Как найти среднюю скорость через интеграл

п.1. От ускорения к скорости и координате

Рассматривая применение производной в физике и технике (см. §51 данного справочника), мы во второй производной от уравнения прямолинейного равномерного движения (x(t)) пришли к постоянному ускорению (a=const).
С помощью интегрирования можно пройти обратный путь.
Начнем с постоянного ускорения (a=const).
Интеграл от ускорения по времени – это скорость: $$ v(t)=int adt=aint dt=at+C $$ Физический смысл постоянной интегрирования (C) в этом случае – начальная скорость (v_0). Получаем: $$ v(t)=at+v_0 $$ Интеграл от скорости по времени – это координата: $$ x(t)=int v(t)dt=int (at+v_0)dt=frac{at^2}{2}+v_0 t+C $$ Физический смысл постоянной интегрирования (C) в этом случае – начальная координата (x_0). Получаем: $$ x(t)=frac{at^2}{2}+v_0 t+x_0 $$ Таким образом, если нам известны ускорение (a), начальная скорость (v_0) и начальная координата (x_0), мы всегда сможем получить уравнение движения (x(t)).

п.2. Физические величины как интегралы других величин

Если (v(t)) – скорость некоторого физического процесса, уравнение этого процесса можно найти интегрированием: $$ f(t)=int v(t)dt $$ Такие величины часто встречаются в различных разделах физики и техники.

Исходная величина (скорость)

Уравнение процесса (интеграл по времени)

Ускорение (a(t))

Скорость (v(t)=int a(t)dt)

Скорость (v(t))

Координата (x(t)=int v(t)dt)

Угловое ускорение (beta(t))

Угловая скорость (omega(t)=int beta(t) dt)

Угловая скорость (omega(t))

Угол поворота (varphi(t)=intomega(t)dt)

Скорость расходования горючего (u(t))

Масса горючего ракеты (m(t)=int u(t)dt)

Сила тока (I(t))

Заряд (q(t)=int I(t)dt)

Мощность (N(t))

Работа (A(t)=int N(t)dt)

ЭДС индукции (varepsilon(t))

Магнитный поток (Ф(t)=-intvarepsilon(t)dt)

Скорость радиоактивного распада (I(t))

Число атомов радиоактивного вещества (N(t)=int I(t)dt)

Берутся интегралы и по другим переменным. Например, чтобы найти работу переменной силы (F(x)), нужно взять интеграл по координате: $$ A=int_{x_1}^{x_2}F(x)dx $$ В трехмерном пространстве интегралы могут браться по всем трем координатам.
При решении уравнений в частных производных интегралы берутся и по времени и по координатам.

В современной физике интеграл по времени берётся также и от самого уравнение движения. Полученная скалярная величина называется действием и носит фундаментальный характер. В простейшем случае: $$ S_0=int overrightarrow{p}cdot overrightarrow{v}dt $$ где (overrightarrow{p}cdot overrightarrow{v}) – скалярное произведение векторов импульса и скорости.

п.3. Примеры

Пример 1. Тело движется со скоростью (v(t)) (м/с). Найдите путь, пройденный за промежуток времени от (t_1) до (t_2) (с):
a) (v(t)=3t+2t^2, t_1=0, t_2=6)
Путь: begin{gather*} s(t)=int_{t_1}^{t_2}v(t)dt\ s=int_{0}^{6}(3t+2t^2)dt=left(frac{3t^2}{2}+frac{2t^3}{3}right)|_{0}^{6}=frac{3cdot 36}{2}+frac{2cdot 36cdot 6}{3}-0=\ =3cdot 18+4cdot 36=54+144=198 text{(м)} end{gather*}
б) (v(t)=2(t+2)^{5/2}, t_1=0, t_2=7) begin{gather*} s=int_{0}^{7}2(t+2)^{5/2}dt =2cdotfrac{(t+2)^{frac52+1}}{frac72}|_{0}^{7}=frac47cdot 9^{frac72}-0=frac47cdot 3^7approx 1250 text{(м)} end{gather*}

Пример 2. . Сила тока в проводнике изменяется по закону (I(t)=e^{-t}+2t) (время в секундах, ток в амперах). Какой заряд пройдет через поперечное сечение проводника за время от второй до шестой секунды?
Заряд: begin{gather*} Q(t)=int_{t_1}^{t_2}I(t)dt end{gather*} По условию: begin{gather*} Q=int_{2}^{6}(e^{-t}+2t)dt=(-e^{-t}+t^2)|_{2}^{6}=-e^{-6}+6^2+e^{-2}-2^2=frac{1}{e^2}-frac{1}{e^6}+32=\ =frac{e^4-1}{e^6}+32approx 32,1 text{(Кл)} end{gather*}

Пример 3*. Найдите путь, который пройдет тело от начала движения до возвращения в исходную точку, если его скорость (v(t)=18t-9t^2) (время в секундах, скорость в м/с). Движение тела прямолинейное.

Если тело вернулось в исходную точку, оно меняло направление движения.
В момент разворота скорость равна нулю. Решаем уравнение: $$ 18t-9t^2=0Rightarrow 9t(2-t)=0Rightarrow left[ begin{array}{l} t=0\ t=2 end{array} right. $$ (t=0) – начало движения, (t=2) – разворот.

Пример 3 Уравнение движения: $$ x(t)=int(18t-9t^2)dt=9t^2-3t^3+C $$ В начальный момент времени (x_0=0Rightarrow C=0) $$ x(t)=9t^2-3t^3 $$ В точке C(2;12) кривая (x(t)) имеет максимум.
Тело двигалось в течение 2 с в одну сторону и прошло 12 м, а затем за 1 с вернулось обратно.

Общий путь: 12+12 = 24 м.

Ответ: 24 м

Пример 4*. Найдите работу, которую необходимо совершить, чтобы выкачать воду из полусферического котла радиуса R м.

Пример 4
Найдем работу (dA), которую нужно совершить, чтобы выкачать слой воды толщиной (dH) с глубины (H).
Радиус слоя на глубине (H: r^2=R^2-H^2) – по теореме Пифагора.
Объем слоя воды: (dV=pi r^2 dH=pi(R^2-H^2)dH)
Масса слоя воды: (dm=rho dV=pirho(R^2-H^2)dH)
Работа по подъему слоя на высоту (H): $$ dA=dmcdot gH=pirho gH(R^2-H^2)dH $$ Получаем интеграл: begin{gather*} A=int_{0}^{R}dA=int_{0}^{R}pirho gH(R^2-H^2)dH=pirho gint_{0}^{R}(HR^2-H^3)dH=\ =pirho gleft(frac{H^2}{2}R^2-frac{H^4}{4}right)|_{0}^{R}=pirho gleft(frac{R^4}{2}-frac{R^4}{4}-0right)=fracpi 4=rho gR^4 end{gather*} Ответ: (A=fracpi 4=rho gR^4)

Пример 5*. Какую работу выполняют при запуске ракеты массой m кг с поверхности планеты на высоту h м, если радиус планеты равен R м и масса планеты равна M кг?
Сравните работу при запуске ракеты с Земли и Луны на высоту одного радиуса небесного тела, если ускорение свободного падения на поверхности Луны (g_M=1,62) м/с2, радиус Луны (R_M=1737) км; для Земли соответственно (g_E=9,81) м/с2 (R_E=6371) км.

Ускорение свободного падения на поверхности планеты: (g_0=Gfrac{M}{R^2})
Ускорение свободного падения при подъеме на высоту x: begin{gather*} g(x)=Gfrac{M}{(R+x)^2} end{gather*} Работа по преодолению силы тяжести (F(x)=mg(x)) при подъеме ракеты на высоту h: begin{gather*} A=int_{0}^{h}mg(x)dx=mint_{0}^{h}Gfrac{M}{(R+x)^2}dx=GmMint_{0}^{h}frac{dx}{(R+x^2)}=\ =GmMcdotleft(-frac{1}{R+x}right)|_{0}^{h}=GmMcdotleft(-frac{1}{R+h}+frac1Rright)=GmMleft(frac1R-frac{1}{R+g}right)=\ =GmMfrac{R+h-R}{R(R+h)}=GmMfrac{h}{R(R+h)} end{gather*} Также, если выразить работу через ускорение свободного падения на поверхности планеты: $$ A=frac{GM}{R^2}frac{mhR^2}{R(R+h)}=mg_0frac{hR}{R+h} $$ Работа по запуску на высоту одного радиуса небесного тела (h=R): $$ A(R)=mg_0frac{R^2}{2R}=frac{mg_0R}{2} $$ Отношение работ по запуску на один радиус на Земле и Луне: $$ frac{A_E(R_E)}{A_M(R_M)}=frac{mg_ER_E}{mg_MR_M}=frac{g_ER_E}{g_MR_M}, frac{A_E(R_E)}{A_M(R_M)}=frac{9,81cdot 6371}{1,62cdot 1737}approx 22,2 $$ На Земле работа в 22,2 раза больше.

Ответ: (A=GmMfrac{h}{R(R+h)}; frac{A_E(R_E)}{A_M(R_M)}approx 22,2)

Путь этот долгий и тернистый.

1. Функция распределения молекул по скоростям:
f(v) = [4/√П] *[(m/2*k*T)^3/2]*exp(m*v²/2*k*T)*v². (1)

2. Так как средняя квадратичная скорость равна
<vкв. > = ∫(<v²>), (интеграл от 0 до ∞)
а среднее значение величины в общем виде можно подать следующим путем:
<x> = ∫(x*f(x)*dx), (интеграл от 0 до ∞)
где f(x) – функция распределения величины x, нормированная на единицу,
то среднеквадратичное значение скорости будет равно:
<v²> = ∫(v²*f(v)*dv). (интеграл от 0 до ∞) (2)

3. Подставляя (1) в (2) и вынеся константы за знак интеграла, можно получить:
<v²> = [4/√П] *[(m/2*k*T)^3/2]*∫(exp(-m*v²/2*k*T)*v²*v²*dv) = [4/√П] *[(m/2*k*T)^3/2]*∫(exp(-m*v²/2*k*T)*[v^4]*dv). (3)
Используя табличный интеграл,
∫([x^4]*exp[-a*x²]*dx) = [3/8]*√(П) *[a^-5/2],
можно свести (3) к виду:
<v²> = [4/√П] *[(m/2*k*T)^3/2]*[3/8]*√(П) *[(m/2*k*T)^-5/2] = [3/2]*(m/2*k*T)^-1 = 3*k*T/m.

Цель урока:

  • обобщить и закрепить ключевые задачи по теме;
  • научиться работать с теоретическими вопросами
    темы;
  • научиться применять интеграл к решению
    физических задач.

План урока:

1. Схема решения задач на приложения
определенного интеграла
2. Нахождение пути, пройденного телом при
прямолинейном движении
3. Вычисление работы силы, произведенной при
прямолинейном движении тела
4. Вычисление работы, затраченной на растяжение
или сжатие пружины
5. Определение силы давления жидкости на
вертикально расположенную пластинку

Тип урока: интегрированный.

Воспитательная работа: расширение
кругозора и познавательной деятельности
учащихся, развитие логического мышления и умения
применять свои знания.

Техническое обеспечение:
интерактивная доска. Компьютер и диск.

Приложение: «Рапсодия
природы».

ХОД УРОКА

I. Организационный момент

II. Постановка цели урока

– Урок хотелось бы провести под девизом
Готфрида Вильгельма Лейбница – немецкого философа,
логика,
математика,
физика:
«Общее искусство знаков представляет чудесное
пособие, так как оно разгружает воображение…
Следует заботиться о том, чтобы обозначения были
удобны для открытий. Обозначения коротко
выражают и отображают сущность вещей. Тогда
поразительным образом сокращается работа
мысли».

III. Повторим основные понятия и
ответим на вопросы:

– Скажите основное определение интеграла?
– Что вы знаете о интеграле (свойства, теоремы)?
– Знаете ли вы какие-нибудь примеры задач с
применением интеграла?

IV. Объяснение нового материала
(рассмотрение теории):

1. Схема решения задач на приложения
определенного интеграла

С помощью определенного интеграла можно решать
различные задачи физики, механики и т. д., которые
трудно или невозможно решить методами
элементарной математики.

Так, понятие определенного интеграла
применяется при решении задач на вычисление
работы переменной силы, давления жидкости на
вертикальную поверхность, пути, пройденного
телом, имеющим переменную скорость, и ряд других.

Несмотря на разнообразие этих задач, они
объединяются одной и той же схемой рассуждений
при их решении. Искомая величина (путь, работа,
давление и т. д.) соответствует некоторому
промежутку изменения переменной величины,
которая является переменной интегрирования. Эту
переменную величину обозначают через Х, а
промежуток ее изменения – через [а, b].

Отрезок [a, b] разбивают на n равных частей, в
каждой из которых можно пренебречь изменением
переменной величины. Этого можно добиться при
увеличении числа разбиений отрезка. На каждой
такой части задачу решают по формулам для
постоянных величин.

Далее составляют сумму (интегральную сумму),
выражающую приближенное значение искомой
величины. Переходя к пределу при , находят искомую величину
I в виде интеграла

I = , где f(x)
– данная по условиям задачи функция (сила,
скорость и т. д.).

2. Нахождение пути, пройденного телом при
прямолинейном движении

Как известно, путь, пройденный телом при
равномерном движении за время t, вычисляется по
формуле S = vt.

Если тело движется неравномерно в одном
направлении и скорость его меняется в
зависимости от времени t, т. е. v = f(t), то для
нахождения пути, пройденного телом за время от до , разделим этот
промежуток времени на n равных частей Δt. В каждой
из таких частей скорость можно считать
постоянной и равной значению скорости в конце
этого промежутка. Тогда пройденный телом путь
будет приблизительно равен сумме , т.е.


Если функция v(t) непрерывна, то

Итак,

3. Вычисление работы силы, произведенной
при прямолинейном движении тела

Пусть тело под действием силы F движется по
прямой s, а направление силы совпадает с
направлением движения. Необходимо найти работу,
произведенную силой F при перемещении тела из
положения a в положение b.

Если сила F постоянна, то работа находится по
формуле
(произведение силы на длину пути).

Пусть на тело, движущееся по прямой Ох,
действует сила F, которая изменяется в
зависимости от пройденного пути, т. е. . Для того чтобы найти
работу, совершаемую силой F на отрезке пути от а
до b, разделим этот отрезок на n равных частей
. Предположим,
что на каждой части сила сохраняет постоянное значение

Составим интегральную сумму, которая
приближенно равна значению произведенной
работы:

т.е. работа, совершенная этой силой на участке
от а до b, приближенно мала сумме:

Итак, работа переменной силы вычисляется по
формуле:

4. Вычисление работы, затраченной на
растяжение или сжатие пружины

Согласно закону Гука, сила F, необходимая для
растяжения или сжатия пружины, пропорциональна
величине растяжения или сжатия.

Пусть х – величина растяжения или сжатия
пружины. Тогда ,
где k – коэффициент пропорциональности,
зависящий от свойства пружины.

Работа на участке выразится формулой , а вся затраченная работа или . Если то погрешность величины
работы стремится к нулю.

Для нахождения истинной величины работы
следует перейти к пределу

Итак,

5. Определение силы давления жидкости на
вертикально расположенную пластинку

Из физики известно, что сила Р давления
жидкости на горизонтально расположенную
площадку S, глубина погружения которой равна h,
определяется по формуле:

, где – плотность жидкости.

Выведем формулу для вычисления силы давления
жидкости на вертикально расположенную пластинку
произвольной формы, если ее верхний край
погружен на глубину a, а нижний – на глубину b.

Так как различные части вертикальной пластинки
находятся на разной глубине, то сила давления
жидкости на них неодинаковa. Для вывода формулы
нужно разделить пластинку на горизонтальных
полос одинаковой высоты . Каждую полосу приближенно
можно считать прямоугольником (рис.199).

По закону Паскаля сила давления жидкости на
такую полосу равна силе движения жидкости на
горизонтально расположенную пластинку той же
площади, погруженной на ту же глубину.

Тогда согласно формуле (4) сила давления на
полосу, находящуюся на расстоянии х от
поверхности, составит , где
– площадь полосы.

Составим интегральную сумму и найдем ее предел,
равный силе давления жидкости на всю пластинку:

т.е.

Если верхний край пластинки совпадает с
поверхностью жидкости, то а=0 и формула (5) примет
вид

Ширина каждой полосы зависит от формы
пластинки и является функцией глубины х
погружения данной полосы.

Для пластинки постоянной ширины формула (5)
упрощается, т.к. эту постоянную можно вынести за
знак интеграла:

V. Разбор задач по теме

1) Скорость движения материальной точки
задается формулой = (4 м/с.
Найти путь, пройденный точкой за первые 4с от
начала движения.

Решение:

2) Скорость движения изменяется по закону м/с . Найти длину
пути, пройденного телом за 3-ю секунду его
движения.

Решение:

3) Скорость движения тела задана уравнением м/с. Определить
путь, пройденный телом от начала движения до
остановки.

Решение:

Скорость движение тела равна нулю в момент
начала его движения и остановки. Найдем момент
остановки тела, для чего приравняем скорость
нулю и решим уравнение относительно t; получим

Следовательно,

4) Тело брошено вертикально вверх со скоростью,
которая изменяется по закону м/с. Найти наибольшую высоту
подъема.

Решение:

Найдем время, в течении которого тело
поднималось вверх: 29,4–9,8t=0 (в момент наибольшего
подъема скорость равна нулю); t = 3 с. Поэтому

5) Какую работу совершает сила в 10Н при
растяжении пружины на 2 см?

Решение:

По закону Гука сила F, растягивающая пружину,
пропорциональна растяжению пружины , т.е. F = kx.
Используя условие, находим (Н/м), т.е. F = 500x. Получаем

6) Сила в 60Н растягивает пружину на 2 см.
Первоначальная длина пружины равна 14 см. Какую
работу нужно совершить, чтобы растянуть ее до 20
см?

Решение:

Имеем (H/м) и,
следовательно, F=3000x. Так как пружину требуется
растянуть на 0,06 (м), то

7) Определить силу давления воды на стенку
шлюза, длина которого 20 м, а высота 5 м (считая шлюз
доверху заполненным водой).

Здесь y = f(x) = 20, a = 0, b = 5 м, кг/.

Находим

8) В воду опущена прямоугольная пластинка,
расположенная вертикально. Ее горизонтальная
сторона равна 1 м, вертикальная 2 м. Верхняя
сторона находится на глубине 0,5 м. Определить
силу давления воды на пластинку.

Решение:

Здесь y = 1, a = 0,5, b = 2 + 0,5 = 2,5 (м), = 1000 кг/. Следовательно,

9) Скорость прямолинейного движения точки
задана уравнением . Найти уравнение движения точки.

Решение:

Известно, что скорость прямолинейного движения
тела равна производной пути s по времени t, т.е. , откуда ds = v dt.
Тогда имеем

Это искомое уравнение.

10) Скорость тела задана уравнением . Найти уравнение
движения, если за время тело прошло путь .

Решение:

Имеем ds = v dt = (6+ 1) dt; тогда

Подставив в найденное уравнение начальные
условия s = 60 м, t = 3 c, получим

откуда С = 3.

Искомое уравнение примет вид

11) Тело движется со скоростью м/с. Найти закон движения s(t),
если в начальный момент тело находилось на
расстоянии 5 см от начала отсчета.

Решение:

Так как ds = v dt = (, то

Из условия следует, что если t = 0, то s = 5 см = 0,05 м.
подставив эти данные в полученное уравнение,
имеем откуда
0,05 = С.

Тогда искомое уравнение примет вид

12) Вычислить силу давления воды на плотину,
имеющую форму трапеции, у которой верхнее
основание, совпадающее с поверхностью воды,
имеет длину 10 м, нижнее основание 20 м, а высота 3 м.

Решение:

13) Цилиндрический стакан наполнен ртутью.
Вычислить силу давления ртути на боковую
поверхность стакана, если его высота 0,1 м, а
радиус основания 0,04 м. Плотность ртути равна 13600
кг/.

Решение:

Вычислим площадь круглой полоски

Элементарная сила давления составляет

Следовательно

VI. Самостоятельное решение задач на доске,
коллективный разбор решений задач:

  1. Скорость движения тела задана уравнением . Найти уравнение
    движения, если в начальный момент времени
  2. Найти уравнение движения точки, если к моменту
    начала отсчета она прошла путь , а его скорость задана
    уравнением
  3. Скорость движения тела пропорциональна
    квадрату времени. Найти уравнение движения тела,
    если известно, что за 3 с оно прошло 18 м.
  4. Тело движется прямолинейно со скоростью м/с. Найти путь,
    пройденный телом за 5 с от начала движения.
  5. Скорость движения тела изменяется по закону м/с. Найти путь,
    пройденный телом за 4 с от начала движения.
  6. Найти путь пройденный телом за 10-ю секунду, зная,
    что что скорость его прямолинейного движения
    выражается формулой м/с.
  7. Найти путь, пройденный точкой от начала
    движения до ее остановки, если скорость ее
    прямолинейного движения изменяется по закону м/с.
  8. Какую работу совершает сила в 8 Н при растяжении
    пружины на 6 см?
  9. Сила в 40 Н растягивает пружину на 0,04 м. Какую
    работу надо совершить, чтобы растянуть пружину
    на 0,02 м?
  10. Вычислить силу давления воды на вертикальную
    прямоугольную пластинку, основание которой 30 м, а
    высота 10 м, причем верхний конец пластинки
    совпадает с уровнем воды.
  11. Вычислить силу давления воды на одну из стенок
    аквариума, имеющего длину 30 см и высоту 20 см.

VII. Минутка релаксации

Запуск приложения «Минутка
релаксации»

VIII. Подведение итогов урока:

– Каким вопросам был посвящен урок?
– Чему научились на уроке?
– Какие теоретические факты обобщались на уроке?
– Какие рассмотренные задачи оказались наиболее
сложными? Почему?

Список литературы:

  1. Журнал «Потенциал»
  2. «Алгебра и начала анализа» 11 класс С.М.
    Никольский, М.К. Потапов и др.
  3. «Алгебра и математический анализ» Н.Я. Виленкин
    и др.
  4. «Учебник по математическому анализу» Град О.Г.,
    Змеев О.А.
  5. «Высшая математика: Учебник для вузов». В 3
    томах. Бугров Я.С. Никольский С.М.
  6. «Математический анализ». Е.Б. Боронина

7.1.Путь пройденный телом

Путь,
пройденный телом, при неравномерном
движение со стороны υ=f(t),за
промежуток времени
[
t1;t2],
равен

7.1.1.Два
тела начали двигаться в один и тот же
момент из одной точки в одном направление
по прямой. Одно тело двигалось со
скоростью

м/сек, другое со скоростью

м/с.На
каком расстояние они будут друг от друга
через 5 сек?

Решение.
По формуле
вычислим пройденный путь первым и вторым
телом:

7.1.2.Два
тела движутся по прямой из одной и той
же точки. Первое тело движется со
скоростью

м/с,
второе –со скоростью


какой момент и на каком расстояние от
начальной точки произойдёт их встреча?

Решение.
В условие
задачи дано, что тела начали двигаться
из одной и той же точки, поэтому их пути
дол встречи будут равны. Найдём уравнение
пути каждого из тел

Постоянные
интегрирования без начальных
условиях:
будут
равны нулю. Встреча этих тел произойдёт
при

,откуда

или

Решим
это уравнение

Откуда

В момент

произойдёт встреча этих тел после начла
движения .Из уравнений пути находим

7.1.3.
Тело брошено с поверхности земли
вертикально вверх со скоростью


.Найти
наибольшую высоту подъема тела.

Решение.
Тело достигнет
наибольшей высоты подъема в момент
t,когда
υ=0,т.е.

39,2-9,8t=0
откуда t=4
сек

Находим

7.1.4.
Материальная
точка движется по прямой с переменной
ско­ростью, являющейся заданной
непрерывной функцией времени t:
v
=
v
(
t).
Определить
путь, пройденный телом от момента
вре­мени t0
до
момента Т.

Указание.
Промежуток времени [t0,
Т]

разделить
на n
произвольных
частей. Длина каждого промежутка времени

∆tk
= tk

tk-1
.

В
каждом частичном промежутке времени
выберем произволь­ный момент — τk.
(Момент
τk
может совпадать и с любым из концов
отрезка времени ∆τk).

Вычислим
скорость v
в
этот момент времени. Получится число
fk)Принимаем,
что за время ∆τk
движение
происходит равномерно. Поскольку при
равномерном прямолинейном движении
путь, прой­денный телом, равен
произведению скорости на время, путь,
прой­денный за время ∆τk,
будет
приближенно равен fk)∆τk.
Сложим
пути, пройденные за все частичные отрезки
времени.

Приближенное
значение пути


(11,10)

За
точное значение пути S
следует принять предел интеграль­ной
суммы (11,10), когда наибольший из промежутков
времени tk
стремится
к нулю:

На
основании формулы (10,2) можно записать,
что

т


(11,11)

Таким
образом, если задан закон изменения
скорости, то путь, пройденный телом,
вычисляется с помощью определенного
инте­грала по формуле (11,11).

Когда
max
∆tk→0,
то произведение vk)∆τk

величина беско­нечно малая. Определение
искомой величины и в этой задаче свелось
к отысканию предела суммы неограниченно
возрастающего количества бесконечно
малых величин.

7.1.5.
Вычислить путь, пройденный свободно
падающим в пустоте телом за Т
секунд,
если известно, что скорость v
свободного
па­дения в пустоте определяется
формулой v
=
gt
(начальную
ско­рость v0
принимаем
равной нулю).

Ответ.


.
Если v0≠0
то v=v0+gt,
a

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Средняя скорость в физике и математике — что это? Разбор на задаче

Сегодня разберем с вами очередной сложный момент, который ломает мозг не только ученикам 9-11 класса, но и студентам, которые запустили тему кинематики и подзабыли основные определения…

Средняя скорость в физике — один из подвохов, на котором попадаются учащиеся. По аналогии со средним арифметическим школьники и студенты частенько просто берут, складывают, делят пополам. Но в задачах по физике и математике на среднюю скорость так работает далеко не всегда. Предлагаю вам подумать над тем, почему не всегда работает среднее арифметическое двух скоростей, если у нас есть первая половина пути, где тело двигалось с постоянной скоростью v₁ и есть вторая половина пути, на которой тело двигалось с постоянной скоростью v₂. Почему средняя скорость на всём пути не равна среднему арифметическому ? Свой ответ напишите в комментариях. А сегодня мы рассматрим более интересную и редко встречающуюся задачку.

А пока прошу вас подписаться на мой канал в telegram IT mentor. Там я делюсь более короткими постами, рассказываю некоторые интересные случаи из жизни, непосредственно связанные с физикой, математий и IT.

Задача

Двигаясь равноускорено по прямой из состояния покоя, тело проходит некоторый путь. Чему равно отношение средней скорости тела на второй половине пути к средней скорости на первой половине пути?

Попробуйте на этом этапе остановиться, взять черновик с карандашом и решить задачку самостоятельно. Ваши ответы, комментарии, идеи и мнение о задаче обязательно напишите в комментариях. Так я лучше понимаю что интересно моим дорогим читателям 🤗

Решение:

Сделаем небольшой рисунок, уточняющий что происходит в задаче:

А точно ли полусумма всегда дает правильный ответ? Подумайте над этим вопросом
А точно ли полусумма всегда дает правильный ответ? Подумайте над этим вопросом

Для начала определим средние скорости на каждой части. Уже в этой части задачи нужно кое-что понимать. Обычно, под средней скоростью подразумевают именно среднюю путевую скорость. В то же время есть и просто средняя скорость. И две эти величины, в общем случае, отличаются. Давайте вспоминать определения.

Средняя путевая скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Средняя скорость — это скорость, определяемая отношением перемещения (S) при неравномерном движении к промежутку времени, за который это перемещение произошло.

Чувствуете подвох? Просто средняя скорость вполне может обнулиться, если вы попадете в момент, когда перемещение становится нулевым. В круговом движении или периодических колебаниях это реализуемо. А вот средняя путевая скорость всегда величина ненулевая, если тело прошло хоть какое-то расстояние. В нашей задаче будем иметь в виду именно среднюю путевую скорость.

1 способ

Средняя скорость на первой половине пути:

Здесь учитывается, что тело стартует с нулевой начальной скоростью.

Средняя скорость в физике и математике — что это? Разбор на задаче

Средняя скорость на второй половине пути:

Здесь уже учитывается, что начальная скорость для этого участка ненулевая. И находится она из времени разгона на предыдущем участке. Конечная скорость первого участка есть начальная скорость для второго участка. В полученном квадратном уравнении относительно нужного нам момента времени, корень будем выбирать заведомо положительный, т.к. нелогично предполагать, что время получится отрицательной величиной):

Отрицательный корень даже не рассматриваем (!)
Отрицательный корень даже не рассматриваем (!)

Отсюда средняя скорость на данном участке получается:

Средняя скорость в физике и математике — что это? Разбор на задаче

А теперь мы можем посчитать конечное отношение средней скорости на второй части пути к средней скорости на первой части пути:

Средняя скорость в физике и математике — что это? Разбор на задаче

Итак, у нас появился первый ответ на задачу. Логичный ли он? Похож ли на правду? А может нам второй способ бахнуть? 😎

2 способ

Хотите второй способ решения задачи? Для любителей хардкорных формул математического анализа я приведу альтернативное решение.

Мы помним общую формулу скорости для движения с постоянным ускорением:

Средняя скорость в физике и математике — что это? Разбор на задаче

Интегральное обобщенное определение средней скорости можно записать в виде:

Средняя скорость в физике и математике — что это? Разбор на задаче
Средняя скорость в физике и математике — что это? Разбор на задаче
Средняя скорость в физике и математике — что это? Разбор на задаче

Определим моменты времени t₁ и t₂ :

Средняя скорость в физике и математике — что это? Разбор на задаче

Получили точно такой же ответ, какой был в первом способе решения задачи. Задача решена. И похоже, что решена верно 😊

Краткое решение двумя способами

Какой способ решение вам больше понравился? Напишите в комментариях!

Понравилась статья? Поставьте лайк, подпишитесь на канал! Вам не сложно, а мне очень приятно 🙂

Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в telegram

Добавить комментарий