело, при перемещении которого может быть выполнена работа, обладает энергией.
- Взаимодействующие тела обладают потенциальной энергией.
- Движущееся тело обладает кинетической энергией, которая зависит от скорости и массы тела.
- Потенциальная и кинетическая энергии могут превращаться друг в друга. Такие превращения происходят в равной мере, если отсутствуют силы трения.
- Сумму кинетической и потенциальной энергий называют полной механической энергией системы.
- В замкнутой системе при отсутствии сил трения сумма кинетической и потенциальной энергий остается постоянной.
- Закон сохранения и превращения энергии подтверждает невозможность существования вечного двигателя (perpetuum mobile).
- Мощность характеризует скорость превращения одного вида энергии в другой.
Механическая работа и мощность
С помощью импульса невозможно описать все случаи взаимодействия. Поэтому в физике применяют еще и понятие механической работы.
В механике работа зависит от значения и направления силы, а также перемещения точки ее приложения. Из курса физики 8 класса вам известно, что
A = Fs,
где F – значение силы, действующей на тело; s – модуль перемещения тела.
Если сила F постоянна, а перемещение прямолинейное (рис. 2.65), то работа
где s = – угол между направлением действия силы и перемещения.
Робота является величиной скалярной. Произведение – проекция действующей силы на направление перемещения.
Легко заметить, что если < 90°, то работа силы положительная, при = 90° (сила перпендикулярна к перемещению) работа равна нулю, а при – отрицательная.
Пример №3
Девочка тянет санки равномерно, прикладывая к веревке силу 50 Н. Веревка натягивается под углом 30° к горизонту (рис. 2.66). Какую работу выполнит девочка, переместив санки на 20 м?
Дано:
F = 50 Н,
s = 20 м, = 30°.
А-?
Решение
По определению
Соответственно
Ответ: А = 870 Дж (работа силы положительная, поскольку cos 30° > 0).
- Заказать решение задач по физике
Пример №4
Решим предыдущую задачу для случая, когда девочка удерживает санки, съехавшие с горки (рис. 2.67). В данном случае = 150°.
Дано:
F = 50 Н, s = 20 м,
= 150°.
А – ?
Решение
А = Fscosa;
А = 50 Н • 20 м • (-0,87) -870 Дж.
Ответ: А = -870 Дж (работа силы отрицательная, поскольку cos 150° < 0).
Таким образом, в зависимости от направления действия силы по отношению к перемещению работа может иметь положительные и отрицательные значения.
Например, работа, которую выполняет двигатель автомобиля, будет положительной, поскольку направление силы тяги автомобиля совпадает с направлением его движения. Положительной будет и работа человека, поднимающего какой-либо груз с земли на определенную высоту. Силы трения, действующие на автомобиль, выполняют отрицательную работу, поскольку направлены в противоположном направлении к перемещению.
Возможны случаи, когда работа равна нулю, хотя перемещение тела происходит. Например, если = 90°, то работа силы равна нулю, поскольку cos90° = 0. Сила тяжести, действующая на спутник Земли, который движется по круговой орбите, работы не выполняет.
Мощность — это физическая величина, характеризующая скорость совершения работы. Поскольку во время выполнения работы происходит превращение энергии, можно сделать вывод, что мощность показывает скорость превращения одного вида энергии в другой.
В механике мощность обозначают буквой N и рассчитывают по формуле
N= — =—,
t t
где – изменение энергии; А – работа; t – время.
Если известны мощность и время, за которое совершена работа, то можно рассчитать и саму работу:
A = Nt.
Основная единица измерения мощности – ватт (Вт):
Всё о мощности
Одна и та же работа в разных случаях может быть выполнена за различные промежутки времени, т. е. она может совершаться неодинаково быстро. Например, при подъеме груза на определенную высоту подъемным краном (рис. 148) будет затрачено гораздо меньше времени, чем при использовании лебедки.
Для характеристики процесса выполнения работы важно знать не только ее численное значение, но и время, за которое она выполняется. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.
Величина, характеризующая быстроту совершения работы, называется мощностью. Ее обычно обозначают буквой Р.
Если в течение промежутка времени Δt была совершена работа А, то средняя мощность равна отношению работы к этому промежутку времени:
Из определения видно, что мощность численно равна работе, совершаемой в единицу времени. Таким образом, единицей мощности является джоуль в секунду . Эта единица получила название ватт (Вт): 1 Вт = 1 . Это название дано в честь английского ученого Джеймса Уатта — изобретателя универсального парового двигателя. Уаттом была впервые введена единица мощности, которая и до сих пор используется для характеристики мощности различных двигателей — 1 лошадиная сила (1 л. с. = 736 Вт).
Понятно, что во времена Уатта на заре технической революции мощность построенной паровой машины было естественно сравнить с мощностью лошади — единственным в то время «двигателем».
Может ли человек развивать мощность, равную 1 л. с.? Ответ на этот вопрос положительный. Рассмотрим разбег спортсмена на короткие дистанции. Хорошие спортсмены дистанцию в 100 м пробегают за 10 с, т. е. их средняя скорость 10 . Разбег длится 3 с, а работа A, которую совершают мышцы спортсмена, не может быть меньше, чем кинетическая энергия , приобретенная им за время разбега. Следовательно, средняя мощность не меньше, чем
Если предположить, что масса спортсмена т = 80 кг, то
Разумеется, развивать такую мощность длительное время не сможет даже очень тренированный человек.Если известна мощность, то работа выражается равенством:
A = P∆t. (2)
Это позволяет ввести еще одну единицу работы (а значит, и энергии) следующим путем. За единицу работы можно принять работу, которая совершается некоторой силой в течение 1 с при мощности в 1 Вт. Она называется ватт-секундой. Понятно, что 1 Вт.c = 1 Дж. Часто используются более крупные внесистемные единицы работы и энергии: киловатт-час (кВт.ч) и мегаватт-час (МВт . ч):
1 кВт .ч= 1000кВт.3600 с = 3,6∙ 106 Дж;
1 МВт.ч= 1000кВт.3600 с = 3,6∙ 109 Дж.
При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.
Наиболее общее выражение для работы постоянной силы, направленной под углом к направлению движения. А = F∆rcos. Поэтому средняя мощность этой силы:
(3)
так как — модуль средней скорости тела.
Ясно, что если модуль силы в некоторой момент времени равен F и модуль мгновенной скорости υ, а угол между ними , то мгновенное значение мощности этой силы:
P = Fυcos. (4)
Как следует из формулы (4), при заданной мощности мотора сила тяги тем меньше, чем больше скорость движения автомобиля. Вот почему водители при подъеме в гору, когда нужна наибольшая сила тяги, переключают двигатель на пониженную передачу. Для движения по горизонтальному участку с постоянной скоростью достаточно, чтобы сила тяги преодолевала силу сопротивления движению. Формула (4) позволяет объяснить, что быстроходные поезда, автомобили, корабли, самолеты нуждаются в двигателях большой мощности и конструкции, обеспечивающей как можно меньшую силу сопротивления.
Любой двигатель или механическое устройство предназначены для выполнения определенной механической работы. Эта работа называется полезной работой. Для двигателя автомобиля — это работа по его перемещению, для токарного станка — работа по вытачиванию детали и т. п.
В любой машине, в любом двигателе полезная работа всегда меньше той энергии, которая затрачивается для приведения их в действие, потому что всегда существуют силы трения, работа которых приводит к нагреванию каких-либо частей устройства. А нагревание нельзя считать полезным результатом действия машины.
Поэтому каждое устройство характеризуется особой величиной, которая показывает, насколько эффективно используется подводимая к нему энергия. Эта величина называется коэффициентом полезного действия (КПД) и обычно обозначается греческой буквой η (эта).
Коэффициентом полезного действия называется отношение полезной )аботы, совершенной машиной за некоторый промежуток времени, ко всей утраченной работе (подведенной энергии) за тот же промежуток времени:
(5)
Коэффициент полезного действия обычно выражается в процентах, поскольку и полезную, и затраченную работы можно представить как произведение мощности на промежуток времени, в течение которого работала машина, то коэффициент полезного действия можно определить следующим образом:
где Pn и Р3 — полезная мощность и затраченная мощность соответственно.
Главные выводы:
- Мощность численно равна работе, которую совершает сила в единицу времени.
- Мощность силы равна произведению силы на скорость тела и косинус угла между направлением силы и скорости в данный момент времени.
- Коэффициентом полезного действия называется отношение полезной работы, совершенной машиной за некоторый промежуток времени, ко всей затраченной работе (подведенной энергии) за тот же промежуток времени.
- Взаимодействие тел
- Механическая энергия и работа
- Золотое правило механики
- Потенциальная энергия
- Криволинейное движение
- Ускорение точки при ее движении по окружности
- Инерциальные системы отсчета
- Энергия в физике
Содержание
- 1 Как находить среднее значение в физике?
- 2 Как найти среднее значение времени?
- 3 Как найти среднее значение чисел?
- 4 Что такое среднее значение в физике?
- 5 Как рассчитать среднее значение между двумя числами?
- 6 Как рассчитать среднее значение в Excel?
- 7 Как найти среднее значение за месяц?
- 8 Как найти среднее значение в ворде?
- 9 Как посчитать медиану?
- 10 Как вывести среднее значение?
- 11 Как найти среднее значение показателя?
- 12 Как найти среднее значение скорости?
- 13 Что такое среднее значение величины?
- 14 Что такое среднее значение в математике пример?
- 15 Что такое среднее арифметическое значение?
Как находить среднее значение в физике?
Чтобы найти среднее арифметическое, нужно сложить все числа и поделить их сумму на их количество.
Как найти среднее значение времени?
сложить все числа и поделить на их количество. Например возьмем твои числа (1,4,6,8). 1+4+6+8=19,так как у нас чисел 5 делим сумму на 5:19/5=3.8.
<-div id=”cnt_rb_259475″ class=”cnt32_rl_bg_str” data-id=”259475″>
Как найти среднее значение чисел?
Среднее значение Это арифметическое и вычисляется путем с добавления группы чисел и деления на их количество. Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6. Медиана Среднее число числа.
Что такое среднее значение в физике?
В теории вероятностей и статистике
среднее значение случайной величины — то же, что математическое ожидание случайной величины. По сути — среднее значение её функции распределения.
Как рассчитать среднее значение между двумя числами?
Чтобы найти среднее арифметическое двух чисел, надо сложить эти числа и результат разделить на 2: (33,3 + 55,5) : 2 = 88,8 : 2 = 44,4.
Как рассчитать среднее значение в Excel?
Ставим курсор в ячейку А2 (под набором чисел). В главном меню – инструмент «Редактирование» — кнопка «Сумма». Выбираем опцию «Среднее». После нажатия в активной ячейке появляется формула.
Как найти среднее значение за месяц?
Первым способом является вычисление уже упомянутого среднего арифметического, являющегося суммой всех значений, деленной на их количество.
- x – среднее арифметическое;
- xn – конкретное значение;
- n – количество значений .
Как найти среднее значение в ворде?
Чтобы вычислить среднее арифметическое в строке или столбце, ставим курсор в их последнюю ячейку, открываем окно «Формула» («Работа с таблицами» — вкладка «Макет» — раздел «Данные» — кнопка «Формула»).
Как посчитать медиану?
Медианой (серединой) набора чисел называется число стоящее посередине упорядоченного по возрастанию ряда чисел. Если количество чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел.
Как вывести среднее значение?
Чтобы найти среднее арифметическое, нужно сложить все числа и поделить их сумму на их количество.
Как найти среднее значение показателя?
В математике среднее арифметическое — это среднее число, которое получается, если сложить несколько чисел и разделить результат на количество этих чисел. Это не единственный способ вычисления среднего числа, но именно о нем большинство людей думает, когда речь идет о среднем.
Как найти среднее значение скорости?
Чтобы найти среднюю скорость, нужно разделить весь путь, пройденный объектом, на все время его движения.
Что такое среднее значение величины?
Среднее значение — Среднее значение числовая характеристика множества чисел или функций; некоторое число, заключённое между наименьшим и наибольшим из их значений.
Что такое среднее значение в математике пример?
Среднее арифметическое – это частное от деления суммы чисел на их количество. Пример 1. Найти среднее арифметическое двух чисел: 4 и 6.
Что такое среднее арифметическое значение?
Средним арифметическим нескольких чисел называют сумму этих чисел, делённую на количество слагаемых. Среднее арифметическое = сумма всех чисел количество слагаемых .
В этой главе…
- Приглядываемся к работе силы
- Изучаем отрицательную работу
- Оцениваем кинетическую энергию
- Приобретаем потенциальную энергию
- Постигаем консервативные и неконсервативные силы
- Вычисляем механическую энергию и мощность
С работой в обыденном смысле мы сталкиваемся всякий раз, например, когда приходится решать задачи по физике. Нужно брать книги, калькулятор, бумагу с ручкой, а потом потеть и корпеть над задачей. После получения решения мы выполнили вполне определенную работу, но… совсем не в том смысле, в котором термин “работа” определяется в физике.
В физике работой называется произведение прилагаемой силы и перемещения, выполняемого этой силой. Помимо понятия “работа” в этой главе рассматриваются связанные с ней понятия потенциальной и кинетической энергии, консервативной и неконсервативной силы, а также механической энергии и мощности. Пора приступать к… работе!
Содержание
- Работа: не совсем то, о чем вы подумали
- Работаем в разных системах единиц измерения
- Толкаем груз
- Тянем груз под углом
- Выполняем отрицательную работу
- Получаем компенсацию в виде кинетической энергии
- Запоминаем формулу кинетической энергии
- Используем соотношение для кинетической энергии
- Вычисляем кинетическую энергию объекта по результирующей силе
- Сохраняем энергию: потенциальная энергия
- Работа против силы тяжести
- Преобразуем потенциальную энергию в кинетическую
- Выбираем путь: консервативные и неконсервативные силы
- Как ни крути, а энергия сохраняется
- Определяем конечную скорость с помощью закона сохранения энергии
- Определяем максимальную высоту подъема с помощью закона сохранения энергии
- Мощность: ускоряем темп работы
- Единицы измерения мощности
- Вычисляем мощность другими способами
Работа: не совсем то, о чем вы подумали
Итак, работа ( W ) — это произведение прилагаемой силы ( mathbf{F} ) и перемещения ( mathbf{s} ), выполняемого этой силой. Точнее говоря речь идет о проекции прилагаемой силы на направление перемещения, т.е. ( W=Fscostheta ), где ( theta ) — угол между векторами силы ( mathbf{F} ) и перемещения ( mathbf{s} ). С точки зрения физика, работа равна произведению компоненты силы в направлении перемещения и величины перемещения.
Прежде чем переходить к подробному рассмотрению особенностей работы, познакомимся с единицами измерения работы в разных системах единиц измерения.
Работаем в разных системах единиц измерения
Работа является скалярной, а не векторной величиной, т.е. она имеет величину, но не имеет направления (подробнее скаляры и векторы рассматриваются в главе 4). Согласно формуле ( W=Fscostheta ), работа измеряется в единицах “Н·м” в системе СИ или в единицах “г·см2/с2” — в системе СГС. Но с такими единицами не очень удобно работать, и физики для измерения работы используют специальную единицу измерения — джоуль (или сокращенно Дж) в системе СИ. Иначе говоря, в системе СИ 1 Дж = 1 Н · 1 м.
В системе СГС работа измеряется в единицах “г·см2/с2”. Вместо нее для удобства физики также используют специальную единицу измерения — эрг (неплохое название для единицы работы, поскольку очень похоже на энергичное междометие, произнесенное во время подъема тяжелого груза). Иначе говоря, 1 эрг = 1 дин · 1 см. В системе фут-фунт-секунда работа измеряется в единицах “фунт-фут”. (Эти системы единиц подробно описываются в главе 2 .)
Толкаем груз
Не такая уж и легкая работа — держать тяжелый груз, например большие гантели, на вытянутых вверх руках. Однако с точки зрения физики, несмотря на приложенную силу, здесь нет никакого перемещения, а значит, нет и работы. Хотя с точки зрения биологии здесь выполняется огромная работа, но с точки зрения физики работы нет, если нет перемещения. Даже с точки зрения химии наше тело поставляет огромное количество энергии нашим мышцам для удержания груза. Но, несмотря на очевидную физическую усталость, работа с точки зрения физики не выполняется.
Для работы необходимо движение. Представьте, что вы нашли огромный слиток золота и толкаете его домой, как показано на рис. 8.1. Какую работу придется при этом выполнить? Во-первых, нужно определить силу, которую нужно приложить к слитку.
Пусть коэффициент трения скольжения, ( mu_c ) (подробнее об этом см. главу 6), между поверхностями слитка и дороги равен 0,25, а слиток имеет массу 1000 кг. Итак, какую силу нужно приложить к слитку, чтобы поддерживать его движение вопреки силе трения скольжения ( F_{трение} )? Начнем поиск ответа на этот вопрос со следующей формулы, известной нам из главы 6:
где ( F_н ) — это нормальная сила.
Предполагая, что поверхность дороги абсолютно плоская, получим, что нормальная сила ( F_н ) равна произведению массы слитка ( m ) на ускорение свободного падения ( g ) под действием силы гравитационного притяжения (силы тяжести) между слитком и Землей:
Подставляя численные значения, получим:
Итак, для преодоления силы кинетического трения нужно приложить силу 2450 Н. Допустим, что длина пути до вашего дома равна 3 км. Какую работу придется проделать, чтобы дотолкать этот слиток золота домой? Поскольку угол ( theta ) между направлением прилагаемой силы ( mathbf{F} ) и перемещением ( mathbf{s} ), выполняемым под действием этой силы, равен нулю, то формула работы ( W=Fscostheta ) упрощается, поскольку ( costheta ) = 1. Подставляя численные значения, получим:
Итак, потребуется выполнить работу, равную 7,35·106 Дж, чтобы дотолкать этот слиток золота домой. Насколько это много? Чтобы поднять груз массой 1 кг на высоту 1 м, требуется выполнить работу около 9,8 Дж. Теперь понятно: чтобы дотолкать слиток золота домой, потребуется выполнить приблизительно в 750 тыс. раз большую работу.
Работу измеряют также в калориях (или сокращенно кал), причем 1 кал = 4,186 Дж. Эту единицу измерения используют также для измерения энергии, и ее часто можно встретить на упаковках продуктов питания. Так вот, чтобы дотолкать слиток золота домой, вам потребуется потратить 1,755·106 калорий, или 1755 Ккал (т.е. килокалорий, где 1 килокалория = 1 Ккал). Забегая вперед, скажем, что в электротехнике для измерения работы и энергии используется единица “киловатт·час” (кВт·ч), которая равна 3,6·106 Дж. Итак, для выполнения этой работы потребуется около 2 кВт·ч. (Более подробно эти и другие единицы измерения описываются в конце этой главы и в главе 13.)
Тянем груз под углом
А может, попробовать не толкать, а тянуть слиток золота с помощью веревки, как показано на рис. 8.2?
Поскольку веревка направлена под углом ( theta ) к направлению перемещения, то нам для вычисления работы придется использовать формулу:
где ( F_{натяжение} ) — это сила натяжения веревки.
Допустим, что нить привязана к центру слитка. Поскольку вертикальная компонента силы натяжения веревки ( F_{натяжение}sintheta ) направлена вверх, то она частично компенсирует нормальную силу. В конечном итоге вертикальная компонента силы натяжения веревки ( F_{натяжение}sintheta ) уменьшает силу трения:
Для перемещения слитка в данном случае горизонтальная компонента силы натяжения ( F_{натяжение}costheta ) должна компенсировать силу трения:
Из двух последних соотношений получаем, что:
и необходимая сила натяжения веревки равна:
В предыдущем примере (где прилагаемая сила не имела наклона) прилагаемая сила компенсировала силу трения ( F_{натяжение(прежнее)}=mu_cmg ) и была равна 2450 Н.
Следовательно, теперь необходимая сила натяжения веревки равна:
(Обратите внимание на следующие интересные особенности использования веревки, которую тянут под углом к горизонтали. Во-первых, при наклоне 10° потребуется приложить меньшую силу, чем при толкании слитка без наклона. Во-вторых, минимальное значение силы натяжения веревки достигается при максимальном значении знаменателя ( mu_csintheta+costheta ), когда ( mu_c=tg,theta ), т.е. для ( mu_c ) = 0,25 при угле ( theta ) ≈ 14°, а сама минимальная сила натяжения веревки равна 2376 Н. — Примеч. ред.)
Выполняем отрицательную работу
Представьте себе, что вы купили огромный телевизор массой 100 кг, вам нужно поднять его с пола и занести его наверх по ступенькам, поднимая приблизительно на высоту около 0,5 м. Какую работу нужно выполнить, если предполагается, что ее придется выполнять для преодоления силы тяжести ( F=mg ), где ( m ) — это масса телевизора, a ( g ) — ускорение свободного падения?
В таком случае работа равна:
Допустим, что груз оказался слишком тяжелым (не удивительно, ведь телевизор весит 100 кг!) и его пришлось опустить снова на пол. Какую работу нужно выполнить, чтобы опустить телевизор? Верите или нет, но эта работа будет отрицательной! Действительно, теперь вектор силы направлен противоположно вектору перемещения, т.е. угол между этими векторами ( theta ) = 180°, a ( cos )180° = -1.
Поэтому в этом случае работа равна:
Общая работа ( W=W_1+W_2=0 ). Нулевая работа? Да, с точки зрения физики общая работа в этом случае равна нулю.
Если компонента вектора силы направлена в том же направлении, что и компонента вектора перемещения, то работа будет положительной. А если они направлены в противоположные стороны, то работа будет отрицательной.
Получаем компенсацию в виде кинетической энергии
Если сила, приложенная к объекту, больше силы сопротивления, например силы трения или силы тяжести, то результирующая сила приводит объект в движение. Соответствующая работа этой силы приводит к увеличению скорости объекта, т.е. увеличению его энергии движения или, иначе говоря — кинетической энергии. Здесь кинетической энергией называется способность объекта совершать некую работу за счет энергии его движения.
Представьте себе мячик для игры в гольф, который движется по окружности, как показано на рис. 8.3. Причем в самой нижней точке траектории скорость мячика максимальна, а в самой верхней точке — минимальна, например равна нулю. С точки зрения физики в самой нижней точке траектории мячик имеет бОльшую кинетическую энергию, чем в самой верхней точке, где она равна нулю. Куда пропадает и откуда снова берется кинетическая энергия при периодическом вращательном движении по этой траектории?
На самом деле энергия никуда не пропадает и ниоткуда не берется. Она просто переходит из одной формы в другую. В самой высокой точке энергия переходит из кинетической формы в потенциальную, а в самой нижней — наоборот, из потенциальной формы в кинетическую. Потенциальной энергией называется способность объекта совершить работу при изменении его координат под действием силы, т.е. в данном случае при перемещении вниз под действием силы тяжести. (Более подробно потенциальная энергия описывается далее в этой главе.)
Допустим, что в самой нижней точке траектории мячик имеет кинетическую энергию 20 Дж. В самой верхней точке кинетическая энергия равна 0 Дж. В таких случаях говорят, что 20 Дж кинетической энергии преобразуется в 20 Дж потенциальной энергии. А в самой нижней точке наоборот: 20 Дж потенциальной энергии преобразуется в 20 Дж кинетической энергии. Такое взаимное превращение энергии из одной формы в другую без потерь называется законом сохранения энергии. (Более подробно он описывается далее.)
А что происходит с кинетической энергией при наличии силы трения, как в предыдущем примере со слитком на горизонтальной плоскости? Если на движущийся слиток не действует никакая движущая сила, то его скорость постепенно уменьшается. Дело в том, что его кинетическая энергия рассеивается на нагрев соприкасающихся поверхностей объекта и плоскости.
Итак, после предварительного знакомства с превращениями энергии попробуем подсчитать ее величину.
Запоминаем формулу кинетической энергии
Работа по ускорению объекта тратится на увеличение его скорости или, как говорят физики, на увеличение кинетической энергии:
Кинетическую энергию ( K ) можно легко вычислить, зная массу ( m ) и скорость ( v ) объекта.
Как получить связь между кинетической энергией и работой? Как известно, связь между силой и ускорением имеет вид:
Работа силы при перемещении объекта равна:
Предположим, что сила прилагается в том же направлении, в котором происходит перемещение объекта (( costheta ) = 1), то есть:
Из главы 3 нам известно следующее соотношение между начальной ( v_1 ) и конечной ( v_2 ) скоростями объекта, перемещающегося с ускорением ( a ) на расстояние ( s ):
Иначе говоря, получаем:
Подставляя это соотношение для ускорения в формулу для работы, получим:
Используем соотношение для кинетической энергии
Попробуем определить кинетическую энергию пули с массой 10 г, которая вылетает из ствола пистолета со скоростью 600 м/с. Зная формулу кинетической энергии, подставим в нее численные значения (не забудьте преобразовать 10 грамм в 0,01 килограмма) и получим:
Маленькая пуля массой всего 10 г обладает очень большой энергией 1800 Дж.
Выражение для кинетической энергии можно применять для вычисления скорости, приобретенной объектом после выполнения некоторой работы по его ускорению. Предположим, что вы находитесь в космическом корабле на околоземной орбите и должны запустить искусственный спутник. Нужно открыть створки грузового отсека вашего космического корабля, выгрузить спутник массой 1000 кг и выполнить работу, прилагая силу 2000 Н на расстоянии 1 м. Какую скорость приобретет спутник в результате этой работы?
Как известно, работа определяется следующей формулой:
Поскольку сила прилагается в том же направлении, в котором происходит перемещение спутника (( costheta ) = 1), то:
Подставляя численные значения, получим:
Эта работа приводит к разгону спутника, т.е. работа преобразуется в кинетическую энергию спутника:
Отсюда легко можно определить искомую скорость спутника:
Такой будет скорость спутника относительно космического корабля.
Учтите, что работа может иметь и отрицательный знак, если, например, нужно затормозить движущийся спутник. Действительно, для этого придется приложить силу, направленную против перемещения. В этом случае приращение кинетической энергии спутника также будет иметь отрицательную величину.
В этом примере мы учли только одну силу, а в реальном мире на любой объект действует сразу несколько сил.
Вычисляем кинетическую энергию объекта по результирующей силе
Допустим, что вам нужно найти общую работу всех сил, приложенных к объекту, и определить полученную кинетическую энергию объекта. В примере из главы 6 со слитком на наклонной плоскости на слиток в направлении, перпендикулярном к наклонной плоскости, действуют нормальная сила и компонента силы тяжести. Обе эти силы компенсируют друг друга в этом направлении. Слиток не перемещается в направлении, перпендикулярном к наклонной плоскости. Это значит, что эти две силы не выполняют работу и не придают слитку кинетическую энергию.
На рис. 8.4 показан уже знакомый нам пример с холодильником на наклонной плоскости. Допустим, что холодильник нужно спустить по наклонной плоскости, удерживая его с помощью каната с силой натяжения ( F_н ). Попробуем с помощью формул работы результирующей силы и кинетической энергии определить скорость холодильника в самом конце наклонной плоскости.
Какова результирующая сила, которая действует на холодильник? Из главы 6 мы уже знаем, что компонента силы тяжести вдоль наклонной плоскости равна:
где ( m ) — это масса холодильника, a ( g ) — ускорение свободного падения. Нормальная сила (см. главу 6) равна:
А сила трения скольжения (см. главу 6) равна:
где ( mu_c ) — коэффициент трения скольжения. Результирующая сила ( F_{рез} ) направлена вдоль наклонной поверхности и равна:
Большая часть пути пройдена! Если угол наклона плоскости ( theta ) = 30°, а коэффициент трения скольжения ( mu_c ) = 0,15, то, подставляя численные значения, получим:
Итак, результирующая сила, которая действует на холодильник, равна 363 Н. Она действует на всем протяжении наклонной плоскости, т.е. 3 м, и совершаемая ею работу равна:
Если вся эта работа тратится на ускорение холодильника, то она преобразуется в кинетическую энергию, то есть:
Отсюда легко найти финальную скорость холодильника:
Итак, в конце наклонной плоскости холодильник будет иметь скорость 4,67 м/с.
Сохраняем энергию: потенциальная энергия
Объекты могут обладать не только энергией движения, т.е. кинетической энергией, но и энергией положения, т.е. потенциальной энергией. Эта энергия имеет такое название потому, что может быть преобразована (т.е. имеет потенциал преобразования) в кинетическую или другую энергию.
Представьте себе, что вы катаете с горки маленького ребенка. Для подъема на горку вам придется совершить определенную работу. Чем выше стартовая позиция малыша, тем большую скорость он приобретает в конце горки. Выше, еще выше, еще выше… Обычно на каком-то из этих этапов эксперименты решительно прекращается взволнованной мамой малыша.
Что же происходило на горке (до появления мамы)? Откуда возникла кинетическая скорость малыша? Она произошла от работы против силы тяжести, которую вы совершили по подъему малыша на горку. Действительно, малыш, сидя в стартовой позиции в верхней части горки, обладает нулевой скоростью и нулевой кинетической энергией. Выполнив работу против силы тяжести по подъему малыша наверх, вы тем самым увеличили его (и свою) потенциальную энергию. И только после спуска вниз под действием силы тяжести малыш приобретает кинетическую энергию в результате преобразования этой потенциальной энергии.
Работа против силы тяжести
Какую работу нужно выполнить против силы тяжести? Допустим, что вам нужно переместить тяжелое ядро с пола на верхнюю полку на высоту ( h ). Необходимая для этого работа ( W ) силы ( mathbf{F} ) при перемещении на расстояние ( mathbf{s} ) при угле между их векторами ( theta ) выражается формулой:
В данном случае сила тяжести ( mathbf{F = mg} ), а угол ( theta ) между векторами ( mathbf{F} ) и ( mathbf{s} ) можно выразить с помощью разности высот ( h=scostheta ) между полом и верхней полкой.
Таким образом, работа против силы тяжести по перемещению тяжелого ядра с пола на верхнюю полку на высоту ( h ) равна:
Если ядро упадет с верхней полки на пол, то какую скорость оно разовьет, т.е. какую кинетическую энергию приобретет ядро? Запомните: оно приобретет кинетическую энергию, равную разнице потенциальных энергий, т.е. ( mgh ). Это значит, что затраченная работа на подъем ядра преобразуется в кинетическую энергию в точке соприкосновения ядра с полом.
Вообще говоря, объект с массой ( m ) вблизи поверхности Земли, где ускорение свободного падения ( g ) постоянно, при перемещении вверх на высоту ( h ) приобретает потенциальную энергию ( U ), равную ( mgh ). Если вы перемещаете объект вертикально против силы тяжести с высоты ( h_0 ) на высоту ( h_1 ) то изменение его потенциальной энергии равно:
Работа по преодолению силы тяжести тратится на увеличение потенциальной энергии объекта.
Преобразуем потенциальную энергию в кинетическую
Объект может характеризоваться разными видами потенциальной энергии в зависимости от типа сил, которые действуют на него. Действительно, работа может выполняться не только против силы тяжести, но, например, и против силы упругости пружины. Однако в задачах по физике источником потенциальной энергии чаще всего является сила тяжести. В этом случае на поверхности Земли потенциальную энергию принято считать равной нулю, а этот уровень потенциальной энергии называют нулевым. Тогда говорят, что на высоте ( h ) объект с массой ( m ) обладает потенциальной энергией ( mgh ).
Допустим, что ядро с массой 40 кг падает с высоты 3 м на пол. Какую скорость оно приобретет при касании с полом? В данном случае его потенциальная энергия ( U ), равная
преобразуется в кинетическую ( K ), т.е.:
Поэтому, используя сведения из предыдущего раздела, можно вычислить финальную скорость в момент касания пола:
Подставляя численные значения, получим:
Падающее на пол ядро с массой 40 кг и скоростью 7,67 м/с — это впечатляющее зрелище, но не совсем приятное, если на пути ядра находится ваша нога. Учтите это и постарайтесь не допустить нежелательной встречи.
Выбираем путь: консервативные и неконсервативные силы
Если работа силы при перемещении объекта определяется только начальной и конечной координатами объекта и не зависит от траектории перемещения, то такая сила называется консервативной. Примером консервативной силы является сила гравитационного притяжения. А сила трения не является такой, поскольку совершаемая ею работа зависит от траектории перемещения. Сила трения является неконсервативной.
Допустим, что две группы друзей решили покорить небольшую гору высотой ( h_1 ) стартуя с места на высоте ( h_0 ). Одна группа пошла коротким и крутым путем, а другая — длинным, но более пологим и живописным. Обе группы встретились наверху и решили сравнить увеличение потенциальной энергии ( Delta{U} ). “Наша потенциальная энергия увеличилась на ( mg(h_1-h_0) )”, — сказали одни. “Наша потенциальная энергия тоже увеличилась на ( mg(h_1-h_0) )”, — ответили другие.
Действительно, согласно рассуждениям в прежнем разделе, изменение потенциальной энергии выражается следующей формулой:
Это уравнение фактически означает, что независимо от выбранного пути на вершину горы, на увеличение потенциальной энергии путников влияет только разница между высотой исходной точки ( h_0 ) и высотой вершины ( h_1 ). Именно потому, что работа против силы гравитационного притяжения не зависит от выбранного пути, эта сила является консервативной силой.
А вот еще один пример проявления консервативности силы тяжести. Предположим, что вы отдыхаете в отеле в одной из горных деревушек в Альпах и решили прогуляться на машине по долине, а затем по близлежащим перевалам и горным вершинам. За день вы множество раз совершали спуск и подъем, а к вечеру вернулись к исходному месту — к своему отелю. Чему в итоге равно изменение вашей потенциальной энергии? Иначе говоря, каков результат всей дневной работы против силы тяжести? Ответ прост: поскольку сила тяжести является консервативной и вы вернулись в исходную точку, то изменение потенциальной энергии равно 0. Результирующая работа против силы тяжести равна 0.
Конечно, на всем пути со стороны дороги на автомобиль действовала нормальная сила, но она всегда направлена перпендикулярно дороге и перемещению, а потому не совершает работы.
С консервативными силами удобно работать, поскольку они не допускают “утечки” энергии вдоль замкнутого пути перемещения, когда конечная точка перемещения совпадает с исходной (работа консервативных сил по замкнутому пути равна нулю). Однако все гораздо сложнее с такими силами, как сила трения скольжения или сила сопротивления воздуха. Если тянуть тяжелый груз по шершавой поверхности, то работа против сил трения будет очень сильно зависеть от выбранного пути и не будет равной нулю для замкнутого пути. В этом случае мы имеем дело с неконсервативной силой, работа против которой зависит от выбранного пути.
Рассмотрим подробнее силу трения, как типичный пример неконсервативной силы. При совершении работы против силы трения происходит “утечка” механической энергии объекта, которая объединяет кинетическую и потенциальную энергии. При совершении работы при перемещении объекта с трением часть работы рассеивается в виде тепла. Забегая вперед, следует сказать, что закон сохранения полной энергии при этом не нарушается, если учесть преобразование части работы в тепловую энергию.
Как ни крути, а энергия сохраняется
Механической энергией называется сумма потенциальной и кинетической энергии объекта. Благодаря закону сохранения этой полной механической энергии, процедура решения задач по физике существенно упрощается. Рассмотрим поподробнее этот закон.
Пусть тележка на аттракционе “Американские горки” в разных точках 1 и 2 на разных высотах ( h_1 ) и ( h_2 ) имеет разные скорости ( v_1 ) и ( v_2 ). Полная механическая энергия тележки ( E_1 ) в точке 1 равна:
а полная механическая энергия тележки ( E_2 ) в точке 2 равна:
Чему равна разница между величинами ( E_1 ) и ( E_2 ). При наличии неконсервативных сил эта разница должна быть равна работе ( W_{неконс} ) этих сил
С другой стороны, если неконсервативные силы отсутствуют, т.е. ( W_{неконс} ) = 0, то:
или:
или:
Именно эти равенства представляют собой закон сохранения механической энергии. Если работа неконсервативных сил равна нулю, то полная механическая энергия сохраняется. (Закон сохранения механической энергии гласит, что при наличии консервативных сил полная энергия остается неизменной, а могут происходить только превращения потенциальной энергии в кинетическую и обратно. — Примеч. ред.)
Иногда удобно сократить массу ( m ) в следующей формулировке закона сохранения энергии:
и использовать более простую формулировку:
Определяем конечную скорость с помощью закона сохранения энергии
Совсем непросто проводить физические эксперименты на аттракционе “Американские горки”. Но ведь кто-то должен их делать! Представьте себе, что вы находитесь в тележке, которая практически без трения скользит по рельсам вниз с высоты ( h_1 ) = 400 м. Предположим, что где-то на полпути вниз выходит из строя спидометр и уже нельзя определить скорость тележки по приборам. Как вычислить скорость ( v_2 ) в самой нижней точке спуска ( h_2 )? Нет проблем. Все, что нам нужно, это закон сохранения энергии. Согласно этому закону, полная механическая энергия объекта должна сохраняться, если равна нулю работа всех неконсервативных сил. Из предыдущего раздела нам уже знакома следующая сокращенная формулировка закона сохранения энергии:
Для простоты предположим, что начальная скорость ( v_1 ) = 0, а высота самой нижней точки спуска ( h_2 ) = 0. Тогда предыдущее уравнение существенно упрощается:
Откуда очень легко получить формулу для конечной скорости:
Подставляя численные значения, получим:
Итак, скорость тележки в самой нижней точке спуска на аттракционе “Американские горки” будет равна 89 м/с или около 320 км/ч. Довольно быстро: дух перехватит даже у самых отчаянных смельчаков!
Определяем максимальную высоту подъема с помощью закона сохранения энергии
Помимо определения конечной скорости, с помощью закона сохранения энергии можно также определить максимальную высоту подъема. Предположим, что Тарзан находится у кишащей крокодилами реки и хочет с помощью гибкой лианы перепрыгнуть с низкого берега на другой более высокий берег, высота которого на 9 м больше. Пусть максимальная скорость ( v_1 ), с которой он может разогнаться на низком берегу (т.е. в самой нижней точке траектории), равна 13 м/с. Достаточно ли этой скорости, чтобы запрыгнуть на противоположный высокий берег? Попробуем применить известную нам сокращенную формулировку закона сохранения энергии:
Предположим, что высота начального положения ( h_1 ) = 0. Чтобы определить максимально возможную высоту конечного положения на другом высоком берегу, следует предположить, что конечная скорость ( v_2 ) = 0. При таких условиях прежняя формула существенно упрощается:
Отсюда очень легко получить формулу для высоты конечного положения ( h_2 ) на другом берегу:
Подставляя численные значения, получим:
Итак, Тарзану не хватит 40 см, чтобы с максимальной скоростью разгона 13 м/с запрыгнуть на другой берег с помощью лианы.
Мощность: ускоряем темп работы
Иногда нужно знать не только объем работы, но и темп, с которым она выполняется. Скорость выполнения работы за единицу времени называется мощностью. Она выражается следующей простой формулой:
где ( W ) — это работа, выполненная за время ( t ).
В качестве примера рассмотрим два гоночных катера, способных развивать скорость до 200 км/ч. Какой из них обладает более мощным мотором? Конечно тот, который быстрее разгоняется до максимальной скорости, т.е. быстрее проделывает одинаковую работу по ускорению катера.
Если с течением времени скорость выполнения работы меняется, то в таких случаях часто используют понятие средней мощности, т.е. отношения всей выполненной работы ( W ) за все время ( t ):
Усредненные величины в физике принято обозначать знаком подчеркивания над соответствующей величиной. Прежде, чем приступать к применению понятии мощности, следует познакомиться с единицами измерения мощности.
Единицы измерения мощности
Поскольку мощность— это работа за единицу времени, то единицей измерения мощности является Дж/с, т.е. единица работы (джоуль), деленная на единицу времени (секунда), или ватт (Вт).
Обратите внимание, что поскольку работа и время являются скалярными величинами (подробнее о скалярах рассказывается в главе 4), то и мощность является скалярной величиной. Кроме ватта, для измерения мощности по историческим причинам часто используется единица “лошадиная сила” (л.с.), которая приблизительно равна 745,7 Вт. (Физики очень редко пользуются этой единицей из-за ее неоднозначного определения. Например, в метрической системе единиц измерения она равна 735,49875 Вт и получила название “метрической” лошадиной силы, а в английской системе единиц измерения — 745,6998 Вт и более известна под названием “механической” лошадиной силы. Кроме того, существуют “электрическая” (746 Вт) и даже “бойлерная” (9810 Вт) лошадиные силы. Однако, несмотря на эти различия, по историческим причинам единица “лошадиная сила” получила широкое распространение, особенно в автомобильной промышленности. — Примеч. ред.)
Предположим, что среднестатистическая лошадь массой ( m_л ) = 500 кг способна разогнать себя и санки массой ( m_с ) = 500 кг от скорости ( v_1 ) = 1 м/с до скорости ( v_2 ) = 2 м/с за время ( t ) = 2 с. Какой мощностью обладает эта лошадь? Берем формулу работы:
и, подставляя в нее эти значения, получим:
А теперь, зная работу, вычислим мощность лошади:
Совсем неплохо для среднестатистической лошади иметь мощность чуть больше 1 л.с.!
Вычисляем мощность другими способами
Поскольку работа равна произведению силы и времени, то формулу для мощности можно записать следующим образом:
Однако скорость ( v = s/t ), и потому:
Интересный результат, не так ли? Оказывается, что мощность равна произведению скорости и силы. Аналогичную формулу можно использовать и для вычисления средней мощности ( overline{P} ) , если прикладываемая сила ( F ) постоянна:
Глава 8. Выполняем работу
3.3 (66.43%) 28 votes
Поступательное движение (м.т.)
Пусть под действием постоянной силы F
тело прошло путьDs
в направлении линии действия силы,
тогдаработа силы по определению:
A= FDs
(3.4.1)
Если
перемещение и сила направлены под углом
друг к другу (рис.11), то
A= FDs
cosa
=FsDs
(3.4.2)
Fs– проекция силы на направление
перемещения, иногда ее называют движущей
силой. Работа – скалярная величина:A>0
при условии 0£a<900;A<0 приp/2a£p;A
= 0 приa=p/2,
т.е. сила, направленная перпендикулярно
перемещению, работу не совершает. В СИ
работа измеряется в джоулях (Дж): 1 Дж =
1Н. 1с.
Если
во время движения сила, а также угол aизменяются (сила переменная, траектория
криволинейная), то поступают так.
Разбивают путь на сумму столь малых
(элементарных) участковds,
на каждом из которых сила и угол ее
наклона еще не успели заметно измениться,
вычисляют работу на таком элементарном
участке:dA =Fsds,
а затем суммируют все элементарные
работы.Формула работы переменной
силы при перемещении тела из точки с
координатойs1в точку с координатойs2::
(3.4.3)
Отметим,
что силаи перемещение–
векторы, и||=ds, так что в формуле
(2.4.3) можно использовать скалярное
произведение этих векторов:Fsds=.
Напомним геометрический смысл
определенного интеграла – это площадь,
заштрихованная на рис. 12. Работа при
перемещении по траектории складывается
из элементарных работ на элементарных
участках траектории, каждому из которых
соответствует определенное состояние
тела. Любое изменение состояния
называется процессом, и работа –
характеристика процесса.
Мощность N –
интенсивность совершения работы.Средняя мощность
<N>=
(3.4..4)
Здесь
A– работа, совершенная
за времяt. В СИ мощность
измеряют в ваттах (Вт): 1Вт=1Дж/1с. На
технических устройствах указывают их
среднюю мощность, которая реализуется
при их работе.Мгновенная мощностьзависит от скорости движения и равна:
N=
(3.4.5)
Из
формулы (3.4.5) следует, что мгновенная
мощность мотора автомобиля при разгоне
растет даже при неизменной силе тяги
мотора.
Вращательное
движение
При
вращении тела работу совершает момент
силы. Формула работыпри вращении
тела под действием момента силыМиз начального положения с угловой
координатойj1
в конечное положение с угловой
координатойj2
принимает вид:
(3.4.6)
Для
постоянного момента силы:
A=MDj
(3.4.7)
Мощность
при вращении:
(3.4.8)
§ 3.5. Механическая энергия.
Энергия – важная характеристика
состояния тела, и она широко используется
не только в физике, но и во всех других
областях жизни. Энергия – физическая
величина, характеризующая способность
тела совершать работу. Механика
рассматривает два вида энергии –
кинетическую и потенциальную. Их сумма
образует полную механическую энергию
тела. Энергия тела уменьшается, когда
тело совершает работу против внешних
сил, и увеличивается, когда внешние силы
совершает работу над телом. Работа –
это способ изменения энергии тела,
передачи энергии от одного тела к
другому. Энергия и работа имеют одинаковую
единицу измерения. Мы отмечали, что
работа сопровождается изменением
состояния тела, она – характеристика
процесса. Энергия определяется состоянием
тела, ее называют функцией состояния.
При переходе тела из одного состояния
в другое разность его энергий в конечном
и начальном состояниях называют
изменением энергии. Свойство функции
состояния – ее изменение одинаково для
любых процессов, связывающих эти два
состояния.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.
Работы силы, формула
Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).
Рис. 1. Сила перемещает тело и совершает работу
Работа силы — это скалярное произведение вектора силы на вектор перемещения.
Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:
Векторный вид записи
[ large boxed{ A = left( vec{F} , vec{S} right) }]
Для решения задач правую часть этой формулы удобно записывать в скалярном виде:
[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]
( F left( H right) ) – сила, перемещающая тело;
( S left( text{м} right) ) – перемещение тела под действием силы;
( alpha ) – угол между вектором силы и вектором перемещения тела;
Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.
В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.
Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.
Рассмотрим несколько случаев, следующих из формулы:
- Когда угол между силой и перемещением острый, работа силы положительная;
- А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
- Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
Работа — разность кинетической энергии
Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.
Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость
Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.
( E_{k1} left(text{Дж} right) ) – начальная кинетическая энергия машины;
( E_{k2} left(text{Дж} right) ) – конечная кинетическая энергия машины;
( m left( text{кг}right) ) – масса автомобиля;
( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.
Кинетическую энергию будем вычислять, используя формулу:
[ large E_{k} = m cdot frac{v^{2}}{2} ]
[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]
[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]
Теперь найдем разницу кинетической энергии в конце и вначале разгона.
[ large boxed{ A = Delta E_{k} }]
[ large Delta E_{k} = E_{k2} — E_{k1} ]
[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]
Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.
Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.
[ large boxed{ A = Delta E }]
Работа силы тяжести — разность потенциальной энергии
Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.
Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела
Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.
( E_{p1} left(text{Дж} right) ) – начальная потенциальная энергия яблока;
( E_{p2} left(text{Дж} right) ) – конечная потенциальная энергия яблока;
Примечание: Работу можно рассчитать через разность потенциальной энергии тела.
Потенциальную энергию будем вычислять, используя формулу:
[ large E_{p} = m cdot g cdot h]
( m left( text{кг}right) ) – масса яблока;
Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.
( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.
Начальная высота яблока над поверхностью земли равна 3 метрам
[ large E_{p2} = 0,2 cdot 10 cdot 3 = 6 left(text{Дж} right) ]
Потенциальная энергия яблока на столе
[ large E_{p1} = 0,2 cdot 10 cdot 1 = 2 left(text{Дж} right) ]
Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.
[ large Delta E_{p} = E_{p2} — E_{p1} ]
[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]
Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
Чтобы работа получилась положительной, в правой части формулы перед ( Delta E_{p}) дополнительно допишем знак «минус».
[ large boxed{ A = — Delta E_{p} }]
Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.
Примечания:
- Если тело падает на землю, работа силы тяжести положительна;
- Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
- Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
- Работа силы тяжести не зависит от траектории, по которой двигалось тело;
- Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.
Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.
Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой
Мощность
В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.
Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.
Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).
Расчет работы осуществляем, используя любую из формул:
[ large A = Delta E_{k} ]
[ large A = Delta E_{p} ]
[ large A = F cdot S cdot cos(alpha) ]
Разделив эту работу на время, в течение которого она совершалась, получим мощность.
[ large boxed{ P = frac{A}{Delta t} }]
Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.
Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.
Еще одна формула для расчета мощности
Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:
[ large P = left( vec{F} , vec{v} right) ]
Формулу можно записать в скалярном виде:
[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]
( F left( H right) ) – сила, перемещающая тело;
( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;
( alpha ) – угол между вектором силы и вектором скорости тела;
Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:
[ large boxed{ P = F cdot v }]
Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).
КПД
КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.
Примечания:
- Процент – это дробь, у которой в знаменателе число 100.
- КПД — это либо правильная дробь, или дробь, равная единице.
Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.
[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]
(eta) – КПД;
( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;
(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;
Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.
[ large boxed{ eta leq 1 }]
Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:
[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]
Выводы
- Сила, приложенная к телу и перемещающая его, совершает работу;
- Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
- Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
- Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
- Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
- Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
- Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
- Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
- Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
- КПД — это либо правильная дробь, или дробь, равная единице.
- Можно вычислять КПД, подставляя в формулу работу, или мощности