Как найти среднюю высоту призмы

На чтение 4 мин Просмотров 64.2к. Опубликовано 13 февраля, 2019

Здесь вы найдёте: Объем правильной треугольной призмы понятие, Объем призмы треугольной формула нахождения, Площадь треугольной призмы

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Содержание

  1. Призма треугольная — определение
  2. Элементы треугольной призмы
  3. Виды треугольных призм
  4. Прямая треугольная призма
  5. Наклонная треугольная призма
  6. Основные формулы для расчета треугольной призмы
  7. Объем треугольной призмы
  8. Площадь боковой поверхности призмы
  9. Площадь полной поверхности призмы
  10. Правильная призма — прямая призма, основанием которой является правильный многоугольник.
  11. Пример призмы
  12. Задачи на расчет треугольной призмы

Призма треугольная — определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Призма треугольная

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы.

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Треугольная призма - высота и сечение

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

 Объем призмы = площадь основания х высота

или

V=Sосн . h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

или

Sбок=Pосн.

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

формула определения полной поверхности призмы

так как Sбок=Pосн.h, то получим:

Sполн.пов.=Pосн.h+2Sосн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.

Пример призмы

Прямая треугольная призма

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2  · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Наклонная треугольная призма с сечением

Решение: 

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.


Автор:

Eugene Taylor


Дата создания:

9 Август 2021


Дата обновления:

12 Май 2023


10 класс, 30 урок, Призма

Видео: 10 класс, 30 урок, Призма

Содержание

  • меры
  • Предупреждения
  • Необходимые материалы

Призма – это цельная трехмерная фигура с двумя параллельными (совпадающими) основаниями (или гранями). Форма основания определяет тип призмы, например, прямоугольная или треугольная. Поскольку это трехмерная фигура, определение объема (внутреннего пространства) призмы – обычная задача; однако иногда вам может потребоваться узнать его рост. Подобрать высоту можно, если у вас достаточно информации: объем или площадь поверхности и периметр основания. Формулы, описанные в этой статье, могут работать с базовыми призмами любого формата, если вы знаете формулу в области рисунка.

меры

Метод 1 из 4: определение высоты прямоугольной призмы по объему

  1. Составьте формулу объема призмы. Объем любой призмы можно рассчитать по формуле, где он равен объему призмы, равен площади основания и равен высоте призмы.
    • Основание призмы – одна из ее конгруэнтных сторон. Поскольку все противоположные стороны прямоугольной призмы совпадают, любая сторона может использоваться в качестве основы, если вы последовательны в своих расчетах.
  2. Подставьте значение объема в формулу. Если вы не знаете значение объема, то использовать этот метод невозможно.
    • Например, если вы знаете, что объем призмы составляет 64 кубических метра (), формула будет такой:
  3. Рассчитайте базовую площадь. Чтобы найти площадь, вам необходимо знать длину и ширину основания (или с одной стороны, если основание квадратное). Используйте формулу, чтобы найти площадь прямоугольника.

    • Например, если основание представляет собой прямоугольник длиной 8 м и шириной 2 м, чтобы найти площадь, рассчитайте:
  4. Замените площадь основания в формуле объема призмы. Не забудьте заменить переменную.
    • Например, если площадь квадрата составляет 16 квадратных метров, формула будет выглядеть так:
  5. Решите уравнение, чтобы найти значение. Результатом будет высота призмы.

    • Например, если уравнение имеет вид, вам нужно будет разделить каждую сторону на 16, чтобы найти значение. Следовательно:

      Следовательно, высота прямоугольной призмы составляет 4 м.

Метод 2 из 4: определение высоты треугольной призмы по объему

  1. Составьте формулу объема призмы. Объем любой призмы можно рассчитать по формуле, где он равен объему призмы, равен площади основания и равен высоте призмы.
    • Основание призмы – одна из ее конгруэнтных сторон. Основание треугольной призмы будет треугольником. Стороны будут прямоугольниками.
  2. Подставьте значение объема в формулу. Если вы не знаете значение объема, то использовать этот метод невозможно.
    • Например, если вы знаете, что объем призмы составляет 840 кубометров (), то формула будет такой:
  3. Рассчитайте базовую площадь. Для расчета площади нужно знать значение длины основания и высоты треугольника. Используйте формулу, чтобы вычислить площадь треугольника.
    • Вы также можете, если знаете значения трех сторон треугольника, вычислить площадь, используя формулу Герона. Прочтите статью Как рассчитать площадь треугольника и узнайте подробности.
    • Например, если треугольник имеет основание 12 м и высоту 7 м, чтобы узнать значение площади, необходимо рассчитать:
  4. Замените площадь основания в формуле объема призмы. Не забудьте заменить переменную.
    • Например, если базовая площадь составляет 42 квадратных метра, формула будет выглядеть так:
  5. Решите уравнение, чтобы найти значение. Результатом будет высота призмы.
    • Например, если уравнение имеет вид, вам нужно будет разделить каждую сторону на 42, чтобы найти значение. Следовательно:
    • Следовательно, высота треугольной призмы составляет 20 м.

Метод 3 из 4: определение высоты прямоугольной призмы по площади поверхности

  1. Составьте формулу площади поверхности призмы. Формула для площади поверхности призмы такова, где она равна площади поверхности, равна площади основания, периметру основания и высоте призмы.
    • Чтобы метод сработал, вам необходимо знать значение площади поверхности призмы, а также длину и ширину основания.
  2. Подставьте значение площади поверхности призмы в формулу. Если вы не знаете значение площади поверхности, этот метод не подойдет.
    • Например, если площадь поверхности составляет 1460 квадратных сантиметров, формула будет выглядеть так:
  3. Рассчитайте базовую площадь. Чтобы найти площадь, вам необходимо знать длину и ширину основания (или с одной стороны, если основание квадратное). Используйте формулу, чтобы найти площадь прямоугольника.
    • Например, если основание представляет собой прямоугольник длиной 8 см и шириной 2 см, чтобы узнать значение площади, вам потребуется рассчитать:
  4. Подставьте значение базовой площади в формулу площади призмы и упростите ее. Не забудьте заменить переменную.
    • Например, если площадь основания составляет 16 см, формула будет иметь следующий вид:
  5. Найдите периметр основания. Чтобы вычислить периметр прямоугольника, сложите длину всех сторон или, в случае квадрата, умножьте длину одной стороны на четыре.
    • Помните, что противоположные стороны прямоугольника имеют одинаковую длину.
    • Например, если основание представляет собой прямоугольник длиной 8 см и шириной 2 см, чтобы узнать значение периметра, вам необходимо рассчитать:
  6. Подставьте значение периметра в формулу площади поверхности призмы. Не забудьте заменить переменную.
    • Например, если периметр основания составляет 20 см, формула будет выглядеть так:
  7. Решите уравнение, чтобы найти значение. Результатом будет высота призмы.
    • Например, если уравнение таково, сначала вам нужно вычесть 32 из каждой стороны, а затем разделить каждую сторону на 20. Итак:
    • Следовательно, высота призмы 71,4 см.

Метод 4 из 4: Определение высоты треугольной призмы по площади поверхности

  1. Составьте формулу площади поверхности призмы. Формула для площади поверхности призмы такова, где она равна площади поверхности, равна площади основания, периметру основания и высоте призмы.
    • Чтобы этот метод сработал, необходимо знать значение площади поверхности призмы, а также площадь треугольного основания и длину всех трех сторон основания.
  2. Подставьте значение площади поверхности призмы в формулу. Если вы не знаете значение площади поверхности, этот метод не подойдет.
    • Например, если площадь квадрата составляет 1460 квадратных сантиметров, формула будет выглядеть так:
  3. Рассчитайте базовую площадь. Для расчета площади нужно знать значение длины основания и высоты треугольника. Используйте формулу, чтобы найти площадь треугольника.
    • Вы также можете, если знаете значения трех сторон треугольника, вычислить площадь, используя формулу Герона. Прочтите статью Как рассчитать площадь треугольника и узнайте подробности.
    • Например, если треугольник имеет основание 8 см и высоту 4 см, чтобы узнать значение площади, необходимо вычислить:
  4. Подставьте значение площади основания в формулу площади призмы и упростите ее. Не забудьте заменить переменную.
    • Например, если площадь основания составляет 16 см, формула будет иметь следующий вид:
  5. Найдите периметр основания. Чтобы вычислить периметр треугольника, сложите длину трех сторон.
    • Например, если основание представляет собой треугольник с тремя сторонами, длина которого составляет 8 см, 4 см и 9 см, чтобы найти периметр, вам нужно будет вычислить:
  6. Подставьте значение периметра в формулу площади поверхности призмы. Не забудьте заменить переменную.
    • Например, если периметр квадрата равен 21 см, формула будет выглядеть так:
  7. Решите уравнение, чтобы найти значение. Результатом будет высота призмы.
    • Например, если уравнение таково, сначала вам нужно вычесть 32 из каждой стороны, а затем разделить каждую сторону на 21. Итак:
    • Следовательно, высота призмы 68 см.

Предупреждения

  • Высота треугольной призмы не следует путать с наклонной высотой, то есть расстоянием от одного из оснований вершин треугольника в его основании до противоположной вершины базовой линии. Вы можете рассчитать наклонную высоту, если знаете длину основания и расстояние от противоположной вершины до стороны основания. Разделите длину основания на 2, затем используйте теорему Пифагора (), где «c» должно быть значением наклонной высоты.

Необходимые материалы

  • Ручка / карандаш и бумага или калькулятор (по желанию)


Download Article


Download Article

A prism is a three-dimensional solid with two parallel bases, or faces, that are congruent.[1]
The shape of the base determines what type of prism you have, such as a rectangular or triangular prism. Because it is a 3D shape, finding the volume (space inside) of a prism is a common task; however, sometimes you will need to find the height of a prism. Finding the height is possible if you have enough information already given: either the volume, or the surface area and perimeter of the base. The formulas described in these methods can work for prisms with bases of any shape, provided you know the formula for finding the area of that shape.

  1. Image titled Find The Height Of a Prism Step 1

    1

  2. Image titled Find The Height Of a Prism Step 2

    2

    Plug the volume into the formula. If you do not know the volume, you cannot use this method.

    Advertisement

  3. Image titled Find The Height Of a Prism Step 3

    3

    Find the area of the base. To find the area, you need to know the length and width of the base (or of one side, if the base is a square). Use the formula A=lw. To find the area of a rectangle.[3]

  4. Image titled Find The Height Of a Prism Step 4

    4

    Plug the area of the base into the volume of a prism formula. Make sure you are substituting for the variable A.

    • For example, if you found the area of the base to be 16 square meters, then your formula will look like this:
      64=16h
  5. Image titled Find The Height Of a Prism Step 5

    5

    Solve the equation for h. This will give you the height of your prism.

  6. Advertisement

  1. Image titled Find The Height Of a Prism Step 6

    1

  2. Image titled Find The Height Of a Prism Step 7

    2

    Plug the volume into the formula. If you do not know the volume, you cannot use this method.

  3. Image titled Find The Height Of a Prism Step 8

    3

    Find the area of the base. To find the area, you need to know the length of the triangle’s base and the height of the triangle. Use the formula A={frac  {1}{2}}(b)(h) to find the area of a triangle.[5]

  4. Image titled Find The Height Of a Prism Step 9

    4

    Plug the area of the base into the volume of a prism formula. Make sure you are substituting for the variable A.

    • For example, if you found the area of the base to be 42 square meters, then your formula will look like this:
      840=42h
  5. Image titled Find The Height Of a Prism Step 10

    5

    Solve the equation for h. This will give you the height of your prism.

  6. Advertisement

  1. Image titled Find The Height Of a Prism Step 11

    1

  2. Image titled Find The Height Of a Prism Step 12

    2

    Plug the surface area of the prism into the formula. If you do not know the surface area, this method will not work.

    • For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
      1460=2B+Ph
  3. Image titled Find The Height Of a Prism Step 13

    3

    Find the area of the base. To find the area, you need to know the length and width of the base (or of one side, if the base is a square). Use the formula A=lw. To find the area of a rectangle.[7]

  4. Image titled Find The Height Of a Prism Step 14

    4

    Plug the area of the base into the formula for the surface area of a prism and simplify. Make sure you are substituting for the letter B.

  5. Image titled Find The Height Of a Prism Step 15

    5

    Find the perimeter of the base. To find the perimeter of a rectangle, add up the length of all four sides, or, for a square, multiply the length of one side by 4.

  6. Image titled Find The Height Of a Prism Step 16

    6

    Plug the perimeter of the base into the formula for the surface area of a prism. Make sure you are substituting for the letter P.

    • For example, if you found the perimeter of the base to be 20, your formula will look like this:
      1460=32+20h
  7. Image titled Find The Height Of a Prism Step 17

    7

    Solve the equation for h. This will give you the height of your prism.

  8. Advertisement

  1. Image titled Find The Height Of a Prism Step 18

    1

  2. Image titled Find The Height Of a Prism Step 19

    2

    Plug the surface area of the prism into the formula. If you do not know the surface area, this method will not work.

    • For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
      1460=2B+Ph
  3. Image titled Find The Height Of a Prism Step 20

    3

    Find the area of the base. To find the area, you need to know the length of the triangle’s base and the height of the triangle. Use the formula A={frac  {1}{2}}(b)(h). To find the area of a triangle.[9]

  4. Image titled Find The Height Of a Prism Step 21

    4

    Plug the area of the base into the formula for the surface area of a prism and simplify. Make sure you are substituting for the letter B.

  5. Image titled Find The Height Of a Prism Step 22

    5

    Find the perimeter of the base. To find the perimeter of a triangle, add up the length of all three sides.

  6. Image titled Find The Height Of a Prism Step 23

    6

    Plug the perimeter of the base into the formula for the surface area of a prism. Make sure you are substituting for the letter P.

    • For example, if you found the perimeter of the base to be 21, your formula will look like this:
      1460=32+21h
  7. Image titled Find The Height Of a Prism Step 24

    7

    Solve the equation for h. This will give you the height of your prism.

  8. Advertisement

Add New Question

  • Question

    How do I find the height of a cylinder given the volume?

    Community Answer

    You can use Method 1 and the formula V = Ah. The base of a cylinder is a circle, so A will equal the area of the circle, which is pi x r^2. As long as you know the radius of the circle, you should be able to solve for h.

  • Question

    How can I find the height of a rectangular prism with the width, length and area of base?

    Donagan

    You also need to know the volume, in which case, you would divide the volume by the area.

  • Question

    How do I find the width of a rectangular prism?

    Donagan

    Assuming you know the volume, divide the volume by the height, then divide by the length.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

Thanks for submitting a tip for review!

Things You’ll Need

  • Pen/pencil and paper or calculator (optional)

References

About This Article

Article SummaryX

To find the height of a rectangular prism with a known volume, use the formula V=Ah, where V equals volume, A equals the area of one side, and h equals height. If you don’t have the area, multiply the width and length of one side to get that value. For triangular prisms with a known value, you use the same formula V=AH, but finding the area of one side is different. Use the formula A = 1/2bh, where b equals base and h equals height to get the area so you can solve for the height of the prism. To learn how to find the height of a triangular prism using the surface area, scroll down!

Did this summary help you?

Thanks to all authors for creating a page that has been read 378,388 times.

Did this article help you?

Объемное тело, в основании которого лежит многоугольник, называется призмой. У стандартной призмы оба основания конгруэнтны, что значит, что все их стороны и углы соответственно равны. Призма может быть прямой и наклонной, в прямой призме все отрезки, соединяющие соответствующие вершины оснований, перпендикулярны им и равны между собой, а также совпадают по значению с высотой. Эти отрезки, называемые боковыми ребрами, образуют со сторонами основания прямоугольники, которые будут конгруэнтны между собой в случае призмы с правильным многоугольником в основании. Таким образом, зная сторону многоугольника в основании и площадь боковой поверхности призмы, можно найти высоту по следующей формуле, где a – это сторона основания, а n – их количество:


Так как высота призмы прямо пропорционально связана с ее объемом, то использование этого отношения и есть самый простой и быстрый способ ее нахождения, и это актуально и для наклонных призм в том числе. Итак, чтобы вычислить высоту призмы через объем необходимо конвертировать формулу объема призмы таким образом, чтобы высота стала неизвестным параметром. Тогда она примет значение отношения объема к площади основания призмы:

Призма — это многогранник, который состоит из двух одинаковых многоугольников. Они расположены в
разных плоскостях. Призмы различаются по количеству углов в основании. К примеру, если в основании
находится треугольник ,то призма называется треугольной. Если в основании лежит четырехугольник, то
рассматриваемая фигура четырехугольная. Таким образом, фигура, состоящая из 2 равносторонних
треугольников, которые соединены между собой и лежат параллельно друг другу и называется правильная
треугольная призма.

Чтобы было проще понять, рекомендуется начертить на листе бумаге объект 2 равных
параллельных треугольника. Далее соединить их тремя вертикальными чертами. Все стороны у фигуры
обозначаются латинскими буквами, например, «А» «B» «C». Для второго треугольника в призме буквы
дублируются с индексом 1. В результате получается фигура, у которой стороны А₁В₁=В₁С₁=А₁С₁. Призма
АBCА₁В₁С₁ имеет грани в виде параллелограммов. Сторона АА₁ называется боковым ребром. Стороны в
основании геометрической фигуры называются ребрами основания. Высотой в призме называется расстояние
между разными плоскостями.

  • Высота правильной треугольной призмы через обьём и ребро
    основания
  • Высота правильной треугольной призмы через площадь боковой
    поверхности и ребро основания
  • Высота правильной треугольной призмы через площадь боковой
    поверхности и периметр основания
  • Высота правильной треугольной призмы через площадь боковой
    поверхности и площадь основания
  • Высота правильной треугольной призмы через площадь грани и
    ребро основания
  • Высота правильной треугольной призмы через диагональ грани
    и ребро основания

Через объем и ребро основания

У этой фигуры есть два основания в виде треугольников. Шесть отрезков, которые образуют треугольник в
призме и называют ребрами основания. Длина ребра в правильной призме будет одинаковой, поскольку все
стороны и углы в равностороннем треугольнике равны между собой. Зная это и объем искомого
многоугольника, можно применить эту формулу для осуществления расчетов:

H = 4V / a²√3

где V — объем фигуры измеряется в кубических единицах, а — ребро основания.

Цифр после
запятой:

Результат в:

Длина любой стороны в основании правильной призмы и будет ребром.

Пример.
Если V = 6 мм³, а = 6 мм то расчет неизвестной величины по формуле будет производиться следующим
образом: H = 46 / 6²√3= 24 / 6² * 1.732 = 0,38 мм. Таким образом, применив
формулу, можно узнать высоту через ребро основания и объем.

Через площадь боковой поверхности и ребро основания

Для вычисления потребуется знать площадь боковой поверхности, а также ребро основания. Чтобы
рассчитать площадь боковой поверхности, необходимо умножить периметр фигуры на длину бокового ребра.
Она рассчитывается по данной формуле: Sбок = P * I, где P — периметр, I — длина бокового ребра. Зная
площадь основания боковой поверхности и размеры отрезка, можно использовать формулу:

H = Sбок / 3a

где Sбок — площадь боковой поверхности, а — ребро основания.

Цифр после
запятой:

Результат в:

Пример. Для лучшего понимания можно продемонстрировать на конкретной задаче. Если =
7 мм², а = 8 мм то расчет неизвестной величины будет происходить следующим образом: H = 7 / 3 * 8 = 0,29 мм. Используя такой способ, можно узнать H
правильной треугольной призмы.

Через площадь боковой поверхности и периметр основания

Под периметром равностороннего треугольника, который является основанием рассматриваемой фигуры,
понимается сумма всех его длин, а также сторон. Зная, размер одной стороны легко рассчитать
периметр. Найти площадь боковой поверхности можно по формуле рассмотренной выше. После того как
периметр и боковая площадь известны, то необходимо подставить найденное значение в следующую
формулу:

H = Sбок / P

где S — площадь боковой поверхности, P — периметр основания.

Цифр после
запятой:

Результат в:

Пример. Если P = 2 мм, а Sбок = 16 мм² то расчет размеров будет производиться
следующим образом: H = 16 / 2 = 8 м². С помощью такого простого расчета
можно вычислить H искомой фигуры.

Через площадь боковой поверхности и площадь основания

Площадь основания рассчитывается также, как при нахождении S равностороннего треугольника S = 1/2 * ah, но высота в этом случае неизвестна, поэтому придется
воспользоваться другой формулой S = 1/2 * sin α. Как было сказано ранее,
площадь боковой поверхности считается произведением периметра и длины бокового ребра. Найдя искомые
площади, можно работать со следующей формулой для нахождения высоты призмы:

H = Sбок / (3 √(4 * (Sосн /√3)))

где Sбок — площадь боковой поверхности, Sосн — площадь основания геометрической фигуры.

Цифр после
запятой:

Результат в:

Пример. Если Sбок = 10 мм², а Sосн = 15 мм² то расчет размеров проводится следующим
образом: H = 10 / 3√4 * 15 / √3 = 0.5 мм. Таким образом, используя этот
метод расчета, можно найти H.

Через диагональ грани и ребро основания

Под диагональю грани понимается луч, которые проходит между двумя вершинами, которые находятся на
разных основаниях треугольной призмы. Когда известна диагональ грани, а также размер ребра в
основании, можно решить задачу по этой формуле:

H = √(d² — a²)

где d — диагональ грани, а — ребро основания.

Цифр после
запятой:

Результат в:

Пример. Если d=9 мм², а = 5 мм то расчет искомого параметра по формуле будет
выглядеть следующим образом: H = √(9² — 5²) = 7.4 мм. Таким образом,
используя эту формулу, можно вычислить H.

Через площадь грани и ребро основания

Ребро основания равняется длине любого отрезка в равностороннем треугольнике внутри призмы. Граней у
призмы 3. Две боковые и одна задняя. Они изображены в виде параллелограммов. Зная длину и площадь
грани у призмы, можно воспользоваться следующую формулу для расчета высоты правильной треугольной
призмы:

H = S / a

где S — площадь грани, a — ребро основания.

Цифр после
запятой:

Результат в:

Пример. Если S = 5 мм², а = 8 мм² то вычисления H будут производиться следующим
способом: H = 5 / 8 = 0,62 мм. С помощью этой формулы можно найти искомую
величину.

Умение рассчитать высоту треугольного многогранника пригодится при решении геометрических задач.
Знания могут потребоваться в школе, в университете, но иногда такая необходимость может возникнуть в
реальной жизни. Например, как строитель сможет посчитать площадь дома в виде призмы, если не знает
расчетной формулы. Важно понимать, как найти неизвестные переменные, когда известно лишь несколько
параметров.

Добавить комментарий