Как найти среднюю скорость точки на отрезке

Средняя скорость считается так: весь путь поделить на всё время движения. Формула одна и очень простая, но почему-то школьники часто путаются в задачах на среднюю скорость. Разберу три характерные задачи и основные ошибки. Возможно, статья будет полезна учителям и репетиторам, а также школьникам.

1. Половина пути

Первую половину пути поезд ехал со скоростью 60 км/ч, а вторую – 90 км/ч. С какой средней скоростью ехал поезд на всём пути?

Первым делом школьник захочет сложить эти две скорости и поделить пополам. Логично? Да. Но, к сожалению, неправильно.

Объясняю, почему. Поскольку первую половину пути поезд ехал с меньшей скоростью, то времени было затрачено больше, чем на вторую. А значит, вклад отдельных скоростей неравнозначен, и нельзя так просто делить пополам.

Тут школьник может впасть в панику. Что делать? Умножать? Делить? Непонятно. Воспользоваться напрямую формулой “расстояние поделить на время” не получится – ни расстояние, ни время нам неизвестно.

Для школьников, только начинающих изучать основы физики, бывает трудно оперировать с неизвестными величинами. Нам не дано ничего, кроме скоростей, как же быть? В качестве маленькой ступеньки к освоению неизвестности могу предложить следующий ход – сначала додумать неизвестные данные. Возьмём и сами решим, пусть поезд пройдет 180 километров, цифру возьмем так, чтобы легко делилась.

Тогда половина пути будет 90 километров. Поезд пройдет её за 1,5 часа. Вторую половину пути – за 1 час. Это легко посчитает любой школьник. Значит, общее время в пути будет 2,5 часа. Делим общее расстояние 180 километров на 2,5 часа, и получаем 72 км/ч.

Это просто и понятно, но учитель такую задачу не примет. Откуда мы взяли 180 километров, когда это неизвестно? Тем не менее, дав себе эти неизвестные данные, мы продумали алгоритм и довели задачу до ответа. Осталось формализовать это решение, так чтобы не использовать то, что не дано. Обозначим наши 180 километров за S, и опишем всё, что мы делали раньше, только вместо цифр используем буквы.

Решение задачи про среднюю скорость поезда. Паровозик из Ромашково тут для красоты.
Решение задачи про среднюю скорость поезда. Паровозик из Ромашково тут для красоты.

Получается, что зная ход решения “в цифрах”, мы переводим его в буквенные обозначения. И тут главное не остановиться на полдороги, не смущаться, что нам неизвестно расстояние. Ведь оно в конце сократилось, и средняя скорость оказалась независящей от расстояния (что вполне логично). И от школьника здесь требуются уже алгебраические умения – складывать дроби, переворачивать их.

Если подобная задача встретилась в тесте, где требуется только ответ, можно вообще не заморачиваться – так как средняя скорость в данной задаче не зависит от расстояния, можно посчитать при любом удобном расстоянии. По крайней мере, это лучше, чем сидеть и ломать голову, не зная, как подступиться к решению. Если же требуется оформление – тут числовое решение может помочь как переходный этап, чтобы понять, что именно делать с формулами, как их крутить-вертеть.

Школьникам часто бывает трудно переходить на новый уровень абстракции – от чисел к переменным, которые могут принимать разные числовые значения. В алгебре это тренируют, но там одна переменная икс, и иногда игреки встречаются. А в физике этих переменных пруд пруди, в каждой задаче они разные, и если ученик не освоил этот уровень, то физика кажется ему супер-трудной. Кроме того, в школе переход от чисел к переменным часто упускают, в программе отдельных навыков работы с формулами нет.

2. Средняя скорость по графику пути

Пусть нам дан график зависимости координаты от времени. Требуется определить среднюю скорость.

График координаты от времени для примера
График координаты от времени для примера

По графику видно, что движение состоит из четырех этапов:

  1. Тело стартует в нуле и через 2 секунды оказывается на координате 2 м.
  2. Тело останавливается, и в течение 4 секунд покоится в точке с координатой 2 м.
  3. Тело начинает движение, и через 2 секунды оказывается в точке 6 м.
  4. Тело движется в обратном направлении, и через 2 секунды оказывается в точке 5 м.

Проговорить, понять все эти этапы – важная часть решения. А дальше многие школьники начинают вычислять скорости движения на каждом этапе: На первом – 1 м/с, на втором – 0, на третьем – 2 м/с, на четвертом – 0,5 м/с. Вот это действие как раз лишнее. Для того, чтобы вычислить среднюю скорость, вовсе не обязательно знать скорости на каждом этапе!

Вспомним определение средней скорости – это весь путь, поделить на всё время. Поэтому просто по графику считаем весь путь – 6 метров “туда” и 1 метр “обратно”, в сумме 7 метров. Общее время движения – 10 секунд. Делим 7 метров на 10 секунд, получаем 0,7 м/с.

3. Средняя скорость по графику скорости

Бывает так, что нам дан график зависимости скорости от времени, и требуется определить среднюю скорость. Вот, к примеру, такой график.

Для примера, график зависимости скорости от времени.
Для примера, график зависимости скорости от времени.

Читаем график. Движение состоит из трёх этапов

  1. С начала движения до момента времени 2 с тело движется с постоянной скоростью 2 м/с
  2. От 2 до 6 с тело движется со скоростью 6 м/с
  3. В последние 4 секунды от 6 до 10 с тело замедляется, снижая свою скорость до нуля.

Попытки что-то сделать со значениями скорости самими по себе здесь обречены на провал. Опять надо найти весь путь и всё время движения. Путь по графику скорости определяется как площадь под графиком, причем если график идет ниже нуля, то соответствующие участки складываются.

Считаем площадь фигуры – два прямоугольника на первых двух этапах и треугольник на третьем. Первый этап – 4 м, второй этап – 24 м, третий этап – 12 м. Значит, весь путь будет 40 метров. Всё время 10 секунд, значит, средняя скорость 4 м/с.

Общие рекомендации для решения задач на среднюю скорость

1. Средняя скорость – это всегда весь путь делить на всё время. Данные об отдельных скоростях сами по себе не дадут полной информации о средней скорости. Используем только эту формулу.

2. Следует проанализировать конкретную ситуацию и понять, как можно применить формулу. Если кажется, что не хватает данных – не смущаться.

3. Данные по скоростям на отдельных этапах могут быть полезны для проверки готового ответа: средняя скорость должна лежать между минимальной и максимальной.

Спасибо, что прочитали до конца! Желаю школьникам хорошей учёбы, учителям – понятливых и любопытных учеников, родителям – чтобы дети радовали. Буду рада лайкам и новым подписчикам!

Содержание:

  • Определение и формула средней скорости
  • Вектор средней скорости
  • Единицы измерения
  • Примеры решения задач

Определение и формула средней скорости

Определение

Средней путевой скоростью материальной точки на отрезке времени
$Delta t$называется скалярная физическая величина, равная отношению
длины пути, пройденного точкой к промежутку времени, в течение которого данный путь пройден. Среднюю скорость обозначают:

$$langle vrangle, bar{v}, v_{s r}$$

Математически определение средней скорости можно записать в следующем виде:

$$langle vrangle(t+Delta t)=frac{Delta s}{Delta t}=frac{s(t+Delta t)-s(t)}{Delta t}(1)$$

где $Delta s=s(t+Delta t)-s(t)$ – длина пути, которую прошла точка за время
$Delta t$.

Если перейти к пределу при $Delta t rightarrow 0$ , получим:

$$lim _{Delta t rightarrow 0}langle vrangle=lim _{Delta t rightarrow 0} frac{Delta s}{Delta t}=frac{d s}{d t}=v(t)(2)$$

средняя путевая скорость в пределе совпадает с величиной (модулем) мгновенной скорости точки в момент времени t.

При равномерном движении:

$$langle vrangle=v(3)$$

Вектор средней скорости

Определение

Вектором средней скорости $langlevec{v}rangle$ материальной точки на
отрезке времени $Delta t$называют величину, равную приращению радиус-вектора,
который определяет положение данной точки к промежутку времени $Delta t$:

$$langlebar{v}rangle(t+Delta t)=frac{Delta bar{r}}{Delta t}=frac{bar{r}(t+Delta t)-bar{r}(t)}{Delta t}(4)$$

где $Delta bar{r}$ – приращение радиус-вектора материальной точки.

Вектор средней скорости в пределе при $Delta t rightarrow 0$ совпадает с вектором скорости в момент времени t:

$$lim _{Delta t rightarrow 0}langlebar{v}rangle=lim _{Delta t rightarrow 0} frac{Delta bar{r}}{Delta t}=frac{d bar{r}}{d t}=bar{v}(t)(5)$$

где $bar{v}(t)$ – вектор мгновенной скорости токи.

Если точка совершает равномерное и прямолинейное движение, то выполняется равенство:

$$langlebar{v}rangle=bar{v}(6)$$

Средняя путевая скорость и модуль вектора средней скорости равны
$(langle vrangle=|langlebar{v}rangle|)$ только при прямолинейном движении.
При всех остальных видах движения выполняется неравенство:

$$langle vrangle>|langlebar{v}rangle|(7)$$

Единицы измерения

Основной единицей измерения средней скорости в системе СИ является: м/с

В СГС: см/с

Примеры решения задач

Пример

Задание. Какова средняя скорость материальной точки за время ее движения, если точка прошла первую половину
пути имея скорость v1, остальную часть пути данная точка 1/2 времени двигалась со скоростью v2, последний
участок пути точка двигалась со скоростью v3.

Решение. В качестве основы для решения задачи формулу:

$$langle vrangle=frac{s}{Delta t}(1.1)$$

где время потраченное на путь ($Delta t$) делится на три части:

$$Delta t=t_{1}+t_{2}+t_{3}(1.2)$$

При этом имеют место следующие соотношения между отрезками пути, скоростью их преодоления и временем:

$$left{begin{array}{c}frac{1}{2} s=v_{1} t_{1} rightarrow t_{1}=frac{s}{2 v_{1}} \ frac{1}{2} s=v_{2} t_{2}+v_{3} t_{3} rightarrow t_{3}=frac{s}{2left(v_{2}+v_{3}right)}(1.3) \ t_{2}=t_{3}=frac{1}{2} tend{array}right.$$
$$langle vrangle=frac{2 v_{1}left(v_{2}+v_{3}right)}{v_{2}+v_{3}+2 v_{1}}$$

Ответ. $langle vrangle=frac{2 v_{1}left(v_{2}+v_{3}right)}{v_{2}+v_{3}+2 v_{1}}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какова средняя скорость частицы, движущейся по оси Xза время в течение которого, она пройдет первые
s метров пути, если функция скорости задана уравнением: $v=A sqrt{x}$,
где A=const>0. Считать, что x=0 при t=0.

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем формулу для средней путевой скорости, так как движение прямолинейное,
то средняя путевая скорость равна модулю вектора средней скорости. По условию задачи точка движется по оси X, тогда:

$$langle vrangle(t+Delta t)=frac{Delta x}{Delta t}(2.1)$$

По условиям x(t=0)=0, среднюю скорость ищем, когда тело находится в точкеx=sследовательно, выражение (2.1) преобразуем к виду:

$$langle vrangle=frac{s}{t}(2.2)$$

Найдем зависимость скорости от времени, исходя из определения мгновенной скоростидля движения точки по оси X:

$$v=frac{d x}{d t}=A sqrt{x}(2.3)$$

Выразим из (2.2) x:

$$frac{d x}{sqrt{x}}=A d t rightarrow x=frac{A^{2} t^{2}}{4}(2.4)$$

Так как движение происходит по оси X, то $x=s=frac{A^{2} t^{2}}{4}$ . Выразим время, которое точка затратила на путьs :

$$t=frac{2 sqrt{s}}{A}(2.5)$$

Подставим время из (2.4) в формулу (2.2):

$$langle vrangle=frac{A}{2} sqrt{s}$$

Ответ. $langle vrangle=frac{A}{2} sqrt{s}$

Читать дальше: Формула угловой скорости.

Средняя скорость

  1. Главная
  2. /
  3. Физика
  4. /
  5. Средняя скорость

Чтобы найти среднюю скорость воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Средняя скорость на протяжении всего пути

Расстояние (путь)

S =

Время

t =

Средняя скорость

Vср =

0

/

Округление ответа:

Средняя скорость через несколько скоростей

Средняя скорость

Vср =

0

Округление ответа:

Просто введите значения скоростей на разных участках пути и получите среднюю скорость. Для того чтобы добавить в ряд более двух чисел воспользуйтесь зелёной кнопкой “+”.

Теория

Как найти среднюю скорость зная расстояние (путь) и время

Чему равна средняя скорость Vср если известны путь S и время t за которое этот путь преодолён?

Формула

Vср = St

Пример

К примеру, поезд преодолел расстояние в 1000 км за 16 часов. Посчитаем с какой средней скоростью он двигался:

Vср = 1000/16 = 62.5 км/ч

Как найти среднюю скорость зная скорости на участках пути

Чтобы найти среднюю скорость Vср на протяжении всего пути, зная показатели скорости на его участках (V1 , V2 , … Vn), следует найти среднее гармоническое этих скоростей.

Формула

Vср = n
1V1 + 1V2 + … + 1Vn

Пример

Средняя скорость через две скорости

Автомобиль проехал некий путь, при этом первые полпути он ехал со скоростью 80 км/ч, а вторые полпути – со скоростью 20 км/ч. Определим среднюю скорость этого автомобиля:

Vср = 2 = 2 = 32
180 + 120 0.0125 + 0.05

Средняя скорость автомобиля равна 32 км/ч.

Картинка ГДЗ - задания Упражнение 777 по алгебре Алимов 10-11 класс

ГДЗ #1

Картинка ГДЗ - Упражнение 777 по алгебре Алимов 10-11 класс Вариант 1

ГДЗ #2

Картинка ГДЗ - Упражнение 777 по алгебре Алимов 10-11 класс Вариант 2

777 Найти среднюю скорость движения точки на отрезке [1; 1,2], если закон её движения s = s(t) задан формулой: 1) s (t) = 2t;
2) s (t) = t2.

На этой странице вы сможете найти и списать готовое домешнее задание (ГДЗ) для школьников по предмету Алгебра, которые посещают 10-11 класс из книги или рабочей тетради под названием/издательством “Алгебра и начала анализа”, которая была написана автором/авторами: Алимов. ГДЗ представлено для списывания совершенно бесплатно и в открытом доступе.

Всего: 35    1–20 | 21–35

Добавить в вариант

Бегун пробежал 180 метров за 20 секунд. Найдите среднюю скорость бегуна. Ответ дайте в километрах в час.


Материальная точка движется от начального до конечного положения. На рисунке изображён график её движения. На оси абсцисс откладывается время в секундах, на оси ординат  — расстояние от начального положения точки (в метрах). Найдите среднюю скорость движения точки. Ответ дайте в метрах в секунду.


На рисунке показан график движения автомобиля по маршруту. На оси абсцисс откладывается время (в часах), на оси ординат  — пройденный путь (в километрах). Найдите среднюю скорость движения автомобиля на данном маршруте. Ответ дайте в км/ч.


Материальная точка движется от начального до конечного положения. На рисунке изображён график её движения. На оси абсцисс откладывается время в секундах, на оси ординат  — расстояние от начального положения точки (в метрах). Найдите среднюю скорость движения точки. Ответ дайте в метрах в секунду.


На рисунке показан график движения автомобиля по маршруту. На оси абсцисс откладывается время (в часах), на оси ординат  — пройденный путь (в километрах). Найдите среднюю скорость движения автомобиля на данном маршруте. Ответ дайте в км/ч.


Первые 140 км автомобиль ехал со скоростью 50 км/ч, следующие 160 км  — со скоростью 60 км/ч, а затем 120 км  — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.


Первые 110 км автомобиль ехал со скоростью 50 км/ч, следующие 130 км  — со скоростью 100 км/ч, а затем 180 км  — со скоростью 120 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.


Бегун пробежал 400 метров за 45 секунд. Найдите среднюю скорость  бегуна. Ответ  выразите в километрах в час. 


Первый час автомобиль ехал со скоростью 115 км/ч, следующие три часа  — со скоростью 45 км/ч, а затем два часа  — со скоростью 40 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.


Бегун пробежал 126 м за 18 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.


Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть  — со скоростью 90 км/ч, а последнюю  — со скоростью 45 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.


Бегун пробежал 120 м за 15 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.


Первую треть трассы автомобиль ехал со скоростью 100 км/ч, вторую треть  — со скоростью 75 км/ч, а последнюю  — со скоростью 60 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.


Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть  — со скоростью 120 км/ч, а последнюю  — со скоростью 40 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.


Первую треть трассы автомобиль ехал со скоростью 50 км/ч, вторую треть  — со скоростью 75 км/ч, а последнюю  — со скоростью 45 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Всего: 35    1–20 | 21–35

Добавить комментарий