Средняя скорость считается так: весь путь поделить на всё время движения. Формула одна и очень простая, но почему-то школьники часто путаются в задачах на среднюю скорость. Разберу три характерные задачи и основные ошибки. Возможно, статья будет полезна учителям и репетиторам, а также школьникам.
1. Половина пути
Первую половину пути поезд ехал со скоростью 60 км/ч, а вторую – 90 км/ч. С какой средней скоростью ехал поезд на всём пути?
Первым делом школьник захочет сложить эти две скорости и поделить пополам. Логично? Да. Но, к сожалению, неправильно.
Объясняю, почему. Поскольку первую половину пути поезд ехал с меньшей скоростью, то времени было затрачено больше, чем на вторую. А значит, вклад отдельных скоростей неравнозначен, и нельзя так просто делить пополам.
Тут школьник может впасть в панику. Что делать? Умножать? Делить? Непонятно. Воспользоваться напрямую формулой “расстояние поделить на время” не получится – ни расстояние, ни время нам неизвестно.
Для школьников, только начинающих изучать основы физики, бывает трудно оперировать с неизвестными величинами. Нам не дано ничего, кроме скоростей, как же быть? В качестве маленькой ступеньки к освоению неизвестности могу предложить следующий ход – сначала додумать неизвестные данные. Возьмём и сами решим, пусть поезд пройдет 180 километров, цифру возьмем так, чтобы легко делилась.
Тогда половина пути будет 90 километров. Поезд пройдет её за 1,5 часа. Вторую половину пути – за 1 час. Это легко посчитает любой школьник. Значит, общее время в пути будет 2,5 часа. Делим общее расстояние 180 километров на 2,5 часа, и получаем 72 км/ч.
Это просто и понятно, но учитель такую задачу не примет. Откуда мы взяли 180 километров, когда это неизвестно? Тем не менее, дав себе эти неизвестные данные, мы продумали алгоритм и довели задачу до ответа. Осталось формализовать это решение, так чтобы не использовать то, что не дано. Обозначим наши 180 километров за S, и опишем всё, что мы делали раньше, только вместо цифр используем буквы.
Получается, что зная ход решения “в цифрах”, мы переводим его в буквенные обозначения. И тут главное не остановиться на полдороги, не смущаться, что нам неизвестно расстояние. Ведь оно в конце сократилось, и средняя скорость оказалась независящей от расстояния (что вполне логично). И от школьника здесь требуются уже алгебраические умения – складывать дроби, переворачивать их.
Если подобная задача встретилась в тесте, где требуется только ответ, можно вообще не заморачиваться – так как средняя скорость в данной задаче не зависит от расстояния, можно посчитать при любом удобном расстоянии. По крайней мере, это лучше, чем сидеть и ломать голову, не зная, как подступиться к решению. Если же требуется оформление – тут числовое решение может помочь как переходный этап, чтобы понять, что именно делать с формулами, как их крутить-вертеть.
Школьникам часто бывает трудно переходить на новый уровень абстракции – от чисел к переменным, которые могут принимать разные числовые значения. В алгебре это тренируют, но там одна переменная икс, и иногда игреки встречаются. А в физике этих переменных пруд пруди, в каждой задаче они разные, и если ученик не освоил этот уровень, то физика кажется ему супер-трудной. Кроме того, в школе переход от чисел к переменным часто упускают, в программе отдельных навыков работы с формулами нет.
2. Средняя скорость по графику пути
Пусть нам дан график зависимости координаты от времени. Требуется определить среднюю скорость.
По графику видно, что движение состоит из четырех этапов:
- Тело стартует в нуле и через 2 секунды оказывается на координате 2 м.
- Тело останавливается, и в течение 4 секунд покоится в точке с координатой 2 м.
- Тело начинает движение, и через 2 секунды оказывается в точке 6 м.
- Тело движется в обратном направлении, и через 2 секунды оказывается в точке 5 м.
Проговорить, понять все эти этапы – важная часть решения. А дальше многие школьники начинают вычислять скорости движения на каждом этапе: На первом – 1 м/с, на втором – 0, на третьем – 2 м/с, на четвертом – 0,5 м/с. Вот это действие как раз лишнее. Для того, чтобы вычислить среднюю скорость, вовсе не обязательно знать скорости на каждом этапе!
Вспомним определение средней скорости – это весь путь, поделить на всё время. Поэтому просто по графику считаем весь путь – 6 метров “туда” и 1 метр “обратно”, в сумме 7 метров. Общее время движения – 10 секунд. Делим 7 метров на 10 секунд, получаем 0,7 м/с.
3. Средняя скорость по графику скорости
Бывает так, что нам дан график зависимости скорости от времени, и требуется определить среднюю скорость. Вот, к примеру, такой график.
Читаем график. Движение состоит из трёх этапов
- С начала движения до момента времени 2 с тело движется с постоянной скоростью 2 м/с
- От 2 до 6 с тело движется со скоростью 6 м/с
- В последние 4 секунды от 6 до 10 с тело замедляется, снижая свою скорость до нуля.
Попытки что-то сделать со значениями скорости самими по себе здесь обречены на провал. Опять надо найти весь путь и всё время движения. Путь по графику скорости определяется как площадь под графиком, причем если график идет ниже нуля, то соответствующие участки складываются.
Считаем площадь фигуры – два прямоугольника на первых двух этапах и треугольник на третьем. Первый этап – 4 м, второй этап – 24 м, третий этап – 12 м. Значит, весь путь будет 40 метров. Всё время 10 секунд, значит, средняя скорость 4 м/с.
Общие рекомендации для решения задач на среднюю скорость
1. Средняя скорость – это всегда весь путь делить на всё время. Данные об отдельных скоростях сами по себе не дадут полной информации о средней скорости. Используем только эту формулу.
2. Следует проанализировать конкретную ситуацию и понять, как можно применить формулу. Если кажется, что не хватает данных – не смущаться.
3. Данные по скоростям на отдельных этапах могут быть полезны для проверки готового ответа: средняя скорость должна лежать между минимальной и максимальной.
Спасибо, что прочитали до конца! Желаю школьникам хорошей учёбы, учителям – понятливых и любопытных учеников, родителям – чтобы дети радовали. Буду рада лайкам и новым подписчикам!
5. Используя график зависимости vx(t), найдите среднюю скорость движения
тела на всем пути.
Для нахождения средней скорости
движения необходимо найти пройденный путь и время движения. По графику видно,
что время движения равно 11 с. Пройденный путь можно найти как площадь фигуры,
ограниченной графиком – трапеции.
6. Через 20 с после начала движения по прямолинейному участку шоссе с
постоянным ускорением велосипедист
набрал скорость 10 м/с и далее двигался в течение 1 мин. Затем велосипедист
начал торможение и в течение 10 с остановился. Какова средняя скорость
велосипедиста?
Для решения данной задачи подходит
графический метод. Для этого построим график зависимости скорости от времени.
По построению получилось, что общее время
движения велосипедиста равно 90 с. Пройденный путь найдем как площадь фигуры
под графиком (в данном случае – трапеции).
7. Мотоциклист начал движение из состояния покоя и в течение 5 с двигался
с ускорением 2 м/с2, затем в течение 5 мин он двигался равномерно и
снова увеличил свою скорость до 15 м/с за 10 с. Найдите среднюю скорость
движения мотоциклиста на всем пути.
Общее время движения мотоциклиста
равно t = 5 + 300 + 10 = 315 c. Для построения графика зависимости скорости от
времени необходимо найти скорость в конце первого участка пути:
v = v0 + at1; v = 2 ∙ 5 = 10 м/с.
По данным задачи построим график
зависимости скорости от времени и по нему найдем пройденный путь как площадь
фигуры.
Неравномерное прямолинейное движение. Средняя скорость
- График скорости при неравномерном прямолинейном движении
- Как найти путь и перемещение по графику скорости?
- Средняя скорость и средняя путевая скорость
- Задачи
- Лабораторная работа №3. Определение средней скорости движения тела
п.1. График скорости при неравномерном прямолинейном движении
Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.
Движение с переменной скоростью называют неравномерным.
Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.
Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_{x1}=9 text{км/ч}, v_{x2}=3 text{км/ч} $$ Построим график скорости для этого случая:
Графиком скорости (v_x=v_x(t)) при неравномерном прямолинейном движении, которое можно разбить на участки с постоянной скоростью, является ломаная линия.
п.2. Как найти путь и перемещение по графику скорости?
Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком (triangle t) на оси (t) (см. §8 данного справочника).
В таком случае, путь велосипедиста в нашем примере:
begin{gather*} s=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text{(км)} end{gather*} Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км.
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.
Если принять город A за начало отсчета с (x_0=0), то координата велосипедиста в конце пути: $$ x_{к}=x_0+s=0+6=6 text{(км)} $$ Перемещение по оси ОХ: (triangle x=x_{к}-x_0=6 text{(км)}).
Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_{x1}=9 text{км/ч}, v_{x2}=-3 text{км/ч} $$ Построим график скорости для этого случая:
Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная (v_x(t)) с осью (t): begin{gather*} x=v_{x1}cdot triangle t_1+|v_{x2}|cdottriangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text{(км)} end{gather*}
Если мы учтем знак (v_{x2}) и уберем модуль, то получим величину перемещения по оси ОХ: begin{gather*} triangle x=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2\ triangle x=9cdot 0,5-3cdot 0,5=4,5-1,5=3 text{(км)} end{gather*} Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км в обратном направлении.
Конечная координата: $$ x_{к}=x_0+triangle x=0+3=3 text{(км)} $$
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.
Пусть неравномерное прямолинейное движение разбито на (n) участков с постоянными скоростями. Каждому такому участку соответствует промежуток времени (triangle t_i) и постоянная скорость (v_{xi}, i=overline{1,n}).
Тогда:
Весь пройденный путь равен сумме площадей прямоугольников на графике скорости: $$ s=|v_{x1}|cdottriangle t_1+|v_{x2}|cdottriangle t_2+…+|v_{xn}|cdottriangle t_n $$ Величина перемещения по оси ОХ равна сумме площадей прямоугольников с учетом знака: $$ triangle x=v_{x1}cdottriangle t_1+v_{x2}cdottriangle t_2+…+v_{xn}cdottriangle t_n $$ Конечная координата равна: (x_{к}=x_0+triangle x).
п.3. Средняя скорость и средняя путевая скорость
Средняя скорость на нескольких участках движения равна отношению общего перемещения к общему времени, затраченному на это перемещение: $$ overrightarrow{v_{cp}}=frac{overrightarrow{r_1}+overrightarrow{r_2}+…+overrightarrow{r_n}}{t_1+t_2+…+t_n}=frac{overrightarrow{r}}{t} $$
Средняя путевая скорость на нескольких участках движения равна отношению общего пути к общему времени, затраченному на этот путь: $$ v_{cp.п}=frac{s_1+s_2+…+s_n}{t_1+t_2+…+t_n}=frac{s}{t} $$
Если тело все время движется в одном направлении, величина средней скорости равна средней путевой скорости, т.к. на каждом участке путь совпадает с модулем перемещения.
Если тело меняет направление движения, величина средней скорости меньше средней путевой скорости.
В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: begin{gather*} |overrightarrow{v_{cp}}|=frac{|overrightarrow{r}|}{t}=frac{triangle x}{t}=frac 61=6 text{(км/ч)}\ v_{cp.п}=frac st=frac 61=6 text{(км/ч)} end{gather*} Величина средней скорости равна средней путевой скорости.
А вот для случая, когда велосипедист развернулся и пошел обратно: begin{gather*} |overrightarrow{v_{cp}}|=frac{|overrightarrow{r}|}{t}=frac{triangle x}{t}=frac 31=3 text{(км/ч)}\ v_{cp.п}=frac st=frac 61=6 text{(км/ч)} end{gather*} Величина средней скорости меньше средней путевой скорости.
п.4. Задачи
Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.
a)
Все движение можно разделить на три участка с постоянной скоростью:
begin{gather*} triangle t_1=3-0=3 c, v_{x1}=5 text{м/с}\ triangle t_2=5-3=2 c, v_{x2}=1 text{м/с}\ triangle t_3=7-5=2 c, v_{x3}=2 text{м/с}\ end{gather*} Общий путь: begin{gather*} s=|v_{x1}|cdot triangle t_1+|v_{x2}|cdot triangle t_2+|v_{x3}|cdot triangle t_3\ s=5cdot 3+1cdot 2+2cdot 2=21 text{(м)} end{gather*} Все проекции скоростей положительны, тело двигалось в одном направлении, общее перемещение равно общему пути: (triangle x=s=21) (м)
Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (с)
Величина средней скорости равна средней путевой скорости: $$ |overrightarrow{v_{cp}}|=v_{cp.п}=frac st=frac{21}{7}=3 text{(м/с)} $$ Ответ: (|overrightarrow{v_{cp}}|=v_{cp.п}=3 text{(м/с)})
б)
Все движение можно разделить на три участка с постоянной скоростью:
begin{gather*} triangle t_1=3-0=3 c, v_{x1}=5 text{м/с}\ triangle t_2=5-3=2 c, v_{x2}=-2 text{м/с}\ triangle t_3=7-5=2 c, v_{x3}=1 text{м/с}\ end{gather*} Общий путь: begin{gather*} s=|v_{x1}|cdot triangle t_1+|v_{x2}|cdot triangle t_2+|v_{x3}|cdot triangle t_3\ s=5cdot 3+2cdot 2+1cdot 2=21 text{(м)} end{gather*} Проекции скоростей имеют разные знаки, тело двигалось вперед и назад.
Общее перемещение будет меньше общего пути: begin{gather*} triangle x=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2+v_{x3}cdot triangle t_3\ triangle x=5cdot 3-2cdot 2+1cdot 2=13 text{(м)} end{gather*} Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (c)
Величина средней скорости: $$ |overrightarrow{v_{cp}}|=frac{triangle x}{t}=frac{13}{7}approx 1,86 text{(м/с)} $$ Средняя путевая скорость: $$ v_{cp.п}=frac st=frac{21}{7}=3 text{(м/с)} $$ Ответ: (|overrightarrow{v_{cp}}|approx 1,86 text{(м/с)}; v_{cp.п}=3 text{(м/с)})
Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.
Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: (v_{cp}=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | 40 | (frac{2d}{40}=frac{d}{20}) | (2d) |
2й участок | 80 | (frac{d}{80}) | (d) |
Сумма | – | (t=frac{d}{20}+frac{d}{80}) | (s=2d+d=3d) |
Упростим сумму дробей: $$ t=frac{d}{20}+frac{d}{80}=frac{4d+d}{80}=frac{5d}{80}=frac{d}{16} $$ Получаем: $$ v_{cp}=frac st=frac{3d}{d/16}=3cdot 16=48 text{(км/ч)} $$
Ответ: 48 км/ч
Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.
Величина средней скорости равна средней путевой скорости:
(v_{cp}=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | 90 | (frac{s}{2cdot 90}=frac{s}{180}) | (frac s2) |
2й участок | 30 | (frac{s}{2cdot 30}=frac{s}{60}) | (frac s2) |
Сумма | – | (t=frac{s}{180}+frac{s}{60}) | (s) |
Упростим сумму дробей: $$ t=frac{s}{180}+frac{s}{60}=frac{s+3s}{180}=frac{4s}{180}=frac{s}{45} $$ Получаем: $$ v_{cp}=frac st=frac{s}{s/45}=45 text{(км/ч)} $$
Ответ: 45 км/ч
Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.
Величина средней скорости равна средней путевой скорости:
(v_{cp}=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | (frac{d}{4t}) | (4t) | (d) |
2й участок | (frac{4d}{t}) | (t) | (4d) |
3й участок | (frac{45d}{20t}) | (20t) | (45d) |
Сумма | – | (25t) | (50d) |
По условию средняя скорость: $$ v_{cp}=frac st=frac{50d}{25t}=2cdot frac dt=32Rightarrow frac dt=16 $$ Получаем: begin{gather*} v_1=frac{d}{4t}=frac{16}{4}=4 text{(км/ч)}\ v_2=frac{4d}{t}=4cdot 16=64 text{(км/ч)}\ v_3=frac{9d}{4t}=frac{9}{4}cdot 16=36 text{(км/ч)} end{gather*}
Ответ: 4 км/ч, 64 км/ч и 36 км/ч
Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?
Пусть (v) – скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость (v_{cp}) и сравним ее со скоростью (v).
Если (v_{cp}gt v), то турист выиграл время.
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | (10v) | (frac{s}{2cdot 10v}=frac{s}{20v}) | (frac s2) |
2й участок | (frac{v}{2}) | (frac{s}{2cdot v/2}=frac sv) | (frac s2) |
Сумма | – | (t=frac{s}{20v}+frac sv) | (s) |
Упростим сумму дробей: $$ t=frac{s}{20v}+frac sv=frac svleft(frac{1}{20}+1right)=frac{21}{20}cdot frac sv $$ Средняя скорость: $$ v_{cp}=frac{s}{frac{21}{20}cdotfrac sv}=frac{20}{21}vgt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет
п.5. Лабораторная работа №3. Определение средней скорости движения тела
Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.
Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.
Величина средней скорости при движении на двух участках определяется как средняя путевая скорость: $$ v_{cp}=frac{s_1+s_2}{t_1+t_2} $$ где (s_1) и (s_2) – длина первого и второго участка; (t_1) и (t_2) – время движения по каждому из участков.
Длина участков измеряется с помощью мерной ленты с ценой деления (triangle=1) см,
инструментальная погрешность равна: (d=frac{triangle}{2}=0,5) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: (triangle s_1=triangle s_2=d=0,5) см
Погрешность суммы двух длин: (triangle(s_1+s_2)= triangle s_1+triangle s_2=2d=1) см
Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: (triangle(t_1+t_2)=triangle t_1+triangle t_2)
Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ delta_{v_{cp}}=delta_{s_1+s_2}+delta_{t_1+t_2} $$ Абсолютная погрешность определения средней скорости: $$ triangle v_{cp}=v_{cp}cdot delta_{v_{cp}} $$
Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.
Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.
3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин (delta_{s_1+s_2}=frac{triangle(s_1+s_2)}{s_1+s_2})
5. Проведите серии по 5 экспериментов для определения (t_1) и (t_2) с помощью секундомера.
6. Найдите (triangle t_1, triangle t_2, triangle(t_1+t_2), delta_{t_1+t_2})
7. По результатам измерений и вычислений найдите (v_{cp}, delta_{v_{cp}}) и (triangle v_{cp}).
8. Сделайте выводы о проделанной работе.
Результаты измерений и вычислений
1) Измерение длин
Цена деления мерной ленты (triangle =1) см
Инструментальная погрешность мерной ленты (d=frac{triangle}{2}=0,5) см
Результаты измерений:
(s_1=112) cм
(s_2=208) cм
Сумма длин участков: (s_1+s_2=112+208=320) (см)
Абсолютная погрешность суммы: (triangle (s_1+s_2)=triangle s_1+triangle s_2=2d=1) см
Относительная погрешность суммы: $$ delta_{s_1+s_2}=frac{triangle (s_1+s_2)}{s_1+s_2}=frac{1}{320}=0,3125% $$
2) Измерение времени
Цена деления секундомера (triangle =0,2) с
Инструментальная погрешность секундомера (d=frac{triangle}{2}=0,1) с
Время движения по наклонному желобу
№ опыта | 1 | 2 | 3 | 4 | 5 | Сумма |
(t_1) c | 1,5 | 1,6 | 1,5 | 1,4 | 1,4 | 7,4 |
(triangle) c | 0,02 | 0,12 | 0,02 | 0,08 | 0,08 | 0,32 |
Найдем среднее время спуска с наклонного желоба: $$ t_1=frac{1,5+1,6+1,5+1,4+1,4}{5}=frac{7,4}{5}=1,48 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_1): $$ triangle_1=|1,5-1,48|=0,02; triangle_2=|1,6-1,48|=1,02 text{и т.д.} $$ Среднее абсолютное отклонение: $$ triangle_{cp}=frac{0,02+0,12+0,02+0,08+0,08}{5}=frac{0,32}{5}=0,064 text{c} $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_1=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,064right}=0,1 text{c} $$ Округляем полученное значение времени до десятых. begin{gather*} t_1=(1,5pm 0,1) text{c}\ delta_{t_1}=frac{0,1}{1,5}=frac{1}{15}approx 6,7text{%} end{gather*} Время движения по горизонтальному желобу
№ опыта | 1 | 2 | 3 | 4 | 5 | Сумма |
(t_2) c | 2,3 | 2,4 | 2,2 | 2,2 | 2,4 | 11,5 |
(triangle) c | 0 | 0,1 | 0,1 | 0,1 | 0,1 | 0,4 |
Найдем среднее время движения по горизонтали: $$ t_2=frac{2,3+2,4+2,2+2,2+2,4}{5}=frac{11,5}{5}=2,3 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_2): $$ triangle_1=|2,3-2,3|=0; triangle_2=|2,4-2,3|=0,1 text{и т.д.} $$ Среднее абсолютное отклонение: $$ triangle_{cp}=frac{0+0,1+0,1+0,1+0,1}{5}=frac{0,4}{5}=0,08 text{c} $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_2=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,08right}=0,1 text{c} $$ Получаем: begin{gather*} t_2=(2,3pm 0,1) text{c}\ delta_{t_2}=frac{0,1}{2,3}=frac{1}{23}approx 4,4text{%} end{gather*}
3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8 text{(c)} $$ Абсолютная погрешность суммы: $$ triangle(t_1+t_2)=triangle t_1+triangle t_2=0,1+0,1=0,2 text{(c)} $$ Относительная погрешность суммы: $$ delta_{t_1+t_2}=frac{triangle (t_1+t_2)}{t_1+t_2}=frac{0,2}{3,8}=frac{1}{19}approx 5,3text{%} $$
4) Расчет средней скорости $$ v_{cp}=frac{s_1+s_2}{t_1+t_2}=frac{320}{3,8}approx 84,2 left(frac{text{см}}{text{c}}right) $$ Относительная ошибка частного: $$ delta_{v_{cp}}=delta_{s_1+s_2}+delta_{t_1+t_2}=frac{1}{320}+frac{1}{19}approx 0,003125+0,0526approx 0,0557approx 0,056=5,6text{%} $$ (оставляем две значащие цифры).
Абсолютная ошибка: $$ v_{cp}=v_{cp}cdotdelta_{v_{cp}}=84,2cdot 0,056approx 4,7 left(frac{text{см}}{text{c}}right) $$ Получаем: begin{gather*} v_{cp}=(84,2pm 4,7) text{см/с}\ delta_{v_{cp}}=5,6text{%} end{gather*}
Выводы
На основании проделанной работы можно сделать следующие выводы.
Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: begin{gather*} v_{cp}=(84,2pm 4,7) text{см/с}\ delta_{v_{cp}}=5,6text{%} end{gather*}
Как найти среднюю скорость по графику
Движение различных тел в окружающей среде характеризуется рядом величин, одна из которых – средняя скорость. Этот обобщенный показатель определяет скорость тела на всем перемещении. Зная зависимость модуля мгновенной скорости от времени, среднюю скорость можно найти с помощью графического метода.
Инструкция
Постройте по данным задачи график зависимости скорости движения тела от времени v(t). Здесь горизонтальная координата представляет собой изменение времени (с), вертикальная – скорости (м/с). Как правило, в задачах рассматривается неравномерное перемещение тел в определенные промежутки времени. Любое изменение скорости на графике будет отображено возрастанием или убыванием. Например, при начале движения тела с постоянным ускорением в течение 20 с его скорость в итоге составила 15 м/с. Отложите на графике прямую, начинающуюся в начале координат (0, 0) и заканчивающуюся в точке (20, 15), где 20 с откладываются вправо по оси времени t, а 15 м/с – вверх по скорости. При наличии равномерного движения тела отобразите его прямой, параллельной горизонтальной оси.
Для нахождения средней скорости перемещения нужно знать путь и время, затраченное на движение. Вычислите площадь S под кривой v(t), которая является графическим представлением пройденного телом пути L. Часто график перемещения ограничивает фигуру трапецию. Ее площадь находится по формуле: S = ½*(t0 + t1)*vn, где t0 и t1 – основания трапеции – части графика скорости, vn – высота фигуры, здесь максимальная скорость в пути. Подставьте в формулу известные значения и вычислите результат. Если график v(t) представляет собой не трапецию, ее площадь вычисляется по иным формулам, в зависимости от полученной фигуры.
Найдите среднюю скорость движения тела по формуле Vср = L/t. Подставив заданное время перемещения и вычисленный путь, посчитайте числовое значение средней скорости.
Среднюю скорость можно вычислить и по графику зависимости пути от времени l(t). Для этого соедините прямой линией начальную и конечную точки рассматриваемого участка перемещения. Средняя скорость тела будет равна тангенсу угла наклона полученной прямой к оси времени.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Средняя скорость – одна из основных функций, определяемых в движении. В этой статье мы узнаем, как найти среднюю скорость.
Основной метод определения средней скорости – это отношение суммы изменения положения объекта к общему времени, затраченному этим объектом на завершение своего движения. Поскольку это векторная физическая величина, направление объекта также имеет важное значение при вычислении средней скорости.
Далее мы изучим больше методов, как найти среднюю скорость, так как это основная цель поста.
Какая формула для средней скорости
Основная формула, используемая для расчета Vсредний включает как смещение во времени.
Общая используемая формула имеет следующий вид:
Он используется при решении основных задач, связанных со средней скоростью.
В = Сf – Si / т2 – т1
V = Δs / Δt
Где,
Δs = смещение
Δt = затраченное время
Теперь давайте посмотрим, как найти среднюю скорость с помощью расстояния и времени.
Как найти среднюю скорость в зависимости от расстояния и времени
Расстояние и время – основные термины, без которых невозможно определить среднюю скорость.
Прежде всего, мы должны рассчитать общую длину пути, по которому прошел объект, а затем мы должны проверить продолжительность времени, необходимого для достижения пункта назначения. Позже, чтобы найти среднюю скорость этого движения, нам нужно использовать ранее рассчитанные расстояние и время с помощью формулы.
Теперь давайте продолжим изучение, чтобы узнать больше подходов к нахождению средней скорости.
Как найти среднюю скорость за интервал
Увидев важность расстояния и времени при вычислении средней скорости. Теперь давайте, как рассчитать это за интервал.
- Если вы вычисляете среднюю скорость на графике, вам следует рассмотреть любые два интервала времени и расстояния, а затем найти значения расстояния и времени и подставить их в формулу средней скорости.
В = Сf – Si / т2 – т1
- В другом методе, если вы собираетесь напрямую использовать формулу, вы должны знать начальную и конечную точки, чтобы вам было легко вычислить Vсредний, вы даже можете рассмотреть некоторую часть интервала, чтобы найти Vсредний Это происходит путем деления общего расстояния на общее время.
V = общее расстояние / общее время или
В = (Вf + Vi) / 2
Теперь давайте посмотрим, как рассчитать Vсредний между двумя точками.
Средняя скорость между двумя точками
Среднюю скорость между двумя точками можно найти по простой формуле.
В общем, мы знаем, что Vavg тела равно среднему арифметическому начальных и конечных точек, приведенному ниже.
Vavg = [Начальная скорость (i) + Конечная скорость (v)] / 2
Пора узнать, как найти Vсредний на графике.
Как найти среднюю скорость на графике
Мы можем найти среднюю скорость с помощью графика смещения-времени.
- Здесь смещение будет по оси y, а время по оси x.
- Постройте точки в соответствии с осью и соедините их, чтобы создать область на графике.
- Затем найдите общую площадь на графике, взяв два интервала времени и расстояния.
- Измерьте его по линии графика и рассчитайте по формуле
Vсредний = (Vi+Vf) / 2.
Переменные, взятые на графике, имеют характерную природу, все факторы, такие как изменение положения (между начальной и конечной точками), характер графика, т. Е. Является ли он линейным или нет, имеет значение.
При таком подходе мы можем рассчитать среднюю скорость по графику.
Как найти среднюю скорость на линейном графике
Линейный график иногда называют прямолинейным графиком.
Если мы хотим узнать среднюю скорость на линейном графике, тогда мы должны взять как начальную, так и конечную скорости и разделить ее на число 2. Это похоже на среднее значение, которое мы используем в математике для решения определенных задач.
Теперь давайте узнаем условие вычисления средней скорости на нелинейном графике.
Как найти среднюю скорость на нелинейном графике
Нелинейный граф также можно рассматривать как искривленный граф.
В нелинейном графике, что мы можем сделать, чтобы вычислить Vсредний мы можем рассмотреть область под графиком, которая состоит из смещения (интегрировать его), а затем разделить на время.
Таким образом мы можем вычислить Vсредний в нелинейном графике.
Пример задачи средней скорости
Приведенное ниже – одна из основных проблем, которую можно решить, используя подходы к вычислению средней скорости.
Пример 1
Представьте, что человек едет на своей машине в какой-то пункт назначения, но в течение первых 15 секунд положение машины меняется с x1 = 80 м до x2= 100 м. Какова средняя скорость автомобиля?
Решение: учитывая исходное положение x1= 80m
Точно так же конечная позиция x2 = 100m
Изменение водоизмещения автомобиля рассчитывается следующим образом:
Δx = х2 – Икс1 = 100 м – 80 м = 20 м
Δt = 15 с
По формуле мы имеем
v = Δx / Δt
v = 20/15
v = 1.33 м / с
Таким образом, средняя скорость автомобиля составляет 1.33 м / с.
Из поставленной выше задачи мы узнали еще об одном подходе к нахождению средней скорости
Часто задаваемые вопросы | FAQs
Что такое средняя скорость?
Средняя скорость – заметное явление в физике.
Это векторная величина, определяемая как деление ∆x на ∆t. Где ∆x обозначает смещение, а ∆t обозначает общее время, затрачиваемое телом на завершение движения. Иногда может быть положительным или отрицательным, все зависит от направления смещения. Обозначается с помощью единицы СИ м / с.
Чем средняя скорость отличается от других скоростей?
Есть два основных типа скоростей, с которыми мы обычно сталкиваемся в физике.
Два основных типа скоростей – средние и мгновенные скорости. Как следует из их названия, среднее означает сумму скоростей каждого интервала, рассчитанную за общее время. Напротив, мгновенная скорость будет вычислением скорости в конкретный период движения.
Чем средняя скорость отличается от мгновенной скорости в конкретный интервал времени?
Если мы возьмем конкретный временной интервал, тогда будет разница в измерении средней и мгновенной скорости.
Основное различие заключается в том, что для определенного периода интервала мгновенная скорость измеряется смещением и временем в определенной точке (s, t), а средняя скорость считается общим изменением положения во времени в определенном временном интервале.
Сохраняется ли средняя скорость в движении?
Скорость не остается неизменной в конкретном движении, она продолжает изменяться.
Мы выяснили, что скорость является переменной, зависящей от многих факторов. Он не остается постоянным, но продолжает изменять свое значение с помощью перемещения и времени этого объекта. Исходя из этого, мы можем сказать, что средняя скорость движения не остается неизменной.
Каковы два основных способа вычисления средней скорости?
Есть много приложений, с помощью которых мы можем легко измерить среднюю скорость.
Первый метод – найти среднюю скорость, взяв первую и конечную точки движения, вычтя ее, а затем разделив весь член на 2.
Второй метод основан на использовании формулы, известной как уравнение средней скорости.
Уравнение средней скорости = В = (Вf + Vi) / 2
- V = средняя скорость.
- Vf = конечная скорость.
- Vi = начальная скорость
Это простое уравнение для измерения средней скорости.
Как найти смещение со средней скоростью?
Есть много способов найти смещение в кинематике.
Один из них – найти смещение с помощью формулы средней скорости, которая состоит из изменения положения / смещения. Меняя местами члены формулы, мы можем использовать ее для расчета смещения.
Почему различаются средняя скорость и средняя скорость?
Оба термина означают совершенно разные друг от друга, когда мы изучаем их в физике.
Здесь мы знаем, что скорость – это скаляр, а скорость – вектор, тогда основное различие заключается в физических величинах, которые измеряют важность того, как их можно измерить.
Разница между средней скоростью и средней скоростью
Основные различия между этими двумя величинами приведены ниже:
- Средняя скорость говорит только о положении движущегося тела, здесь мы должны заметить, что величина будет разной для каждого положения, и определение скорости на любом временном интервале на длине курса осуществляется с помощью средней скорости.
- Средняя скорость говорит о сохранении скорости на всем пути движения. Это общая скорость, рассчитанная с учетом общей длины пути и времени, и, поскольку это скаляр, мы не можем определить направление пути.