Как найти стандартное отклонение сигма

Среднеквадрати́ческое отклонение (среднеквадрати́чное отклонение, стандартное отклонение[1]) — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания (аналога среднего арифметического с бесконечным числом исходов). Обычно означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения.

В литературе обычно обозначают греческой буквой sigma (сигма). В статистике принято два обозначения: sigma  — для генеральной совокупности и {displaystyle sd} (с англ. standard deviation — стандартное отклонение) — для выборки.

Варианты определения[править | править код]

Обычно определяется как квадратный корень из дисперсии случайной величины: {displaystyle sigma ={sqrt {D[X]}}}. Измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

В частности, если x_{i} — i-й элемент выборки, n — объём выборки, {bar {x}} — среднее арифметическое выборки (выборочное среднее — оценка математического ожидания величины):

{displaystyle {bar {x}}={frac {1}{n}}sum _{i=1}^{n}x_{i}={frac {1}{n}}(x_{1}+ldots +x_{n})},

то два основных способа оценки стандартного отклонения записываются нижеследующим образом.

Оценка стандартного отклонения на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией[2]):

{displaystyle S={sqrt {{frac {1}{n}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}}.

Это в буквальном смысле среднее квадратическое разностей измеренных значений и среднего.

Оценка стандартного отклонения на основании несмещённой оценки дисперсии (подправленной выборочной дисперсии[2], в ГОСТ Р 8.736-2011 — «среднее квадратическое отклонение»):

{displaystyle S_{0}={sqrt {{frac {n}{n-1}}S^{2}}}={sqrt {{frac {1}{n-1}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}.}

Само по себе, однако, S_{0} не является несмещённой оценкой квадратного корня из дисперсии, то есть извлечение квадратного корня «портит» несмещённость.

Обе оценки являются состоятельными[2].

Кроме того, среднеквадратическим отклонением называют математическое ожидание квадрата разности истинного значения случайной величины и её оценки для некоторого метода оценки[3]. Если оценка несмещённая (выборочное среднее — как раз несмещённая оценка для случайной величины), то эта величина равна дисперсии этой оценки.

Среднее значение выборки также является случайной величиной с оценкой среднеквадратичного отклонения[3][нет в источнике]:

{displaystyle S_{bar {x}}=S_{0}/{sqrt {n}}={sqrt {{frac {1}{n(n-1)}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}.}

Правило трёх сигм[править | править код]

Правило трёх сигм ({displaystyle 3sigma }) гласит: вероятность того, что любая случайная величина отклонится от своего среднего значения менее чем на {displaystyle 3sigma }:

{displaystyle P(|xi -Exi mid <3sigma )geqslant {frac {8}{9}}}.

Практически все значения нормально распределённой случайной величины лежат в интервале {displaystyle left(mu -3sigma ;mu +3sigma right)}, где {displaystyle mu =Exi } — математическое ожидание случайной величины. Более строго — приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале.

Интерпретация[править | править код]

Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, для у всех трёх числовых множеств: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8} средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение[править | править код]

На практике среднеквадратическое отклонение позволяет оценить, насколько значения из множества могут отличаться от среднего значения.

Экономика и финансы[править | править код]

Среднее квадратическое отклонение доходности портфеля sigma ={sqrt {D[X]}} отождествляется с риском портфеля.

В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера, расчёта волатильности.

Оценка рисков и критика[править | править код]

Среднеквадратическое отклонение широко распространено в финансовой сфере в качестве критерия оценки инвестиционного риска. По мнению американского экономиста Нассима Талеба, этого делать не следует. Так, по теории около двух третей изменений должны укладываться в определённые рамки (среднеквадратические отклонения −1 и +1) и что колебания свыше семи стандартных отклонений практически невозможны. Однако в реальной жизни, по мнению Талеба, всё иначе — скачки отдельных показателей могут превышать 10, 20, а иногда и 30 стандартных отклонений. Талеб считает, что риск-менеджерам следует избегать использования средств и методов, связанных со стандартными отклонениями, таких как регрессионные модели, коэффициент детерминации (R-квадрат) и бета-факторы. Кроме того, по мнению Талеба, среднеквадратическое отклонение — слишком сложный для понимания метод. Он считает, что тот, кто пытается оценить риск с помощью единственного показателя, обречён на неудачу[4].

Климат[править | править код]

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт[править | править код]

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

Пример[править | править код]

Предположим, что интересующая нас группа (генеральная совокупность) это класс из восьми учеников, которым выставляются оценки по 10-бальной системе. Так как мы оцениваем всю группу, а не её выборку, можно использовать стандартное отклонение на основании смещённой оценки дисперсии. Для этого берём квадратный корень из среднего арифметического квадратов отклонений величин от их среднего значения.

Пусть оценки учеников класса следующие:

{displaystyle 2, 4, 4, 4, 5, 5, 7, 9}.

Тогда средняя оценка равна:

{displaystyle mu ={frac {2+4+4+4+5+5+7+9}{8}}=5}.

Вычислим квадраты отклонений оценок учеников от их средней оценки:

{displaystyle {begin{array}{lll}(2-5)^{2}=(-3)^{2}=9&&(5-5)^{2}=0^{2}=0\(4-5)^{2}=(-1)^{2}=1&&(5-5)^{2}=0^{2}=0\(4-5)^{2}=(-1)^{2}=1&&(7-5)^{2}=2^{2}=4\(4-5)^{2}=(-1)^{2}=1&&(9-5)^{2}=4^{2}=16\end{array}}}

Среднее арифметическое этих значений называется дисперсией:

{displaystyle sigma ^{2}={frac {9+1+1+1+0+0+4+16}{8}}=4}

Стандартное отклонение равно квадратному корню дисперсии:

{displaystyle sigma ={sqrt {4}}=2}

Эта формула справедлива только если эти восемь значений и являются генеральной совокупностью. Если бы эти данные были случайной выборкой из какой-то большой совокупности (например, оценки восьми случайно выбранных учеников большого города), то в знаменателе формулы для вычисления дисперсии вместо n = 8 нужно было бы поставить n − 1 = 7:

{displaystyle sigma ^{2}={frac {9+1+1+1+0+0+4+16}{7}}approx 4{,}57}

и стандартное отклонение равнялось бы:

{displaystyle sigma ={sqrt {4{,}57}}approx 2{,}14}

Этот результат называется стандартным отклонением на основании несмещённой оценки дисперсии. Деление на n − 1 вместо n даёт неискажённую оценку дисперсии для больших генеральных совокупностей.

Примечания[править | править код]

  1. Встречаются также различные синонимы: среднее квадратическое отклонение, стандартный разброс, стандартная неопределённость; термин «среднее квадратическое» означает «среднее степени 2»
  2. 1 2 3 Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. — М. : Издательство ЛКИ, 2010. — §2.2. Выборочные моменты: точная и асимптотическая теория. — ISBN 978-5-382-01013-7.
  3. 1 2 C. Patrignani et al. (Particle Data Group). 39. STATISTICS. — В: Review of Particle Physics // Chin. Phys. C. — 2016. — Vol. 40. — P. 100001. — doi:10.1088/1674-1137/40/10/100001.
  4. Талеб, Гольдштейн, Шпицнагель, 2022, с. 46.

Литература[править | править код]

  • Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. — СПб.: Питер, 2003. — 688 с. — ISBN 5-272-00078-1..
  • Нассим Талеб, Дениэл Гольдштейн, Марк Шпицнагель. Шесть ошибок руководителей компаний при управлении рисками // Управление рисками (Серия «Harvard Business Review: 10 лучших статей») = On Managing Risk / Коллектив авторов. — М.: Альпина Паблишер, 2022. — С. 41—50. — 206 с. — ISBN 978-5-9614-8186-0.

Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.

Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.

Стандартное отклонение обозначается буквой σ (греческая буква сигма).

Стандартное отклонение также называется:

  • среднеквадратическое отклонение,
  • среднее квадратическое отклонение,
  • среднеквадратичное отклонение,
  • квадратичное отклонение,
  • стандартный разброс.

Использование и интерпретация величины среднеквадратического отклонения

Стандартное отклонение используется:

  • в финансах в качестве меры волатильности,
  • в социологии в опросах общественного мнения — оно помогает в расчёте погрешности.

Пример:

Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.

День 1 День 2 День 3 День 4
Пред.А 19 21 19 21
Пред.Б 15 26 15 24

В обеих компаниях среднее количество товара составляет 20 единиц:

  • А -> (19 + 21 + 19+ 21) / 4 = 20
  • Б -> (15 + 26 + 15+ 24) / 4 = 20

Однако, глядя на цифры, можно заметить:

  • в компании A количество товара всех четырёх дней очень близко находится к этому среднему значению 20 (колеблется лишь между 19 ед. и 21 ед.),
  • в компании Б существует большая разница со средним количеством товара (колеблется между 15 ед. и 26 ед.).

Если рассчитать стандартное отклонение каждой компании, оно покажет, что

  • стандартное отклонение компании A = 1,
  • стандартное отклонение компании Б ≈ 5.

Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула
Где:
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.
стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула
Где:
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение “xср” вместо “μ”.

Разница между формулами S и σ (“n” и “n–1”)

Состоит в том, что мы анализируем — всю выборку или только её часть:

  • только её часть – используется формула S (с “n–1”),
  • полностью все данные – используется формула σ (с “n”).

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1 День 2 День 3 День 4
Пред.Б 15 26 15 24

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

x1 – μ = 15 – 20 = -5

x2 – μ = 26 – 20 = 6

x3 – μ = 15 – 20 = -5

x4 – μ = 24 – 20 = 4

3. Каждую полученную разницу возвести в квадрат:

(x1 – μ)² = (-5)² = 25

(x2 – μ)² = 6² = 36

(x3 – μ)² = (-5)² = 25

(x4 – μ)² = 4² = 16

4. Сделать сумму полученных значений:

Σ (xi – μ)² = 25 + 36+ 25+ 16 = 102

5. Поделить на размер выборки (т.е. на n):

(Σ (xi – μ)²)/n = 102 / 4 = 25,5

6. Найти квадратный корень:

√((Σ (xi – μ)²)/n) = √ 25,5 ≈ 5,0498

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1 Яблоня 2 Яблоня 3 Яблоня 4 Яблоня 5 Яблоня 6
9 2 5 4 12 7

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

(X1 – Xср)² = (2,5)² = 6,25

(X2 – Xср)² = (–4,5)² = 20,25

(X3 – Xср)² = (–1,5)² = 2,25

(X4 – Xср)² = (–2,5)² = 6,25

(X5 – Xср)² = 5,5² = 30,25

(X6 – Xср)² = 0,5² = 0,25

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Дисперсия и стандартное отклонение

Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).

Дисперсия — в статистике это “среднее квадратов отклонений от среднего”. Чтобы её вычислить нужно:

  1. Вычесть среднее значение из каждого числа
  2. Возвести каждый результат в квадрат (так получатся квадраты разностей)
  3. Найти среднее значение квадратов разностей.

Ещё расчёт дисперсии можно сделать по этой формуле:

Дисперсия и стандартное отклонение расчёт дисперсии формула
Где:
S² — выборочная дисперсия,
Xi — величина отдельного значения выборки,
Xср (может появляться как X̅) — среднее арифметическое выборки,
n — размер выборки.

Правило трёх сигм

Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.

Правило трёх сигм

Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:

  • одного среднеквадратического отклонения заключаются 68,26% значений (Xср ± 1σ или μ ± 1σ),
  • двух стандартных отклонений — 95,44% (Xср ± 2σ или μ ± 2σ),
  • трёх стандартных отклонений — 99,72% (Xср ± 3σ или μ ± 3σ).

Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.

Стандартное отклонение в excel

Вычисление стандартного отклонения с “n – 1” в знаменателе (случай выборки из генеральной совокупности):

1. Занесите все данные в документ Excel.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

2. Выберите поле, в котором вы хотите отобразить результат.

3. Введите в этом поле “=СТАНДОТКЛОНА(“

4. Выделите поля, где находятся данные, потом закройте скобки.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

5. Нажмите Ввод (Enter).

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Коэффициент вариации

Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.

Стандартное отклонение делится на среднее и умножается на 100%.

Можно классифицировать вариабельность выборки по коэффициенту вариации:

  • при <10% выборка слабо вариабельна,
  • при 10% – 20 % — средне вариабельна,
  • при >20 % — выборка сильно вариабельна.

Узнайте также про:

  • Корреляции,
  • Метод Крамера,
  • Метод наименьших квадратов,
  • Теорию вероятностей
  • Интегралы.

Сигмой (σ) в статистическом анализе обозначают стандартное отклонение. Опуская тонкости, которые будут обсуждены ниже, можно сказать, что стандартное отклонение — это та погрешность, то «± сколько-то», которым обязательно сопровождают измерение величины. Если вы измерили массу предмета и получили результат 100 ± 5 грамм, то величина «110 грамм» отличается от измеренного результата на два стандартных отклонения (то есть на 2 сигмы), величина «50 грамм» отличается на 10 стандартных отклонений (на 10 сигм).

Зачем всё это нужно: сигмы и вероятности

При обсуждении погрешностей мы уже говорили, что фраза «измеренная масса равна 100 ± 5 грамм» вовсе не означает, что истинная масса гарантированно лежит в интервале от 95 до 105 грамм. Она может оказаться и за пределами этого интервала «± 1σ», но, как правило, недалеко. В небольшом проценте случаев может даже случиться, что она выходит за пределы интервала «± 2σ», и уж совсем редко она оказывается за пределами «± 3σ». В общем, тенденция ясна: количество сигм связано с вероятностью того, что истинное значение будет настолько отличаться от измеренного.

Вероятность того, что истинное значение попадет в определенный интервал около измеренного среднего значения при нормальном распределении ошибок

Пропустим все математические подробности и покажем результат для самого простого и распространенного случая, который называется «нормальное распределение» (см. рисунок). Вероятность попасть в интервал ± 1σ — примерно 68%, в интервал ± 2σ — примерно 95%, в интервал ± 3σ — примерно 99,8%, и т. д. Итак, можно сформулировать некую договоренность:

Договоренность: выражение какого-то отличия в количестве сигм — это сообщение о том, какова вероятность, что такое или еще более сильное отличие могло произойти за счет случайного стечения обстоятельств при измерении.

Использовать эту договоренность можно разными способами. Если вы просто сообщаете результат измерения (100 ± 5 грамм) и уверены в том, что нормальное распределение применимо, то вы можете сказать, что истинное значение массы с вероятностью 68% лежит в этом интервале, с вероятностью 95% лежит в интервале от 90 до 110 грамм, и т. д.

Вы можете также сравнивать результат вашего измерения с чужим измерением той же самой величины или с теоретическими расчетами. Вы видите, что числа отличаются, и хотите понять, имеете ли вы право утверждать, что между двумя результатами есть статистически значимое расхождение — то есть несогласие, которое нельзя списать на случайную статистическую флуктуацию в данных. Тогда утверждения звучат так:

  • Если отличие составляет меньше 1σ, то вероятность того, что два числа согласуются друг с другом, больше 32%. В таком случае просто говорят, что два результата совпадают в пределах погрешностей.
  • Если отличие составляет меньше 3σ, то вероятность того, что два числа согласуются друг с другом, больше 0,2%. В физике элементарных частиц такой вероятности недостаточно для каких-либо серьезных выводов, и принято говорить: различие между двумя результатами не является статистически значимым.
  • Если отличие от 3σ до 5σ, то это повод подозревать что-то серьезное. Впрочем, даже в этом случае физики говорят осторожно: данные указывают на существование различия между двумя результатами.
  • И только если два результата отличаются на 5σ или больше, физики четко заявляют: два результата отличаются друг от друга.

Эти выражения особенно стандартны, когда речь идет о поиске новой частицы. Вы сравниваете экспериментальные данные с теоретическим предсказанием, сделанным без новой частицы, и, если видите отличие от 3 до 5 сигм, вы говорите: получено указание на существование новой частицы (по-английски, evidence). Если же отличие превышает 5 сигм, вы говорите: мы открыли новую частицу (discovery).

«Уверенность» против «статистической значимости»

Заметьте, что в приведенных выше примерах нас интересовали вопросы, на которые можно ответить «да» или «нет». Проступает ли в полученных данных какая-то новая частица? Согласуется ли распределение по импульсу с теоретическими расчетами? Зависит ли сечение процесса от энергии столкновений? Совпадает ли масса у частицы и ее античастицы? Попытка ответить на эти вопросы с помощью данных называется на научном языке проверкой гипотез. Вопросы, которые требуют развернутого ответа (подсчитать что-то, объяснить что-то и т. п.), гипотезами не называются.

В простейшем приближении результат экспериментальной проверки гипотезы выглядит так: ответ «да» с вероятностью p и ответ «нет» с вероятностью 1 – p. Эти вероятности очень важны для сообщения результата; физики обычно избегают абсолютных утверждений («мы открыли» или «мы опровергли») без указания вероятностей.

Но тут сразу же надо сделать важное уточнение. Если его четко осознать, то станет понятным, почему такие стандартные для научно-популярных новостей фразы, как «Ученые на 99% уверены, что открыли что-то новое», — обманчивы.

Точная формулировка, которую обычно используют ученые, такова:

При проверке гипотезы получен ответ «да» на уровне статистической значимости p.

При этом величина p часто выражается в виде количества сигм. В англоязычной литературе используется словосочетание confidence level, CL (доверительный уровень). В русскоязычной еще иногда говорят «статистическая достоверность», но такое выражение может привести к путанице в понимании.

Отличие «популярной» фразы от истинного утверждения вот в чём. Во всяком измерении есть не только статистические, но и систематические погрешности. Описанные выше правила связи вероятностей и количества сигм работают только для статистических погрешностей — и то если к ним применимо нормальное распределение. Если статистические погрешности всегда можно обсчитать аккуратно, то систематические погрешности — это немножко искусство. Более того, из многолетнего опыта известно, что сильные систематические отклонения уж точно не описываются нормальным распределением, и потому для них эти правила пересчета не справедливы. Так что даже если экспериментаторы всё перепроверили много раз и указали систематическую погрешность, всегда остается риск, что они что-то упустили из виду. Корректно оценить этот риск невозможно, поэтому вы на самом деле не знаете, с какой истинной вероятностью ваш ответ верен.

Конечно, по умолчанию систематическим погрешностям стоит доверять, особенно если они исходят от опытных экспериментальных групп. Но вековой опыт изучения элементарных частиц показывает, что несмотря на все предосторожности регулярно случаются проколы. Бывает, что коллаборация получает результат, сильно противоречащий какой-то гипотезе, перепроверяет анализ много раз и никаких ошибок у себя не находит. Однако этот результат затем не подтверждается другими — порой намного более точными! — экспериментами. Почему первый эксперимент дал такой странный результат, что в нём было не то, где там ошибка или неучтенная погрешность — всё это зачастую так и остается непонятым (впрочем, иногда источник ошибки быстро вскрывается, как это случилось со «сверхсветовыми» нейтрино в эксперименте OPERA).

Физики к таким оборотам событий уже привыкли, поэтому каждый экспериментальный результат, сильно отличающийся от всей сложившейся к тому времени картины, вызывает оправданный скепсис. Физики так консервативны в своем отношении вовсе не потому, что они ретрограды и намертво уверовали в какую-то одну теорию, как это хотят представить опровергатели физики. Они просто научены всем предыдущим опытом в физике частиц и знают, чем это обычно кончается. Поэтому без независимого подтверждения другими экспериментами подобные сенсации они не поддерживают.

ФЭЧ в сравнении с другими науками

Надо сказать, что сформулированные выше жесткие критерии статистической достоверности характерны именно для физики элементарных частиц и некоторых смежных разделов. Во многих других разделах физики, а тем более в других дисциплинах (в особенности, в биомедицинских науках) критерии намного слабее.

Предположим, вы измерили некие данные и хотите узнать, какова вероятность того, что они «вписываются в норму». Вы проводите статистический тест, который дает вам вероятность того, что «нормальная ситуация» без какого-либо реального отклонения только за счет статистической флуктуации даст вот такое или еще более сильное отклонение. Эта вероятность называется p-значение. В биологии пороговое p-значение, ниже которого уже уверенно говорят про реальное отличие, составляет один или даже несколько процентов. В физике элементарных частиц такое отличие вообще не считают значимым, тут нет даже «указания на существование» какого-то отличия! Ответственное заявление об отличии звучит в ФЭЧ только для p-значений меньше одной двухмиллионной (то есть отклонение больше 5σ). Такой жесткий подход к достоверности утверждений выработался в ФЭЧ примерно полвека назад, в эпоху, когда экспериментаторы видели много отклонений со значимостью в районе 3σ и смело заявляли об открытии новых частиц, хотя потом эти «открытия» не подтверждались. Подробный рассказ об истоках этого критерия см. в постах Tommaso Dorigo (часть 1, часть 2).

Как использовать математику в трейдинге, если вы вообще не математик

Время на чтение: 11 минут

Стандартное отклонение и нормальное распределение

На простом языке разберем, как незамысловатые элементы статистики и математики могут сильно помочь на финансовых рынках.

Где встречается нормальное распределение, что за шапка жандарма такая, откуда берутся 1, 2 или 3 сигмы, как определить математическое ожидание стратегии — после прочтения статьи вам будет все понятно.

Содержание

  1. Видео.
  2. Что такое нормальное распределение и где оно встречается.
  3. Что такое стандартное отклонение и откуда оно берется
    • Правило 3-х сигм в стандартном отклонении
  4. Нормальное распределение и стандартное отклонение на финансовых рынках.
    • Нормальное распределение в доходностях торговых стратегий
    • Нормальное распределение в просадках торговых стратегий
    • “Толстые хвосты” нормального распределения на финансовых рынках
  5. Индикаторы с использованием стандартного отклонения.
    • Классический индикатор стандартного отклонения — Standard Deviation
    • Полосы Боллинджера
  6. Математическое ожидание торговых стратегий.
    • Отрицательное мат. ожидание
    • Положительное мат. ожидание
  7. Заключение.
  8. Материалы.

Видео

Что такое нормальное распределение и где оно встречается

Многое, что нас окружает, имеет нормальное распределение. Средняя, нормальная скорость, с которой передвигаются машины в городе, средние зарплаты, средняя продолжительность фильма, среднее время, проведенное в инстаграмме и т.д. Среднее и нормальное движение цен финансовых инструментов — не исключение (о них — чуть позже).

Скорее всего, вы видели колоколообразную кривую нормального распределения. Разберем ее на примере среднего роста человека.

Нормальное распределение
Нормальное распределение среднего роста взрослого человека.

Допустим, у нас есть данные о всех взрослых людях планеты и их росте за последние 1000 лет. Нам не составит труда узнать средний рост такого человека — он равняется 165 см. Самый низкий рост человека — 54,6 см, а самый высокий — 272 см. Выше на графике ось X показывает как раз значения роста взрослого человека, ось Y — вероятность встречи человека с определенным ростом. И если перевести график на простой язык, будет звучать примерно так:

С большей вероятностью мы будем встречать людей с ростом от 150 до 180 см. А вот взрослых людей с ростом ниже 100 см и выше 200 см мы будем встречать крайне редко.

Кстати да, иногда математики нормальное распределение называют “шлемом жандарма”. И вот почему:

Стандартное отклонение и нормальное распределение
Жандарм и его “нормальный” шлем 🙂

Ок, теперь разберем, что такое стандартное отклонение.

Что такое стандартное отклонение и откуда оно берется

В статистике дается следующее определение:

Стандартное отклонение (отображается как греческая буква σ — сигма) — мера, которая показывает разброс величин от среднего значения.

Формула стандартного отклонения выглядит так:

Стандартное отклонение и нормальное распределение

Корень из суммы квадратов разниц между элементами выборки, деленной на количество элементов в выборке минус 1. Если что, это все автоматически можно вычислить в Excel по формуле “СТАНДОТКЛОН”.

Правило 3-х сигм — 3-х стандартных отклонений

Получив значение стандартного отклонения, мы можем узнать, где и с какой вероятностью окажутся наши исследуемые данные, используя правило 3-х сигм. Для этого обратимся к рисунку ниже.

Стандартное отклонение и нормальное распределение
1, 2 и 3 сигмы (σ) — те самые отклонения от среднего.

Если в нуле у нас то самое среднее значение (которое также называется математическим ожиданием и обозначается буквой мю — μ. О мат. ожидании скоро поговорим чуть подробней), то 1, 2 и 3 сигмы — отклонения от среднего значения. На одно, два и три значения соответственно.

Правило 3-х сигм говорит вот о чем:

  • с вероятностью 99,7% наши исследуемые данные окажутся именно в этой выборке — от -3 до +3 стандартных отклонений. ((34,1% + 13,6 + 2,1%) * 2 = 99,7%)
  • c вероятностью 68,2% наши данные окажутся в пределах от -1 до +1 стандартных отклонений. (34,1% + 34,1% = 68,2%)
  • вероятность того, что наши данные выйдут из 3 стандартных отклонений — крайне мала, а именно — около 0,3%

Стандартное отклонение еще называют среднеквадратичным отклонением, потому что является квадратным корнем дисперсии — меры, которая показывает разброс значений от среднего (от того самого нуля, или μ). Нет необходимости погружаться в формулы, так как дисперсия тоже автоматически считается в том же Excel (по формуле “ДИСП”). Но если все же хотите разобраться с дисперсией подробней, вот ссылка на статью Википедии.

Ок, с матчастью разобрались, теперь к примерам из финансовых рынков.

За 1 час поможем разобраться с факторами успеха и причинами неудач на финансовых рынках. Бесплатно

Нормальное распределение и стандартное отклонение на финансовых рынках

Теперь мы знаем, что нормальное распределение должно встречаться и в разных сферах финансовых рынков — от доходностей торговых стратегий до движения котировок внутри дня. Давайте исследуем эту гипотезу экспериментально.

Нормальное распределение в доходностях торговых стратегий

В статье Ценность стоп-лосса, выявленная из 2 365 алгоритмов мы уже приводили результативность стратегий и их среднюю доходность. Вот какая выборка данных была:

  • количество бэктестов: 109 912
  • количество сделок: 44 214 423
  • среднее историческое окно: 5.25 лет
  • среднее количество сделок в каждом бэктесте: 402
  • бэктестов с доходностью выше нуля: 25 706, или 23%
  • бэктестов, подходящих для лайв-трейдинга (коэффициент восстановления > 0.5 и количество сделок > 30): всего 2 365 или 2.15%

Угадайте, что получили? Да, шлем жандарма.

Ценность стоп-лосса
Нормальное распределение доходностей среди 2 365 алгоритмов.

По оси X — соотношение прибыльных сделок в исследуемых стратегиях. В нашем случае —  от 20% до 75%. По оси Y — количество алгоритмов, которые попали в определенную доходность (всего их во всех гистограммах — 2 365 штук). Чем выше гистограмма, тем больше алгоритмов туда попало, — значит, выше вероятность такого события. Опять же, давайте переведем все на человеческий язык, как на примере со средним ростом человека. Вот как сформулируем:

Вероятней всего, в среднем у стратегий будет от 35% до 45% прибыльных сделок. Шанс того, что среднее количество сделок будет 55% и выше — крайне мал.

И небольшое отступление. Распределение не всегда бывает нормальным. Слово “нормальное” в нашем термине подразумевает зеркальные значения что слева от среднего, что справа. Идеальная зеркальность нам и не нужна.

А вообще, вот какие типы распределений бывают:

Стандартное отклонение и нормальное распределение
Виды кривых распределений.

Есть теорема (центральная предельная теорема — ЦПТ), которая приводит ненормальное распределение к нормальному. Это все, что нам нужно знать в рамках этой статьи.

С этим разобрались. Это была средняя доходность. А что, если посмотреть на среднюю просадку?

Нормальное распределение в просадках торговых стратегий

Сейчас же просто посмотрим на распределения.

Ок, допустим, у нас есть некая стратегия, которая в среднем дает 50% прибыльных сделок, а соотношение стоп-лосса к тейк-профиту составляет 1 к 1. Вот как будет выглядеть среднее распределение по просадке:

Стандартное отклонение и нормальное распределение
Практически нормальное распределение по просадке.

MDD — Maximum Drowdown — максимальная просадка. И здесь тоже видим уже знакомую нам кривую почти нормального распределения. Как показывает эта кривая, средняя просадка, вероятнее всего, будет в районе 3,8%.

И еще один пример для закрепления.

Стандартное отклонение и нормальное распределение
Нормальное распределение, где средняя просадка уже 26,6%.

В нашем Telegram-канале есть то, чего не публикуем на сайте 👇

“Толстые хвосты” нормального распределения

Об этом любит писать в своих книгах и публикациях Нассим Талеб. Что за “толстые хвосты” такие? Сейчас расшифруем.

По правилам 3-х отклонений, (тех самых 3-х сигм) все, что выходит за их рамки — крайне редкие события, которые можно вообще и не встретить в жизни (мы уже знаем, что шанс встретиться с таким событием — примерно 0,3%). Но парадокс в том, что редкие события на финансовых рынках, они же “черные лебеди”, встречаются значительно чаще, чем об этом говорит статистика.

Нормальное распределение
Те самые “хвосты” распределения.

“Хвосты” — те самые края нормального распределения. И если у синего распределения они тонкие (то есть вероятность события действительно низка), то у красного распределения они шире.

Мы помним, что по оси Y у нас вероятность встречи события, а по оси X — его значение. Так и получается, что чем “толще” хвосты, тем выше вероятность реализоваться крайне неожиданному и экстремальному событию.

Или же посмотреть видео ниже:

Индикаторы с использованием стандартного отклонения

Вот несколько индикаторов, в основе которых лежит логика нормального распределения и стандартного отклонения.

Классический индикатор стандартного отклонения — Standard Deviation

Задача индикатора Standard Deviation — показывать всплески волатильности от средних значений. По классической настройке индикатор включается с периодом 20, то есть берет 20 последних свечей и вычисляет от них то самое среднее значение.

Стандартное отклонение и нормальное распределение
График валютной пары NZD/JPY H1 и индикатор стандартного отклонения с периодом 20.

Рост индикатора — рост ценовой активности, снижение индикатора — снижение активности.

Так как этот индикатор показывает лишь всплески волатильности, в отдельности он практически не используется. Волатильность достаточно легко определить на глаз, без каких-либо приборов.

Полосы Боллинджера

Стратегия на индикаторах SMA и линиях Боллинджера
Линии Боллинджера и уже знакомые вам отклонения (сигмы).

Линия посередине — то самое среднее значение. Линии выше и ниже — +2 сигмы и -2 сигмы, то есть вероятностное движение цены как в рост, так и в падение.

Вот видео о том, как мы создавали и тестировали стратегию на основе полос Боллинджера:

Математическое ожидание торговых стратегий

Последнее, о чем поговорим, и расходимся.

Скорее всего, вы слышали что-то вроде “О, эта стратегия с положительным мат. ожиданием”, или “Эта стратегия не годится. Ее мат. ожидание отрицательное”. Да, положительное математическое ожидание — хорошо, отрицательное — плохо. А берется оно, как мы уже разобрались, из тех же значений нормального распределения — из среднего. Сформулировать мат. ожидание можно так:

Математическое ожидание — это наиболее ожидаемое значение, которое мы можем получить при многократном повторении испытания.

Снова обратимся за помощью к методу Монте-Карло и распределениям, чтобы проверить все на практике.

Отрицательное математическое ожидание

Стандартное отклонение и нормальное распределение
Распределения с помощью Монте-Карло.

Выше мы провели 10 000 случайных симуляций стратегии (на самом деле портфеля стратегий, но сейчас это не важно) и получили данные по распределениям. Нам интересна правая нижняя диаграмма — “Распределение ФинРез” — финансовый результат.

Еще раз пройдемся по определению, но уже для торговой стратегии.

Математическое ожидание торговой стратегии, это среднее значение ее доходности при многократном повторении испытания.

Если среднее значение отрицательное (оно же мат. ожидание), как на примере выше (-11,5%), значит эта стратегия не заслуживает право на существование. Любые прибыли в такой стратегии — это лишь случайность и простое везение.

Теперь посмотрим на потенциально прибыльную стратегию.

Положительное математическое ожидание

Стандартное отклонение и нормальное распределение
Распределения с помощью Монте-Карло.

Здесь финансовый результат уже положительный. Среднее значение доходности — +29,1%, что говорит нам о положительном математическом ожидании. Стратегия заслуживает право на существование.

Как создавать торговые стратегии на основе статистики и данных, способных работать 24/5

Не упустите возможность получить прибыльные торговые стратегии.

Заключение

Давайте еще раз тезисно по всему пробежимся:

  • Под нормальное распределение попадает практически все, что нас окружает в жизни. Нормальное распределение в разных сферах финансовых рынков — не исключение.
  • Вычислить вероятность максимальной просадки или среднюю доходность стратегии не составит труда, если у вас есть данные. Чтобы получать данные, вы должны уметь тестировать торговые стратегии. Наш проект практики алготрейдинга поможет вам с этим.
  • Многие трейдеры даже не подозревают, что используют стратегии с отрицательным мат. ожиданием. Получать системную прибыль с такими стратегиями невозможно статистически. Это все-равно что подкидывать монетку, ожидая, что “решка” будет выпадать чаще “орла”. Любые прибыли у таких стратегий будут носить случайный и кратковременный характер, а трейдер будет лишь одурачиваться случайностью.

В этой статье мы постарались показать, что для простейших вычислений вам не нужно быть математиком — все уже создано, можно брать и пользоваться. Самое важное, это умение тестировать стратегии и правильно работать с их данными. С таким подходом вы будете на голову выше других частных (как минимум) трейдеров.

Принципы нормального распределения вы можете применять к любым показателям, которые вас заинтересуют. Это могут быть и средние движения криптовалют, и средняя ожидаемая доходность инвестиционного портфеля, и все, что вы сами захотите исследовать. Ограничения всегда лишь в вашей голове.

Работа с данными, тестирования, рациональное мышление и опора на статистику — вот что ценится среди профессионалов и отделяет их от любителей.

И да, не забывайте, что финансовые рынки иногда проявляют “толстые хвосты” 😉

Успехов!

Материалы

  1. 4 урока для трейдинга из 4-х книг Нассима Талеба.
  2. Трендовая стратегия на индикаторах SMA и полосах Боллинджера (Bollinger Bands).
  3. Тренд — лучшее, что вы можете использовать в своей торговле. Исследования тренд-аномалий за 136 лет.
  4. Курс Системный трейдинг.

Поделиться статьей

С радостью ответим на ваши комментарии

Читайте также

Павел Овсянников

Павел Овсянников

Сооснователь Empirix (в прошлом VSAtrader.ru). Ритейл-трейдер и квалифицированный инвестор. Автор 70+ статей и 6 курсов. На финансовых рынках с 2012 года. Создает, тестирует и оптимизирует алгоритмические торговые стратегии, управляет системным фондом. E-mail для связи: paul@vsatrader.ru.

Стандартное отклонение

Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.

Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.

Стандартное отклонение обозначается буквой σ (греческая буква сигма).

Стандартное отклонение также называется:

  • среднеквадратическое отклонение,
  • среднее квадратическое отклонение,
  • среднеквадратичное отклонение,
  • квадратичное отклонение,
  • стандартный разброс.

Использование и интерпретация величины среднеквадратического отклонения

Стандартное отклонение используется:

  • в финансах в качестве меры волатильности,
  • в социологии в опросах общественного мнения — оно помогает в расчёте погрешности.

Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.

День 1 День 2 День 3 День 4
Пред.А 19 21 19 21
Пред.Б 15 26 15 24

В обеих компаниях среднее количество товара составляет 20 единиц:

  • А -> (19 + 21 + 19+ 21) / 4 = 20
  • Б -> (15 + 26 + 15+ 24) / 4 = 20

Однако, глядя на цифры, можно заметить:

  • в компании A количество товара всех четырёх дней очень близко находится к этому среднему значению 20 (колеблется лишь между 19 ед. и 21 ед.),
  • в компании Б существует большая разница со средним количеством товара (колеблется между 15 ед. и 26 ед.).

Если рассчитать стандартное отклонение каждой компании, оно покажет, что

  • стандартное отклонение компании A = 1,
  • стандартное отклонение компании Б ≈ 5.

Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Разница между формулами S и σ (“n” и “n–1”)

Состоит в том, что мы анализируем — всю выборку или только её часть:

  • только её часть – используется формула S (с “n–1”),
  • полностью все данные – используется формула σ (с “n”).

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1 День 2 День 3 День 4
Пред.Б 15 26 15 24

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

x1 – μ = 15 – 20 = -5

x2 – μ = 26 – 20 = 6

x3 – μ = 15 – 20 = -5

x4 – μ = 24 – 20 = 4

3. Каждую полученную разницу возвести в квадрат:

4. Сделать сумму полученных значений:

Σ (xi – μ)² = 25 + 36+ 25+ 16 = 102

5. Поделить на размер выборки (т.е. на n):

(Σ (xi – μ)²)/n = 102 / 4 = 25,5

6. Найти квадратный корень:

√((Σ (xi – μ)²)/n) = √ 25,5 ≈ 5,0498

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1 Яблоня 2 Яблоня 3 Яблоня 4 Яблоня 5 Яблоня 6
9 2 5 4 12 7

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

(X1 – Xср)² = (2,5)² = 6,25

(X2 – Xср)² = (–4,5)² = 20,25

(X3 – Xср)² = (–1,5)² = 2,25

(X4 – Xср)² = (–2,5)² = 6,25

(X5 – Xср)² = 5,5² = 30,25

(X6 – Xср)² = 0,5² = 0,25

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Дисперсия и стандартное отклонение

Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).

Дисперсия — в статистике это “среднее квадратов отклонений от среднего”. Чтобы её вычислить нужно:

  1. Вычесть среднее значение из каждого числа
  2. Возвести каждый результат в квадрат (так получатся квадраты разностей)
  3. Найти среднее значение квадратов разностей.

Ещё расчёт дисперсии можно сделать по этой формуле:

Правило трёх сигм

Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.

Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:

  • одного среднеквадратического отклонения заключаются 68,26% значений (Xср ± 1σ или μ ± 1σ),
  • двух стандартных отклонений — 95,44% (Xср ± 2σ или μ ± 2σ),
  • трёх стандартных отклонений — 99,72% (Xср ± 3σ или μ ± 3σ).

Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.

Стандартное отклонение в excel

Вычисление стандартного отклонения с “n – 1” в знаменателе (случай выборки из генеральной совокупности):

1. Занесите все данные в документ Excel.

2. Выберите поле, в котором вы хотите отобразить результат.

3. Введите в этом поле “=СТАНДОТКЛОНА(“

4. Выделите поля, где находятся данные, потом закройте скобки.

5. Нажмите Ввод (Enter).

В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.

Коэффициент вариации

Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.

Стандартное отклонение делится на среднее и умножается на 100%.

Можно классифицировать вариабельность выборки по коэффициенту вариации:

  • при 20 % — выборка сильно вариабельна.

Как найти среднеквадратическое отклонение

В данной статье я расскажу о том, как найти среднеквадратическое отклонение. Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Порода собаки Рост в миллиметрах
Ротвейлер 600
Бульдог 470
Такса 170
Пудель 430
Мопс 300

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего:

Наконец, чтобы вычислить дисперсию, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм 2 .

Таким образом, дисперсия составляет 21704 мм 2 .

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть значений, то:

  • Когда мы имеем дело с генеральной совокупностью при вычислении дисперсии, мы делим на (как и было сделано в рассмотренном нами примере).
  • Когда мы имеем дело с выборкой, при вычислении дисперсии делим на .

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки = мм 2 .

При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

.

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

.

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

.

Для второго примера получится:

.

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал репетитор по математике в Москве, Сергей Валерьевич

стандартное отклонение калькулятор

Среднеквадратическое отклонение‭ (‬СО‭) ‬-‭ ‬это показатель рассеяния значений во множестве данных относительно их математического ожидания.‭ ‬Обозначается также как СО.‭ ‬Символом среднеквадратического отклонения является‭ ‬σ‭(‬сигма‭)‬.‭ ‬Можно также сказать,‭ ‬что это показатель изменчивости или дисперсии в этом множестве данных.‭ ‬Находите математическое ожидание,‭ ‬дисперсию,‭ ‬среднеквадратическое отклонение данных чисел с помощью этих бесплатных арифметических онлайн-калькуляторов среднеквадратического отклонения.

Среднеквадратическое отклонение калькулятор

Среднеквадратическое отклонение‭ (‬СО‭) ‬-‭ ‬это показатель рассеяния значений во множестве данных относительно их математического ожидания.‭ ‬Обозначается также как СО.‭ ‬Символом среднеквадратического отклонения является‭ ‬σ‭(‬сигма‭)‬.‭ ‬Можно также сказать,‭ ‬что это показатель изменчивости или дисперсии в этом множестве данных.‭ ‬Находите математическое ожидание,‭ ‬дисперсию,‭ ‬среднеквадратическое отклонение данных чисел с помощью этих бесплатных арифметических онлайн-калькуляторов среднеквадратического отклонения.

[spoiler title=”источники:”]

http://www.easycalculation.com/ru/statistics/standard-deviation.php

[/spoiler]

Добавить комментарий