Как найти среднюю скорость пути математика

Здравствуйте, дорогие читатели, подписчики и гости канала. Рассмотрим задачи на среднюю скорость.

Задачи на среднюю скорость достаточно простые, но многие допускают ошибку в ее вычислении.

Средняя скорость рассчитывается для неравномерного движения. Средняя скорость – это отношение всего пути на время в течении которого этот путь был пройден.

Рассмотрим в чем различие нахождение скорости движения с постоянной скоростью на всем пути от нахождения скорости при неравномерном движении на всем пути.

Задачи на среднюю скорость. Задание №21 ОГЭ

Рассмотрим решение нескольких задач.

Задача №1

Задачи на среднюю скорость. Задание №21 ОГЭ

Чтобы найти среднюю скорость, нам нужно найти время на каждом участке пути. В нашей задаче таких участков три.

Задачи на среднюю скорость. Задание №21 ОГЭ

Зная время на каждом участке пути, можем найти среднюю скорость:

Задачи на среднюю скорость. Задание №21 ОГЭ

Задача №2

Задачи на среднюю скорость. Задание №21 ОГЭ

В этой задаче у нас два участка пути. За весь пусть возьмем S. Тогда половина пути равна S/2

Задачи на среднюю скорость. Задание №21 ОГЭ

Теперь воспользуемся формулой, и найдем среднюю скорость на протяжении всего пути:

Задачи на среднюю скорость. Задание №21 ОГЭ

В задачах может встречаться и задачи, где пройдено путь необязательно делится пополам, но и в других отношениях: например 2/3 пути и 1/3 пути. Но смыл решения задач одинаков.

Спасибо, что дочитали. Вы меня очень поддержите, если поставите класс и подпишитесь на мой блог.

Путеводитель по каналу здесь

Задачи на среднюю скорость. Задание №21 ОГЭ

Задачи ЕГЭ на нахождение средней скорости

На экзамене по математике вам может также встретиться задача о нахождении средней скорости. Запомним, что средняя скорость не равна среднему арифметическому скоростей. Она находится по специальной формуле:

v_{cp}=genfrac{}{}{}{0}{displaystyle S_o}{displaystyle t_o},

где v_{cp} — средняя скорость, S_o– общий путь, t_o — общее время.

Если участков пути было два, то
v_{cp}=genfrac{}{}{}{0}{displaystyle S_1 + S_2}{displaystyle t_1+t_2}

1. Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Мы не знаем, каким было расстояние, которое преодолел путешественник. Знаем только, что это расстояние было одинаковым на пути туда и обратно. Для простоты примем это расстояние за 1 (одно море). Тогда время, которое путешественник плыл на яхте, равно genfrac{}{}{}{0}{displaystyle 1}{displaystyle 20}, а время, затраченное на полет, равно genfrac{}{}{}{0}{displaystyle 1}{displaystyle 480}. Общее время равно genfrac{}{}{}{0}{displaystyle 1}{displaystyle 20}+genfrac{}{}{}{0}{displaystyle 1}{displaystyle 480}=genfrac{}{}{}{0}{displaystyle 25}{displaystyle 480}=genfrac{}{}{}{0}{displaystyle 5}{displaystyle 96}.

Средняя скорость равна  38,4  км/ч.

Ответ: 38,4.


2. Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Средняя скорость – это вовсе не среднее арифметическое скоростей. По определению,

Найдем S_1, S_2 и S_3 по формуле: S_ =vt.

Получим, что S_1=50cdot 2=100 км, S_2=1000cdot 1=100 км, S_3=75cdot 2=150 км,

км.

Ответ: 70.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задачи ЕГЭ на нахождение средней скорости» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Запомните!
!

Чтобы найти среднее арифметическое, нужно сложить все числа и поделить их сумму
на их количество.

Пример:

Найти среднее арифметическое 2, 3 и 4.

Обозначим среднее арифметическое буквой «m». По определению выше найдем сумму всех чисел.

2 + 3 + 4 = 9

Разделим полученную сумму на количество взятых чисел. У нас по условию три числа.

В итоге мы получаем формулу среднего арифметического:

Среднее арифметическое

Для чего нужно среднее арифметическое?

Кроме того, что его постоянно предлагают найти на уроках, нахождение среднего арифметического весьма полезно и в жизни.

Например, вы решили продавать футбольные мячи. Но так как вы новичок в этом деле, совершенно непонятно по какой
цене вам продавать мячи.

Тогда вы решаете узнать, по какой цене в вашем районе уже продают футбольные мячи конкуренты. Узнаем цены
в магазинах и составим таблицу.

Магазин Цена футбольного мяча

«Спорт-товары»

290 руб.
«Adidas» 360 руб.
«Все для футбола» 310 руб.

Цены на мячи в магазинах оказались совсем разные. Какую цену для продажи футбольного мяча нам лучше выбрать?

Если выбрать самую низкую (290 руб.), то мы будем продавать
товар себе в убыток. Если выбрать самую высокую (360 руб.), то покупатели не будут приобретать футбольные мячи у нас.

Нам нужна средняя цена. Здесь на помощь приходит среднее арифметическое.

Вычислим среднее арифметическое цен на футбольные мячи:

Средняя цена = =
= 320
руб.

Таким образом, мы получили среднюю цену (320 руб.), по которой мы можем продавать футбольный мяч не слишком дёшево и не
слишком дорого.

Средняя скорость движения

Со средним арифметическим тесно связано понятие средней скорости движения.

Наблюдая за движением транспорта в городе, можно заметить, что машины, то
разгоняются и едут с большой скоростью, то замедляются и едут с
маленькой скоростью.

Таких участков на пути следования автотранспорта бывает много. Поэтому
для удобства расчётов, используют понятие средней скорости движения.

Запомните!
!

Средняя скорость движения — это весь пройденный путь разделить на всё время движения.

средняя скорость движения

Рассмотрим задачу на среднюю скорость.

Разбор примера

Автомобиль двигался 3,2 ч по шоссе со скоростью 90 км/ч, затем
1,5 ч по
грунтовой дороге со скоростью 45 км/ч, наконец
0,3 ч по просёлочной дороге со скоростью 30 км/ч.
Найдите среднюю скорость движения автомобиля на всём пути.

Для расчёта средней скорости движения нужно знать весь путь, пройденный автомобилем,
и всё время, которое автомобиль двигался.


S1 = V1t1

S1 = 90 · 3,2 = 288 (км)

— шоссе.


S2 = V2t2

S2 = 45 · 1,5 = 67,5 (км)

— грунтовая дорога.


S3 = V3t3

S3 = 30 · 0,3 = 9 (км)

— просёлочная дорога.


S = S1 + S2 + S3

S = 288 + 67,5 + 9 = 364,5 (км)

— весь путь, пройденный автомобилем.


t = t1 + t2 + t3

t = 3,2 + 1,5 + 0,3 = 5 (ч)

— всё время.


Vср = S : t

Vср = 364,5 : 5 = 72,9

(км/ч) — средняя скорость движения автомобиля.

Ответ: Vср = 72,9 (км/ч) — средняя скорость движения автомобиля.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

10 апреля 2015 в 18:52

Дарья Некрасова
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Дарья Некрасова
Профиль
Благодарили: 0

Сообщений: 3

Автомобиль проехал 180 км за 3 ч с одинаковой скоростью. Из-за гололёда на обратном пути он уменьшил скорость на 15 км/ч. Сколько времени затратил автомобиль на обратный путь.

0
Спасибоthanks
Ответить

10 апреля 2015 в 18:55
Ответ для Дарья Некрасова

Дарья Некрасова
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Дарья Некрасова
Профиль
Благодарили: 0

Сообщений: 3


180: 3=60
60 ?15=45
180 :45=4

0
Спасибоthanks
Ответить

14 апреля 2015 в 17:11
Ответ для Дарья Некрасова

Asel Talantbekovna
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Asel Talantbekovna
Профиль
Благодарили: 0

Сообщений: 8


сама себе отвечает? laughing

0
Спасибоthanks
Ответить


24
Фев 2013

Категория: 09 Текстовые задачиСправочные материалыТекстовые задачи

09. Текстовые задачи на среднюю скорость

2013-02-24
2022-09-11

Средняя скорость – есть отношение всего пройденного пути ко всему затраченному времени.


Задача 1. Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Решение: + показать


Задача 2. Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Решение: + показать


Задача 3. Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть – со скоростью 120 км/ч, а последнюю – со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Решение: + показать


Задача 4. Пу­те­ше­ствен­ник пе­ре­плыл море на яхте со сред­ней ско­ро­стью 21 км/ч. Об­рат­но он летел на спор­тив­ном са­мо­ле­те со ско­ро­стью 567 км/ч. Най­ди­те сред­нюю ско­рость пу­те­ше­ствен­ни­ка на про­тя­же­нии всего пути. Ответ дайте в км/ ч.

Решение: + показать


Unknown

Вы можете пройти тест по теме «Задачи на среднюю скорость»

Автор: egeMax |

комментариев 11
| Метки: тесты

Средняя скорость

  1. Главная
  2. /
  3. Физика
  4. /
  5. Средняя скорость

Чтобы найти среднюю скорость воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Средняя скорость на протяжении всего пути

Расстояние (путь)

S =

Время

t =

Средняя скорость

Vср =

0

/

Округление ответа:

Средняя скорость через несколько скоростей

Средняя скорость

Vср =

0

Округление ответа:

Просто введите значения скоростей на разных участках пути и получите среднюю скорость. Для того чтобы добавить в ряд более двух чисел воспользуйтесь зелёной кнопкой “+”.

Теория

Как найти среднюю скорость зная расстояние (путь) и время

Чему равна средняя скорость Vср если известны путь S и время t за которое этот путь преодолён?

Формула

Vср = St

Пример

К примеру, поезд преодолел расстояние в 1000 км за 16 часов. Посчитаем с какой средней скоростью он двигался:

Vср = 1000/16 = 62.5 км/ч

Как найти среднюю скорость зная скорости на участках пути

Чтобы найти среднюю скорость Vср на протяжении всего пути, зная показатели скорости на его участках (V1 , V2 , … Vn), следует найти среднее гармоническое этих скоростей.

Формула

Vср = n
1V1 + 1V2 + … + 1Vn

Пример

Средняя скорость через две скорости

Автомобиль проехал некий путь, при этом первые полпути он ехал со скоростью 80 км/ч, а вторые полпути – со скоростью 20 км/ч. Определим среднюю скорость этого автомобиля:

Vср = 2 = 2 = 32
180 + 120 0.0125 + 0.05

Средняя скорость автомобиля равна 32 км/ч.

Добавить комментарий