Аналитическая геометрия – задача на расчет пирамиды (тетраэдра)
Краткая теория
Вузовская аналитическая геометрия отличается от курса школьной геометрии. Главное отличие состоит в том, что она основным своим инструментом имеет набор алгебраических формул и методов вычислений. В основе аналитической геометрии лежит метод координат.
Аналитическая геометрия имеет набор формул, готовых уравнений и алгоритмов действия. Для успешного и правильного решения главное – разобраться и уделить задаче достаточно времени.
Данная задача является типовой в курсе аналитической геометрии и требует использования различных методов и знаний, таких как декартовые прямоугольные координаты и вектора в пространстве.
Пример решения задачи
Задача
Даны координаты
вершин пирамиды
. Найти:
Сделать чертеж.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Решение
Длина ребра
Длину ребра
найдем по
формуле расстояния между 2-мя точками:
Угол между ребрами
Угол между ребрами
и
найдем как угол
между направляющими векторами
и
:
Косинус угла между
векторами:
Угол между ребром и гранью. Векторное произведение
Вычислим угол между
ребром
и гранью
.
Для этого вычислим
координаты нормального вектора плоскости
–им будет
векторное произведение векторов
и
.
Найдем векторное произведение. Для этого
вычислим определитель:
Нормальный вектор
плоскости:
Синус угла:
Площадь грани
Вычислим площадь
грани
. Она будет численно равна половине модуля векторного
произведения векторов
и
:
Искомая площадь:
Объем пирамиды. Смешанное произведение векторов
Вычислим объем
пирамиды. Он будет равен шестой части модуля смешанного произведения векторов
и
:
Для того чтобы вычислить смешанное произведение, необходимо
найти определитель квадратной матрицы, составленной из координат векторов:
Искомый объем
пирамиды:
Уравнение прямой в пространстве
Вычислим уравнение
прямой
. Направляющим
вектором искомой прямой является вектор
. Кроме того, прямая проходит через точку
Уравнение искомой
прямой:
Уравнение плоскости
Вычислим уравнение
плоскости
. Нормальный вектор плоскости
. кроме того, плоскость проходит через точку
-уравнение
грани
Уравнение высоты, опущенной на грань
Составим уравнение
высоты, опущенной на грань
из вершины
:
Нормальный вектор
является
направляющим вектором высоты, кроме того, высота проходит через точку
Искомое уравнение
высоты:
Сделаем схематический чертеж:
Онлайн решение Пирамиды по координатам вершин
Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):
1) чертёж пирамиды по координатам её вершин;
2) длины и уравнения рёбер, медиан, апофем, высот;
3) площади и уравнения граней;
4) система линейных неравенств, определяющих пирамиду;
5) основания и точка пересечения медиан (центроид);
6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;
7) объём пирамиды;
8) основания, площади и уравнения биссекторов;
9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;
10) параметры и уравнения вписанной и описанной сфер;
Внимание! Этот сервис может не работать в браузере Internet Explorer.
Запишите координаты вершин пирамиды и нажмите кнопку.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
1) длину ребра А1А2;
из координат А2 вычти координаты А1
получишь вектор А1А2 с 3 координатами
их возведи в квадрат
сложи
извлеки из суммы квадратов корень
2) угол между ребрами А1А2 и А1А3;
найди координаты А1А2 и А1А3; (как в первом пункте)
найди длины обоих ((как в первом пункте))
найди скалярное произведение их:
первую координату первого умножь на первую координату второго+
+вторую координату первого умножь на вторую координату второго+
+третью координату первого умножь на третью координату второго
скалярное произведение подели на обе длины- получишь косинус угла между ними
3) площадь грани А1А2А3 ;
векторы А1А2 и А1А3 ты уже нашел в пункте 2
их длины тоже
есть два пути найти площадь:
ПЕРВЫЙ
найти векторное произведение этих векторов
потом его длину
потом его длину поделить на 2
это будет площадь треугольника
ВТОРОЙ
длины сторон (векторов) ты знаешь
косинус угла щнаешь
найди синус и считай площадь треугольника
4) объем пирамиды А1А2А3A4
векторы А1А2 и А1А3 ты уже нашел в пункте 2
найди еще А1А3 так же
запиши координаты всех трех в определитель по строкам (или по столбцам)
модуль определителя деленный на 3 и будет объем пирамиды
5) длину высоты пирамиды, проведенной из вершины A4.
объем= площадь грани А1А2А3 умножить на высоту и делить на 3
Пример 1:
Даны координаты вершин пирамиды А1А2А3А4.
Найти:
1) координаты и модули векторов А1 А2и А1 А4;
2) угол между ребрами А1 А2и А1 А4;
3) площадь грани А1 А2 А3;
4) объем пирамиды;
5) уравнение прямой А1 А2;
6) уравнение плоскости А1 А2 А3;
7) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3.
Сделать чертеж.
А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).
Решение от преподавателя:
Пример 2:
Даны координаты вершин пирамиды А1А2А3А4.
Найти: 1) длину ребра А1 А2;
2) угол между ребрами А1 А2и А1 А4;
3) угол между ребром А1 А4 и гранью А1 А2 А3;
4) площадь грани А1 А2 А3;
5) объем пирамиды;
6) уравнение прямой А1 А2;
7) уравнение плоскости А1 А2 А3;
8) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.
1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).
Решение от преподавателя:
Пример 3:
Решение от преподавателя:
Уравнение плоскости.
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:
|
= 0 |
Уравнение плоскости A1A2A3
(x-3)(1*2-0*3) – (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y – 3z-38 = 0
Угол между прямой A1A4 и плоскостью A1A2A3.
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле:
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0
Уравнение прямой A1A4:
γ = arcsin(0.267) = 15.486o
Уравнение высоты пирамиды через вершину A4(0,2,2)
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями:
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0
Уравнение плоскости через вершину A4(0,2,2)
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0
2(x-0)+13(y-2)-3(z-2) = 0
или
2x+13y-3z-20 = 0
Пример 4:
Решение от преподавателя:
Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4)
- Уравнение плоскости.
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:
|
= 0 |
Уравнение плоскости A1A2A3
(x-0)(3*2-8*3) – (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x – 15y + 33z-18 = 0
Упростим выражение: -6x – 5y + 11z-6 = 0
2) Угол между прямой A1A4 и плоскостью A1A2A3.
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле:
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0
Уравнение прямой A1A4:
γ = arcsin(0.193) = 11.128o
3) Уравнение высоты пирамиды через вершину A4(0,5,4)
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями:
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0
4) Уравнение плоскости через вершину A4(0,5,4)
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости
Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0
-6(x-0)-5(y-5)+11(z-4) = 0
или
-6x-5y+11z-19 = 0
5) Координаты вектора A1A4(0;4;3)
Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:
Пример 5:
Даны координаты вершин пирамиды А1А2А3А4.
Найти: 1) длину ребра А1 А2;
2) угол между ребрами А1 А2и А1 А4;
3) угол между ребром А1 А4 и гранью А1 А2 А3;
4) площадь грани А1 А2 А3;
5) объем пирамиды;
6) уравнение прямой А1 А2;
7) уравнение плоскости А1 А2 А3;
8) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.
А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).
Решение от преподавателя:
Пример 6:
Решение от преподавателя:
1) Даны координаты вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4)
Координаты векторов.
Координаты векторов: A1A2(3;3;3) A1A4(0;4;3)
Модули векторов (длина ребер пирамиды)
Длина вектора a(X;Y;Z) выражается через его координаты формулой:
Угол между ребрами.
Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле:
, где a1a2 = X1X2 + Y1Y2 + Z1Z2
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3):
А1 = arccos(0,808)
Найдем площадь грани с учётом геометрического смысла векторного произведения:
S =
Найдем векторное произведение
=i(3*2-8*3) – j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i – 15j + 33k
3) Объем пирамиды.
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Координатывекторов:A1A2(3;3;3) A1A3(-3;8;2) A1A4(0;4;3) :
где определитель матрицы равен:
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39
Пример 7:
Решение от преподавателя:
- Угол между ребрами.
Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле:
где a1a2 = X1X2 + Y1Y2 + Z1Z2
Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2):
γ = arccos(0) = 90.0030 - Площадь грани
Площадь грани можно найти по формуле:
где
Найдем площадь грани A1A2A3
Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2):
Площадь грани A1A2A3 - Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
где определитель матрицы равен:
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18
Пример 8:
Даны координаты вершин пирамиды А1А2А3А4 . Найти:
1) длину ребра А1А2;
2) угол между рёбрами А1А2 и А1А4 ;
3) угол между ребром А1А4 и гранью А1А2А3;
4) площадь грани А1А2А3;
5) объём пирамиды;
6) уравнение прямой А1А2;
7) уравнение плоскости А1А2А3;
8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3;
Сделать чертёж.
А1(3; 5; 4), А2(8; 7; 4), А3(5; 10; 4), А4(4; 7; 8).
Решение от преподавателя:
1) Длина ребра A1A2;
2) угол между ребрами А1А2 и А1А4;
3) угол между ребрами А1А4 и гранью А1А2А3;
Найдем уравнение стороны А1А4:
Вектор нормали: к плоскости А1А2А3.
4) площадь грани А1А2А3;
5) объем пирамиды;
6) уравнение прямой А1А2;
7) уравнение плоскости А1А2А3;
Итак: z=4 – уравнение плоскости А1А2А3.
8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.
A4O – высота:
Уравнение A4O:
Т.к. , то
В результате получаем уравнение высоты:
Пример 9:
Даны координаты вершин пирамиды А1А2А3А4.
Найти: 1) длину ребра А1 А2;
2) угол между ребрами А1 А2и А1 А4;
3) угол между ребром А1 А4 и гранью А1 А2 А3;
4) площадь грани А1 А2 А3;
5) объем пирамиды;
6) уравнение прямой А1 А2;
7) уравнение плоскости А1 А2 А3;
8) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.
А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).
Решение от преподавателя:
Векторная алгебра и элементы аналитической геометрии
ЗАДАЧА 1
В декартовой прямоугольной системе координат даны вершины пирамиды А1 В1 С1 D1. Найдите:
А) длину ребра А1 В1;
Б) косинус угла между векторами ;
В) уравнение ребра А1 В1;
Г) уравнение грани А1 В1 С1;
Д) уравнение высоты, опущенной из вершины D1 на грань А1 В1 С1;
Е) координаты векторов , , , и докажите, что они образуют линейно независимую систему;
Ж) координаты вектора , где – середины ребер А1 D1 и В1 С1 соответственно;
З) разложение вектора по базису если А1(–2,2,2), В1(1,–3,0), С1(6,2,4), D1(5,7,–1).
Решение
А) Найдем координаты вектора по формуле
= XВ – XА ; YВ – YА ; ZВ – ZА , где (ХА , YА , ZА ) – координаты точки А1, (ХВ , YВ , ZВ ) – координаты точки В1.
Итак, = Тогда = .
Итак, длина отрезка (или длина вектора ) равна . Это и есть искомая длина ребра.
Б) Координаты вектора = уже известны, осталось определить координаты вектора : = .
Угол между векторами и вычислим по формуле Cos = ,
Где скалярое произведение векторов и равно ( , )= 3 ´ 8 + (–5) ´ 0 + (–2) ´2 = 24 + 0 – 4=20, = , =
Итак, Cos = = .
В) Координаты точки А1(–2,2,2) обозначим соответственно Х0 = –2, У0 = 2, Z0=2, а координаты точки В1 (1,–3,0) через Х1=1, У1 = –3, Z1=0 и воспользуемся уравнением прямой в пространстве, проходящей через две точки: .
Следовательно, уравнение ребра А1В1 имеет вид или
Г) Обозначим координаты векторов и через Х1=3, У1= –5, 1= –2 и Х2=8, У2= 0, 2=2 соответственно. Векторное произведение данных векторов определяется формулой
Так как данный вектор перпендикулярен грани А1 В1 С1 то можно воспользоваться уравнением плоскости, проходящей через точку (Х0, У0, 0) перпендикулярно вектору , которое имеет вид
А .
Подставим координаты точки А1 (Х0=–2, У0=2, 0=2) и координаты перпендикулярного вектора А=–10, В=–22, С=40 в это уравнение:
– 10 ( Х + 2 ) – 22 (У – 2) + 40 ( – 2) = 0. Раскроем скобки и приведем подобные члены – 10 х – 22 у + 40z + (– 20 + 44–80)=0. Итак, уравнение грани А1 В1 С1 имеет вид: –10х – 22у + 40 z–56=0 или
–5х – 11у + 20 z – 28=0.
Д) Вектор является направляющим вектором высоты, опущенной из вершины D1 на грань А1В1С1. Воспользуемся уравнением прямой в пространстве, проходящей через точку с заданным направляющим вектором: , где – координаты точки D1. Отсюда искомое уравнение: или
Е) Координаты вектора = = .
Обозначим = , = , .
Чтобы доказать, что векторы образуют линейно независимую систему векторов необходимо убедиться, что определитель третьего порядка, составленный из координат этих векторов,
отличен от 0. Определитель третьего порядка равен
= – + =
=
Вычислим определитель
=3 – (–5) +(–2) = 3 (0 (–3) – 5 2)+5 (8 (–3) – 7 2) –
– 2 (8 5 – 7 0) =3 (–10)+5 (–24 – 14) – 2 40=–30 – 190 – 80 = –300.
Так как данный определитель отличен от 0, то вектора образуют линейно независимую систему.
Ж) Сначала найдем координаты точек М и N соответственно. Координаты точки
М = = =
N = = = .
Получаем вектор = .
З) Обозначим через координаты вектора в базе .
Тогда = = .
Так как
= + + ;
= + + = ,
То приравнивая соответствующие координаты, получим систему трех линейных уравнений с тремя неизвестными.
(1)
Решим данную систему уравнений с помощью формул Крамера (см. глава 10, стр. 268). Рассмотрим произвольную систему трех линейных уравнений с тремя неизвестными:
(2)
Тогда = z , где
Для системы (1) определитель
=3 –8 +7 =
= 3 ( –10) – 8 ( 15 + 10 ) + 7 ( –10) = –30 – 200 – 70 = –300;
= 2 –8 +7 =
=3 –2 +7 =
=3
=3 –8 +2 =
=
По формулам Крамера
Итак, разложение вектора по базису ( ) имеет вид
=
ЗАДАЧА 2
Решите систему линейных уравнений
А) методом Крамера;
Б) методом Гаусса;
В) с помощью обратной матрицы.
Решение
А) Метод Крамера состоит в решении системы линейных уравнений по формулам Крамера ,
Где (Подробности смотрите в пункте З) задачи 1.
Так как ; то
Б) решим данную систему уравнений методом Гаусса. Метод Гаусса состоит в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида из которой последовательно, начиная с последнего уравнения легко находят все неизвестные системы.
Составим расширенную матрицу данной системы.
Поменяем местами первую и вторую строки матрицы чтобы в ее левом верхнем углу была единица. Получим матрицу,
Умножим каждый элемент первой строки матрицы на 4 и прибавим полученные числа к соответствующим элементам второй строки. Матрица примет вид,
=
Умножим каждый элемент первой строки матрицы на –3, и прибавим полученные числа к соответствующим элементам третьей строки. Получим:
= .
Разделим каждый элемент второй строки матрицы на 4, чтобы второй элемент, стоящий на главной диагонали матрицы, стал равным 1.
.
Умножим каждый элемент второй строки матрицы на –8 и прибавим полученные числа к соответствующим элементам третьей строки:
.
Данная матрица соответствует системе уравнений , решение которой совпадает с решением исходной системы. Начиная с последнего уравнения, несложно найти все неизвестные.
Действительно, так как и , то
Отсюда, Из имеем
Ответ: .
В) Решение системы в этом случае равно = , где = – обратная матрица для матрицы = , – столбец свободных членов, – определитель этой матрицы. (Общую запись системы трех линейных уравнений с тремя неизвестными смотрите в задаче 1, пункт з, система 2).
Составим матрицу состоящую из коэффициентов при неизвестных данной системы:
А = .
Вычислим ее определитель = –4 –4 –6 =
= .
Вычислим алгебраические дополнения для всех элементов матрицы А:
Тогда = = и
= =
= = = = .
Отметим, что ответы, полученные при решениями разными методами совпадают между собой.
Ответ:
< Предыдущая | Следующая > |
---|