Как найти статическое давление вентилятора

Если комфорту в доме вы уделяете достаточно внимания, то наверное, согласитесь, что качество воздуха должно стоять на одном из первых мест. Свежий воздух полезен для здоровья и мышления. В хорошо пахнущую комнату не стыдно пригласить гостей. Проветривать каждое помещение по десять раз в день — нелегкое занятие, неправда ли?

Многое зависит от выбора вентилятора и в первую очередь его давления. Но до того как определить давление вентилятора, нужно ознакомиться с некоторыми физическими параметрами. Прочитайте о них в нашей статье.

Благодаря нашему материалу вы изучите формулы, узнаете виды давления в вентиляционной системе. Мы привели для вас сведения о полном напоре вентилятора и двух способах, по которым его можно измерить. В итоге вы сможете самостоятельно измерить все параметры.

Содержание статьи:

  • Давление в вентиляционной системе
  • Формулы для расчета напора вентилятора
  • Как вычислить давление в вентиляции?
  • Особенности расчета напора
  • Выводы и полезное видео по теме

Давление в вентиляционной системе

Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.

Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.

К первой относят приборы с напором < 1 кПа, второй — 1—3 кПа и более, третьей — больше 3—12 кПа и выше. В жилых строениях используют устройства первой и второй категории.

Аэродинамика вентилятора на графике

Аэродинамическая характеристика осевых вентиляторов на графике: Pv — полное давление, N — мощность, Q — расход воздуха, ƞ — КПД, u — скорость, n — частота вращения

В технической документации к вентилятору обычно указывают аэродинамические показатели, включая полное и статическое давление при определенной производительности. На практике «заводские» и реальные параметры часто не совпадают, и связано это с конструктивными особенностями вентиляционных систем.

Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.

В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.

Формулы для расчета напора вентилятора

Напор представляет собой соотношение воздействующих сил и площади, на которую они направлены. В случае с вентканалом речь идет о воздухе и сечении.

Поток в канале распределяется неравномерно и не проходит под прямым углом к поперечному разрезу. Узнать точный напор по одному замеру не удастся, придется искать среднее значение по нескольким точкам. Сделать это нужно и для входа, и для выхода из вентилирующего прибора.

Осевой вентилятор

Осевые вентиляторы используют отдельно и в воздуховодах, они эффективно работают там, где нужно переносить большие массы воздуха при относительно низком давлении

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) — Pп (вх.), где:

  • Pп (вых.) — полное давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Для статического давления вентилятора формула отличается незначительно.

Ее записывают как Рст = Рст (вых.) — Pп (вх.), где:

  • Рст (вых.) — статическое давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора: как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 — Рст 1. Это второстепенный параметр.

График статического давления и расхода

Проектировщики подают параметры с учетом небольшого засорения или без такового: на изображении показано несоответствие статического давления одного и того же вентилятора в разных вентиляционных сетях

Правильный выбор вентилирующего устройства включает такие нюансы:

  • подсчет расхода воздуха в системе (м³/с);
  • подбор устройства на основе такого расчета;
  • определение скорости на выходе по выбранному вентилятору (м/с);
  • расчет Pп устройства;
  • измерение статического и динамического напора для сравнения с полным.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П. F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Как вычислить давление в вентиляции?

Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.

На практике вышеописанные условия встречаются редко, и тогда перед нужным местом устанавливают хонейкомб, который выпрямляет поток воздуха.

Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди — минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.

Трубка полного давления

Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин

Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.

Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.

Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.

Измерение с трубкой Прандтля

Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с

Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.

Напор тогда измеряют по следующему методу:

  1. За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
  2. Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.

От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.

Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.

Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.

Напоромер для воздушной среды

Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0

В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции.

Особенности расчета напора

Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.

Следует помнить такие закономерности:

  • полное давление — это сумма статического и динамического;
  • полный напор вентилятора должен равняться потерям давления в вентиляционной сети.

Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.

Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.

Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.

Термоанемометр для вентиляционной системы

Анемометры и термоанемометры измеряют скорость потока в воздуховоде при значениях до 5 м/с или больше, анемометр следует выбирать по ГОСТ 6376—74

При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.

С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.

Некоторые требования к электродвижку:

  • малый пусковой момент — по причине того, что расход мощности меняется в соответствии с изменением количества оборотов, подведенного к кубу;
  • большой запас;
  • работа на максимальной мощности для большей экономии.

Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.

На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.

Выводы и полезное видео по теме

Обзор физических показателей, которые нужны для измерений:

Роль давления в вентиляционной сети:

Вентилятор — простая конструкция в виде колеса с лопастями. Одновременно это главная часть вентиляционной системы. Механический прибор влияет на напор в воздуховоде и определяет эффективность вентиляции.

Если хотите рассчитать давление вентилятора, разберитесь с такими величинами, как скорость, расход воздуха, мощность. Вы будете лучше понимать суть измерений. Главный показатель, полный напор измеряйте по описанных нами схемах.

Если у вас есть вопросы — задавайте их в форме под статьей. Пишите комментарии и обменивайтесь ценными знаниями с другими читателями. Возможно, у вас есть опыт в проектировании систем вентилирования — он будет полезен в чьей-то конкретной ситуации.

Что такое напор вентилятора и от чего он зависит?

imageНапор – это одна из основных характеристик вентилятора, которая показывает, как изменяется давление потока воздуха до и после вентилятора. Именно за счёт этого давления воздух «проталкивается» через сеть воздуховодов, повороты, тройники, решетки и другое вентиляционное оборудование.Различают статический, динамический и полный напоры вентилятора.

После вентилятора воздух имеет более высокое давление, чем до вентилятора. Разность давлений воздуха – это и есть статический напор вентилятора (статическое давление вентилятора).

Кроме того, после вентилятора воздух приобретает некоторую скорость движения – так называемый скоростной напор. Если на пути воздуха поставить стенку, то, очевидно, достигнув стенки, воздух остановится, при этом слегка сжавшись. Возле стенки кинетическая энергия воздуха (скорость) превратится в потенциальную энергию (давление). Именно этот прирост давления и есть скоростной напор вентилятора. Иными словами, динамическое давление вентилятора – это давление, которое мог бы иметь движущийся поток воздуха, если его внезапно остановить.

Полное давление вентилятора – суть сумма статического и динамического давлений вентилятора.

Давление (напор) вентилятора зависит от его конструктива. Наименее напорными являются осевые вентиляторы. Их напор измеряется единицами и десятками паскалей.

Средненапорные вентиляторы – как правило, вентиляторы радиального и центробежного типов. Такие вентиляторы «выдают» сотни паскалей. Именно такие вентиляторы чаще всего применяются в общеобменных системах вентиляции.

Вентиляторы высокого давления создают напор, измеряемый тысячами паскалей. Такие вентиляторы используются в промышленных системах вентиляции для прокачки воздуха через длинные воздуховоды, применяются в качестве дымососов, а также для надува при сжигании топлива.

Несколько иная классификация вентиляторов принята в канальных кондиционерах. Канальные кондиционеры также бывают низкого, среднего и высокого давления. Чем выше напор кондиционера, тем более разветвленную сеть воздуховодов можно к нему подсоединить.

К низконапорным кондиционерам подсоединять воздуховоды не рекомендуется.

Они комплектуются всасывающими и нагнетательными адаптерами, которые имеют отверстия для всасывания и нагнетания воздуха. Средненапорные канальные кондиционеры предусматривают подключение воздуховодов средней длины. Обычно речь идёт о рукавах длиной по нескольку метров. Наконец, высоконапорные канальные кондиционеры способны прокачивать воздух на 10 и более метров.

Если комфорту в доме вы уделяете достаточно внимания, то наверное, согласитесь, что качество воздуха должно стоять на одном из первых мест. Свежий воздух полезен для здоровья и мышления. В хорошо пахнущую комнату не стыдно пригласить гостей. Проветривать каждое помещение по десять раз в день — нелегкое занятие, неправда ли?

Многое зависит от выбора вентилятора и в первую очередь его давления. Но до того как определить давление вентилятора, нужно ознакомиться с некоторыми физическими параметрами. Прочитайте о них в нашей статье.

Благодаря нашему материалу вы изучите формулы, узнаете виды давления в вентиляционной системе. Мы привели для вас сведения о полном напоре вентилятора и двух способах, по которым его можно измерить. В итоге вы сможете самостоятельно измерить все параметры.

Давление в вентиляционной системе

Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.

Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.

К первой относят приборы с напором < 1 кПа, второй — 1—3 кПа и более, третьей — больше 3—12 кПа и выше. В жилых строениях используют устройства первой и второй категории.

В технической документации к вентилятору обычно указывают аэродинамические показатели, включая полное и статическое давление при определенной производительности. На практике «заводские» и реальные параметры часто не совпадают, и связано это с конструктивными особенностями вентиляционных систем.

Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.

В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.

Мощность и производительность

Под производительностью понимают объем проходимого воздуха за единицу времени (куб.м/час). Производительность или воздухообмен зависит от типа вентилятора, размера лопастей, сопротивления воздуха и мощности двигателя (не путайте с мощностью вентилятора).

Небольшие бытовые приборы имеют мощность 15-20 Вт и при этом способны переместить от 100-200 м 3 /час. Модели посерьезней мощностью от 50 Вт работают с большими потоками и перегоняют более тысячи кубометров в час. Но для бытовых целей редко встречаются модели, превышающие мощность 150Вт. Для промышленных целей могут использоваться вентиляторы, мощность двигателя которых достигает 500 кВт, а производительность 1 000 000 м 3 /ч.

Коэффициенты воздухообмена в жилых помещениях:

  • Спальня, детская – 3
  • Гостиная, зал, прочие жилые комнаты – от 3 до 6
  • Ванная комната – 7
  • Туалет – от 10 до 15
  • Кухня – 15
  • Подсобные помещения, гараж, мастерская – 8

Пример: площадь кухни – 9 м 2 , высота – 3 метра, коэффициент – 15.

Из расчётов видно, что для организации полноценного воздухообмена на кухне требуется приобретать модели с производительностью не менее 405 м 3 /ч.

Еще один показателем, влияющий на производительность — это воздушный удар: расстояние, на которое распространяется выходящий поток воздуха. Чем больше воздушный удар, тем быстрее происходит циркуляция воздушных масс и соответственно ускоряется их обмен.

А теперь разберемся, что же такое мощность вентилятора и чем она отличается от потребляемой мощности двигателя.

Мощность вентилятора – это количество энергии, которое требуется устройству на перемещение определенного объемы массы воздуха. Этот параметр получается из произведения производительности и давления делённого на КПД конкретного типа вентилятора умноженного на 1000.

(Производительность м 3 /с*давление Па)/(1000*КПД) = кВт

Полезная мощность всегда ниже подаваемой мощности, что связанно с потерями при передаче энергии (трение, сопротивление).

Формулы для расчета напора вентилятора

Напор представляет собой соотношение воздействующих сил и площади, на которую они направлены. В случае с вентканалом речь идет о воздухе и сечении.

Поток в канале распределяется неравномерно и не проходит под прямым углом к поперечному разрезу. Узнать точный напор по одному замеру не удастся, придется искать среднее значение по нескольким точкам. Сделать это нужно и для входа, и для выхода из вентилирующего прибора.

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) – Pп (вх.), где:

  • Pп (вых.) — полное давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Для статического давления вентилятора формула отличается незначительно.

Ее записывают как Рст = Рст (вых.) – Pп (вх.), где:

  • Рст (вых.) — статическое давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора: как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 – Рст 1. Это второстепенный параметр.

Правильный выбор вентилирующего устройства включает такие нюансы:

  • подсчет расхода воздуха в системе (м³/с);
  • подбор устройства на основе такого расчета;
  • определение скорости на выходе по выбранному вентилятору (м/с);
  • расчет Pп устройства;
  • измерение статического и динамического напора для сравнения с полным.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П. F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Характеристики вентиляторов по типу окружающей среды

Вентиляторы предназначенный на установку в вытяжку ванной нельзя применять в условиях высоких температур. Первоначально все устройства делятся на две группы: бытовые модели и приборы специального назначения.

Бытовые приборы предназначены для функционирования в условиях, когда температура окружающей среды не превышает 80 градусов Цельсия. Их задача выведение воздушных масс средней степени загрязненности (пыль, неприятные запахи) из помещения. Так же бытовые вентиляторы используются для подачи воздуха в комнату извне. Подобные устройства не рассчитаны на работу в задымленных условиях, в помещениях с испарениями химических веществ или при содержании в окружающей среде более крупных частиц, липкого мусора. Содержание пыли и прочих примесей не должно превышать 100 мг/м 2 .

Вентиляторы особого назначения предназначены для функционирования в неблагоприятных условиях. Они подразделяются на:

  • Коррозионностойкие – предназначены для работы в условиях высокой влажности или для перемещения воздуха, содержащего агрессивные среды и изготавливаются из материалов не подверженных коррозии: титан, алюминий, нержавеющая сталь, полипропилен.
  • Термостойкие работают при температуре выше 80 0 С. (в оборудовании, в системах вентиляции саун или печей, в тепловентиляторах).
  • Взрывозащищенные предназначены для помещений, содержащих взрывоопасные вещества в воздухе.
  • Пылевые – для перемещения воздушных масс содержащих примесей более 100 мг/м 2 в виде пыли, опилок и прочих мелких частиц. К данным типам предъявляют повышенные требования по износостойкости.
  • Дымоудаляющие – работают при температурах, превышающих 200 0 С и в условиях задымленности, обладают стойкостью к дыму и кислотному конденсату. Дымоудаляющие вытяжные вентиляторы характеризуются высокой мощностью и способностью быстро удалять дым из помещений.

Как вычислить давление в вентиляции?

Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.

На практике вышеописанные условия встречаются редко, и тогда перед нужным местом устанавливают хонейкомб, который выпрямляет поток воздуха.

Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди – минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.

Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.

Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.

Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.

Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.

Напор тогда измеряют по следующему методу:

  1. За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
  2. Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.

От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.

Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.

Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.

В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции.

Типы вентиляторов для систем охлаждения и вентиляции

Вентилятор – электромеханическое устройство, предназначенное для перемещения воздуха по помещениям или воздуховодам. Работа основана на вращении лопастей электрическим двигателем. Воздух, сталкиваясь с лопастями, выбрасывается со скоростью под воздействием центробежной силы.

  • портативные бытовые;
  • в системах вентиляции для подачи или вытяжки воздуха;
  • в структуре сложного оборудования, содержащего нагревающиеся элементы требующие охлаждения;
  • в конвекторах с принудительной вентиляцией.

Особенности расчета напора

Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.

Следует помнить такие закономерности:

  • полное давление — это сумма статического и динамического;
  • полный напор вентилятора должен равняться потерям давления в вентиляционной сети.

Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.

Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.

Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.

При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.

С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.

Некоторые требования к электродвижку:

  • малый пусковой момент — по причине того, что расход мощности меняется в соответствии с изменением количества оборотов, подведенного к кубу;
  • большой запас;
  • работа на максимальной мощности для большей экономии.

Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.

На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.

Конструктивные особенности вентиляторов

Различаются по множеству параметров, начиная от конструктивных особенностей, типов крепления и заканчивая местом установки и уровнем шума. Рассмотрим подробней каждый тип вентиляторов по принципу работы и конструктивным особенностям.

Первоначально отметим, что по принципу работы все вентиляторы принято делить на два типа:

Все остальные типы вентиляторов: диагональный, диаметральный, безлопастной и т.д. — модификации радиальных и осевых конструкций.

Радиальный (центробежный)

Конструктивно состоит из кожуха в форме спирали (улитки) в котором находится крыльчатка – полый цилиндр с лопастями, расположенных параллельно стенкам кожуха. При вращении колеса воздух, через входное отверстие попадает в прорези между лопастями и благодаря центробежной силе движется по спирали корпуса, а затем выходит через выходное отверстие.

От расположения и наклона лопаток зависит уклон воздушного потока. При направлении лопаток назад, скорость потока уменьшается, но при этом уменьшается уровень шума и количество потребляемой энергии. Устройство характеризуется высокой мощностью.

Радиальный тип вентиляторов может вращаться в правую или левую сторону. Вращение крыльчатки осуществляется двигателем при помощи ременной передачи или напрямую от вала, но улитки предназначенные для производственных нужд никогда не имеют собственного двигателя.

Применяются радиальные модели для вытяжки или подачи воздуха в помещения с большой протяженностью воздуховодов и большим аэродинамическим сопротивлением. Например, в гостиничных комплексах с обширной системой вентиляции или в производственных цехах, где воздух содержит большое количество примесей (пыль, влага, дым).

Радиальные устройства носят другое название – центробежные вентиляторы, а в народе получили простое название «улитка».

Осевой (аксиальный)

Представляет собой цилиндрический корпус (наличие корпуса зависит от конструкции), в центре которого расположена крыльчатка с лопастями расположенных по диагонали — перпендикулярно относительно оси двигателя. Крыльчатка устанавливается на вращающуюся ось. При вращении лопастей воздух движется вдоль оси и отбрасывается усиленным потоком. Аксиальная конструкция имеет наиболее высокий КПД среди всех существующих конструкций и требует незначительных мощностей, если отсутствует встречное сопротивление воздуха.

Осевые вентиляторы применяются для установки в свободные проемы для вытяжки или подачи воздуха из помещения во внешнюю среду, в технике для охлаждения нагревающихся элементов и даже известные нам напольные модели так же относятся к одной из модификаций осевого типа.

Благодаря несложной конструкции, простоты в монтаже и низком потреблении энергии осевые модели чаще всего применяются в быту.

Уровень шума

Уровень шума вентилятора зависит от мощности устройства и материала, из которого он изготовлен — изготовленные из качественного пластика практически бесшумны, а лопасти из легких металлов (дюраль, алюминий) издают больше шума. Естественно, что у промышленных моделей уровень шума может быть очень высок и для его снижения применяются специальные виброизоляторы в виде пружин или гибких вставок, гасящих вибрацию и снижающих шум.

Бытовые модели не обладают достаточными мощностями, чтобы создать действительно сильный шум, однако, если модель выполнена из некачественных материалов или присутствуют проблемы с двигателем звук от работы механизма может стать раздражающим. Невозможно найти совершенно бесшумный вентилятор — конструкция подразумевает появление звука работающего мотора или вращения лопастей.

Уровень шума измеряется в децибелах (дБ) и может регулироваться скоростью переключения вращения лопастей, чем ниже вращения, там тише звуки. Средний показатель уровня шума для жилых помещений, в которых находятся люди 30 дБ.

В паспортах к изделию производители обычно указывают уровень шума, но это может быть усреднённый показатель, выявленный на малых мощностях. Поэтому перед приобретением бытовых вентиляторов рекомендуется включить устройство и послушать, как оно работает на разных скоростях.

Виды вентиляторов по месту установки

Исходя из того, где планируется установка, зависит тип вентилятора, мощность и способы монтажа. По месту и способу установки вентиляторы условно делятся на группы.

Стандартные

Стандартные модели – это обычные настольные и напольные модели. Общим признаком стандартных устройств служит крепление на опору, подставку, ножку, раму и т.д. Однако ошибочно считать, что все стандартные модели бытовые. Существует большое количество производственных вентиляторов со стандартным вариантом установки.

Разновидности вентиляции

В зависимости от того, как организован воздухообмен, системы вентиляции для производственных помещений могут быть разными. Оборудовать механическую вентиляцию можно в виде:

  • Приточной.
  • Вытяжной.
  • Смешанной.

Если оборудована приточная система, то свежий воздух подается внутрь помещения вентилятором, то есть автоматически, регулируя давление и поток. Отработанный воздух выходит самостоятельно через различные отверстия и щели. В этом варианте имеется возможность регулировать количество поступающего воздуха, используя задвижки, их обычно устанавливают на вентиляционных трубах.

Приточная циркуляция обычно устанавливается в тех зонах производства, куда нежелательно поступление вредных веществ из смежных помещений или зон. Также она помогает не допустить приток остывшего воздуха с улицы, поэтому довольно часто ее можно видеть в помещениях на предприятии, где достаточно тепло.

Вытяжная вентиляция на производстве осуществляется с точность до наоборот. Грязный воздух выводится на улицу через вентиляционные отверстия с помощью вентилятора. Чистый воздух заходит естественным путем через оконные проемы, двери и из соседних помещений.

При совмещенной системе приток и отток воздуха происходит через разные воздухоотводы принудительным путем. При организации такого типа системы должны выполняться определенные требования. Объем выходящего и поступающего воздуха должен быть практически одинаковым.

Механическая вентиляция – это, конечно хорошо, она по сравнению с естественной:

  • Не зависит от времени года и погоды за окнами предприятия.
  • Можно всегда подогреть воздух, поступающий внутрь.
  • Можно очищать поступающий воздух от пыли.
  • Прежде, чем выпустить отработанный воздух с вредными и ядовитыми веществами, можно его очистить.

Имеются, конечно, и свои недостатки:

  • Шум во время работы.
  • Небольшой объем воздуха, который может пройти через такую вентиляционную систему.
  • Приличные материальные затраты.
  • Много расходуется электроэнергии.

Основные свойства вентилятора как устройства, предназначенного для пере­мещения воздуха, принято оценивать по его аэродинамическим параметрам: давлению, производительности и потребляемой мощности при нормальных ат­мосферных условиях, а также коэффициенту полезного действия (КПД).

Различают статическое рSV, потное рV и динамическое pdv (скоростной напор) давления вентилятора, Па (Н/м2). Производительность вентилятора L измеряет­ся в м3/ч, м3/с, потребляемая мощность — в Вт, кВт.

Полное давление вентилятора равно разности полных давлений потока за вентилятором и перед ним:

pV = р02 – р01

р02 — осредненное по выходному сечению вентилятора полное давление по­тока

р01— потное давление, осредненное по входному сечению вентилятора.

Статическое давление вентилятора рSV равно разности потного давления рV и динамического давления вентилятора pdv:

pSV = рV – рdv

Среднерасходная скорость выхода потока из вентилятора:

VВЕНТ = L / FВЫХ

где L производительность вентилятора, м3/с; FВЫХ — площадь поперечного сечения выхода из вентилятора.

Динамическое давление вентилятора pdv определяется по скорости VВЕНТ выхода потока из вентилятора:

рdv = (р*V 2 ВЕНТ )/ 2

р — плотность перемещаемого воздуха.

Полный и статический КПД вентилятора

? = (рV*L) / N ; ?ST = (рSV*L) / N

Nмощность, потребляемая вентилятором.

Мощность, потребляемая вентилятором из электрической сети, такова:

NЭЛ.СЕТЬ = N / (?*?ЭЛ.ДВИГ.)

?ЭЛ.ДВИГ.— КПД электродвигателя.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

Аэродинамическая характеристика по вентилятора.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Пример расчёта

Процесс выбора вентилятора может быть наглядно продемонстрирован на следующем примере, где для одних и тех же расхода воздуха 5100 м 3 /ч и статического давления F s = 250 Па подобраны два различных типоразмера вентиляторов ( табл. 1, 2 ).

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

В первом случае, проектировщик выбирает вентилятор типоразмера 20 PLR. Во втором случае — более дешевый — 12 PLR. ( табл. 2 ). В обоих случаях вентиляторы обладают одинаковыми характеристиками по расходу воздуха и статическому давлению, однако значительно отличающимися значениями полного напора.

На графике рис. 2 показана работа системы в обоих вариантах:

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Вентилятор 20 PLR, 5 100 м 3 /ч при F s = 250 Па; 1 000 об/мин:

❏ Парабола 0-1-3 показывает характеристику вентиляционной системы с расходом воздуха 5 100 м 3 /ч, при статическом давлении: F s 1 =линия 1-1c = 250 Па.

❏ Парабола 0-1с характеризует динамическое давление на выходе из вентилятора: F VP 01 = линия 1b-1c = 25 Па.

Вентилятор 12 PLR, 5 100 м 3 /ч при F s = 250 Па; 3 200 об/мин:

❏ Парабола 0-2 характеризует вымышленную вентиляционную систему с расходом воздуха 5 100 м 3 /ч, при статическом давлении F s 2 = линия 2-2b = 250 Па.

❏ Парабола 0-2b-3c характеризует динамическое давление на выходе из вентилятора: F VP 02 =линия 2b-1b = 200 Па.

Вентилятор 12 PLR, 5 800 м 3 /ч при F s = 250 Па; 3,200 об/мин:

❏ Парабола 0-1-3 характеризует проектируемую вентиляционную систему с расходом воздуха 5 800 м 3 /ч, при статическом давлении: F s 3 = линия 3-3c = 175 Па.

❏ Парабола 0-2b-3c характеризует динамическое давление на выходе из вентилятора: F VP 03 =линия 3c-3b = 250 Па.

Нюанс первый

Табл. 1, табл. 2 и график рис. 2 показывают ошибку, которая случается при использовании статического давления F s .

Вентиляторы 20 PLR и 12 PLR с одинаковым статическим напором F s (250 Па) обладают разными полными напорами F t . Вентилятор 20 PLR имеет полный напор F t = 275 Па, а вентилятор 12 PLR: F t = 450 Па. В результате, реальная производительность вентилятора 12 PLR в вентиляционной системе приближается к 5 800 м 3 /ч при F t = 425 Па и F s = 175 Па.

В табл 3 представлены вентиляторы из ассортимента производителя для воздухообмена 5 100 м 3 /ч при статическом напоре F s в 250 Па (Точка a на графике рис. 3 ).

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

График рис. 3 показывает кривую-характеристику системы для каждого вентилятора из таблицы, которая отличается от нашей проектируемой системы. При этом, парабола 0-а — условная кривая для проектируемой системы вентиляции с расходом воздуха 5 100 м 3 /ч при напоре в 250 Па.

Нюанс второй

Статический напор F s — это искусственно полученная величина, которая передаётся вентилятором в систему только вместе с составляющей динамического напора F VP 0 , образуя полный напор F t .

Следовательно, несмотря на одинаковые значения расхода воздуха и статического напора F s , разные вентиляторы ( табл. 3 , график рис. 3 ) располагают разным полным напором F t . График рис. 3 показывает, что в случае, когда выбор вентилятора основывается на значении F s , ни один из вентиляторов не обеспечивает требования проектируемой системы.

Заключение

Примечание редакции

В этой статье высказано одно из мнений на тему о принципах подбора вентиляторов, которая актуальна и для украинских вентиляционщиков. Со своей стороны, обратившись к ним, мы услышали одно уточнение к изложенному выше: статический напор всё-таки используется для подбора вентиляторов — для систем с неким наддуваемым объёмом. Это могут быть системы с переменным расходом воздуха или системы раздачи воздуха через общее подпольное пространство, камеры статического давления и т.д. Так что метод подбора по статическому давлению также имеет право на жизнь. Именно поэтому у некоторых производителей даже можно задавать в расчётных программах принцип подбора: по полному или по статическому давлению. ■

Литература

1. Graham, J. Barrie, «The Importance of Fan Total Pressure», HPAC Engineering, September 1994:78.

2. Williams, P.E., Gerald J. Williams, P.E., «Air System Basics» HPAC Engineering, June 1997:78.

3. London, P.E., Dr. Alex, «Destroy the Beliefs. Understand Fan Total Pressure,» Engineered Systems, August 1997:118.

4. Houlihan, P.E., Tom, «Understanding Fan Static Pressure» Engineered Systems, March 1997.

5. Halko, George, Jeff S. Forman, «The Static Pressure Paradox,» HPAC Engineering, March 2002:57.

6. Forman, Jeff S., «Air Handlers: Sizing and Selection,» HPAC Engineering, January 2003:70.

7. 1983 ASHRAE Handbook — Systems and Equipment, Chapter 3, «Fans.»

8. 2001 ASHRAE Handbook — Fundamentals, Chapter 34.6, «Duct Design».

10. AMCA International, «Fan Testing,» supplement to ASHRAE Journal, November 2001:11.

Вычисление потерь на трение

Прежде всего следует учитывать следует учитывать форму воздухопровода и материал, из которого он изготовлен.

Для круглых изделий, формула расчета выглядит так:

Pтр = (x*l/d) * (v*v*y)/2g

где

Х – табличный коэффициент трения (зависит от материала);

I – длина воздухопровода;

D – диаметр канала;

V – темп движения газов на определенном участке сети;

Y – плотность перемещаемых газов (определяется по таблицам);

G – 9,8 м/с2

Важно! Если в  воздухораспределительной системе используются прямоугольные каналы, то в формулу необходимо подставить эквивалентный сторонам прямоугольника (сечения воздуховода) диаметр. Вычисления можно произвести по формуле: dэкв = 2АВ/(А + В). Для перевода можно использовать и таблицу, представленную ниже

Для перевода можно использовать и таблицу, представленную ниже.

Потери на местные сопротивления рассчитываются по формуле:

z = Q* (v*v*y)/2g

где

Q —  сумма коэффициентов потерь на местные сопротивления;

V — скорость движения воздушных потоков на участке сети;

Y – плотность перемещаемых газов (определяется по таблицам);

G – 9,8 м/с2

Важно! При построении воздухораспределительных сетей, очень важную роль играет правильный выбор дополнительных элементов, к которым относятся: решетки, фильтры, клапаны и пр. Эти элементы создают сопротивление перемещению воздушных масс

При создании проекта следует обратить внимание и на правильный подбор оборудования, ведь лопасти вентилятора и работа осушителей, увлажнителей, помимо сопротивления, создают и наибольший шум и сопротивление воздушным потокам

Рассчитав потери воздухораспределительной системы, зная требуемые параметры движения газов на каждом ее участке, можно переходить к подбору вентиляционного оборудования и монтажу системы.

Общее понятие о конструкции агрегата и его назначении

Осевой вентилятор – это лопастная воздуходувная машина, которая передает механическую энергию вращения лопастей рабочего колеса воздушному потоку в виде потенциальной и кинетической энергии, а он затрачивает эту энергию на преодоление всех сопротивлений в системе. Осью рабочего колеса данного типа является ось электродвигателя, она располагается по центру воздушного потока, а плоскость вращения лопастей перпендикулярна ему. Агрегат перемещает воздух вдоль своей оси за счет лопаток, повернутых под углом к плоскости вращения. Крыльчатка и электродвигатель закреплены на одном валу и постоянно находятся внутри воздушного потока. Такая конструкция имеет свои недостатки:

Место установки вентилятора.

  1. Агрегат не может перемещать воздушные массы с высокой температурой, которые могут повредить электродвигатель. Рекомендуемая максимальная температура – 100° C.
  2. По той же причине не допускается применять этот тип агрегатов для перемещения агрессивных сред или газов. Перемещаемый воздух не должен содержать липких включений или длинных волокон.
  3. В силу своей конструкции осевой вентилятор не может развивать высокое давление, поэтому непригоден к использованию для вентиляционных систем большой сложности и протяженности. Максимальное давление, которое может обеспечить современный агрегат осевого типа, находится в пределах 1000 Па. Однако, существуют специальные шахтные вентиляторы, конструкция привода которых позволяет развивать давление до 2000 Па, но тогда уменьшается максимальная производительность – до 18000 м³/ч.

Достоинства этих машин следующие:

Устройство осевого вентилятора.

  • вентилятор может обеспечить большой расход воздуха (до 65000 м³/ч);
  • электродвигатель, находясь в потоке, успешно охлаждается;
  • машина не занимает много места, имеет небольшой вес и может быть установлена прямо в канале, что снижает затраты при монтаже.

Все вентиляторы классифицируются по типоразмерам, указывающим на диаметр рабочего колеса машины. Данную классификацию можно увидеть в Таблице 1.

Типоразмер 3 4 5 6 8 10 12 12,5 16 20 25 30 40
Диаметр рабочегоколеса, мм 320 400 500 630 800 1000 1200 1250 1600 2000 2500 3200 4000

Типы и виды воздуховодов

Перед расчетом сетей нужно определить из чего они будут изготовлены. Сейчас применяются изделия из стали, пластика, ткани, алюминиевой фольги и др. Часто воздуховоды изготовляют из оцинкованной или нержавеющей стали, это можно организовать даже в небольшом цеху. Такие изделия удобно монтировать и расчет такой вентиляции не вызывает проблем.

Кроме этого, воздуховоды могут различаться по внешнему виду. Они могут быть квадратного, прямоугольного и овального сечения. Каждый тип обладает своими достоинствами.

  • Прямоугольные позволяют сделать системы вентиляции небольшой высоты или ширины, при этом сохраняется нужная площади сечения.
  • В круглых системах меньше материала,
  • Овальные совмещают плюсы и минусы других видов.

Для примера расчета выберем круглые трубы из жести. Это изделия, которые используют для вентиляции жилья, офисных и торговых площадей. Расчет будем проводить одним из методов, который позволяет точно подобрать сеть воздуховодов и найти ее характеристики.

Важность воздухообмена для человека

По строительным и гигиеническим нормам, каждый жилой или производственный объект необходимо обеспечить системой вентиляции.

Главное ее назначение – сохранение воздушного баланса, создание благоприятного для работы и отдыха микроклимата. Это значит, что в атмосфере, которой дышат люди, не должно наблюдаться переизбытка тепла, влаги, загрязнений различного рода.

Нарушения в организации системы вентиляции приводят к развитию инфекционных болезней и заболеваний дыхательной системы, к снижению иммунитета, к преждевременной порче продуктов питания.

В излишне влажной и теплой среде быстро развиваются болезнетворные микроорганизмы, на стенах, потолках и даже на мебели появляются очаги плесени и грибка.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе
Схема вентиляции в двухэтажном частном доме. Вентиляционная система оборудована приточно-вытяжной энергосберегающей установкой с рекуператором теплоты, который позволяет повторно использовать тепло выводимого из здания воздуха

Одним из условий сохранения здорового воздушного баланса является правильное проектирование системы вентиляции. Каждая часть воздухообменной сети должна быть подобрана, исходя из объемов помещения и характеристик воздуха в нем.

Предположим, в небольшой квартире достаточно хорошо налаженной приточно-вытяжной вентиляции, тогда как в производственных цехах обязательна установка оборудования для принудительного воздухообмена.

При строительстве домов, общественных учреждений, цехов предприятий руководствуются следующими принципами:

  • каждое помещение нужно обеспечить системой вентиляции;
  • необходимо соблюдать гигиенические параметры воздуха;
  • на предприятиях следует установить устройства, увеличивающие и регулирующие скорость воздухообмена; в жилых помещениях – кондиционеры или вентиляторы при условии недостаточной вентиляции;
  • в помещениях разного назначения (например, в палатах для больных и операционной или в офисе и в комнате для курения) необходимо оборудовать разные системы.

Чтобы вентиляция соответствовала перечисленным условиям, нужно сделать расчеты и подобрать оборудование – приборы подачи воздуха и воздуховоды.

Также при устройстве вентиляционной системы необходимо правильно выбирать места забора воздуха, чтобы не допустить поступления загрязненных потоков обратно в помещения.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе
В процессе составления проекта вентиляции для частного дома, многоэтажного жилого здания или производственного помещения рассчитывают объем воздуха и намечают места монтажа вентиляционного оборудования: водухообменных установок, кондиционеров и воздуховодов

От размеров воздуховодов (в том числе домовых шахт) зависит эффективность воздухообмена. Выясним, каковы нормы скорости потока воздуха в вентиляции, указанные в санитарной документации.

Алгоритм выполнения расчетов

При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.

При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.

Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.

Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.

Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системеСоставляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями

Чаще всего используется следующий алгоритм проведения вычислений:

  1. Составление аксонометрической схемы, в которой перечисляются все элементы.
  2. На базе этой схемы рассчитывается длина каждого канала.
  3. Измеряется расход воздуха.
  4. Определяется скорость потока и давление на каждом участке системы.
  5. Выполняется расчет потерь на трение.
  6. С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.

При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.

Вычисление площади сечения и диаметра

Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.

Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.

Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.

Для вычислений используется следующая формула:

S = L/3600*V,

при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);

Используя следующую формулу, можно посчитать диаметр воздуховода (D):

D = 1000*√(4*S/π), где

S – площадь сечения (м²);

π – 3,14.

Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системеВсе полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения

При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.

Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.

Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.

Расчет потери давления на сопротивление

По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системеПотерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети

Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.

Применяется эта формула:

P=R*L+Ei*V2*Y/2, где

R – удельная потеря давления на трение на определенном участке воздуховода;

L – длина участка (м);

Еi – суммарный коэффициент локальной потери;

V – скорость воздуха (м/с);

Y – плотность воздуха (кг/м3).

Значения R определяются по нормативам. Также этот показатель можно рассчитать.

Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:

R = (X*D/В) * (V*V*Y)/2g, где

X – коэфф. сопротивления трения;

L – длина (м);

D – диаметр (м);

V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);

g – 9,8 м/с².

Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.

Тип управления

Управление вентиляторами может осуществляться следующими способами:

  • Механический – распространенный и самый простой тип управления. Все действия производятся нажатием соответствующих кнопок или поворотом реостата.
  • Электронный – вместо обычных кнопок используются сенсоры (кнопка, но выполнена в виде гибкой пластины), находящиеся на панели управления. Часто вместе с сенсорными кнопками внедряется небольшой ЖК дисплей, отображающий основные параметры и режимы работы. Электронное управление расширяет функционал и позволяет делать более гибкие настройки.
  • При помощи пульта дистанционного управления – позволяет вносить изменения в работу вентилятора удаленно. Пульт ДУ чаще всего используется в потолочных, настенных или напольных моделях.

Благодаря управляющим механизмам можно изменять основные характеристики работы устройства:

  • Регулировка скорости – данная возможность есть у большинства типов вентиляторов. Скорость изменяется понижением или повышением тока поступающего к электродвигателю.
  • Регулировка наклона рабочей части – позволяет изменять направление обдува по вертикали. Поток может быть направлен вверх, вниз или прямо.
  • Поворот рабочей части – прибор поворачивается по горизонтальной плоскости, увеличивая площадь обдува.
  • Таймер – позволяет задавать время включения/выключения и создавать комфортные условия в помещении.

Официальный веб-сайт VENTS ®

  • Каталог продукции
    • Меню
    • Бытовые вентиляторы

      • Меню
      • Интеллектуальные вентиляторы
      • Осевые энергосберегающие вентиляторы с низким уровнем шума
      • Осевые канальные вентиляторы
      • Осевые настенные и потолочные вентиляторы
      • Осевые декоративные вентиляторы
      • Вентиляторы со светом
      • Осевые оконные вентиляторы
      • Центробежные вентиляторы
      • DESIGN CONCEPT: дизайнерские решения для бытовой вентиляции
      • Принадлежности для бытовых вентиляторов
    • Промышленные и коммерческие вентиляторы

      • Меню
      • Вентиляторы для круглых каналов
      • Вентиляторы для прямоугольных каналов
      • Специальные вентиляторы
      • Шумоизолированные вентиляторы
      • Центробежные вентиляторы
      • Осевые вентиляторы
      • Крышные вентиляторы
    • Децентрализованные системы вентиляции с рекуперацией тепла

      • Меню
      • Комнатные реверсивные установки ТвинФреш
      • Комнатные установки Микра
      • Децентрализованные установки ДВУТ
    • Воздухообрабатывающие установки

      • Меню
      • Приточные и вытяжные установки
      • Приточно-вытяжные установки с рекуперацией тепла
      • Воздухообрабатывающие агрегаты AirVENTS
      • Энергосберегающие канальные установки Х-VENT
      • Геотермальные вентиляционные системы
    • Системы воздушного отопления

      • Меню
      • Воздушно отопительные (охладительные) агрегаты
      • Воздушно-тепловые завесы
      • Дестратификаторы
    • Дымоудаление и вентиляция

      • Меню
      • Крышные вентиляторы дымоудаления
      • Осевые вентиляторы дымоудаления
      • Клапаны противопожарные дымовые
      • Клапаны противопожарные огнезадерживающие
      • Системы вентиляции крытых парковок
    • Принадлежности для систем вентиляции

      • Меню
      • Сифон гидравлический
      • Шумоглушители
      • Фильтры
      • Клапаны и заслонки
      • Дверцы ревизионные
      • Гибкие вставки
      • Хомуты
      • Пластинчатые рекуператоры
      • Смесительные камеры
      • Клапан противопожарный PL-10
      • Водяные нагреватели
      • Электрические нагреватели
      • Водяные охладители
      • Фреоновые охладители
      • Смесительные узлы
      • Регуляторы расхода воздуха
      • Кухонные вытяжные зонты
      • Дренажные насосы
      • Каплеуловители
    • Электрические принадлежности

      • Меню
      • Блоки управления бытовыми вентиляторами
      • Регуляторы скорости
      • Регуляторы температуры
      • Регуляторы мощности электрических нагревателей
      • Датчики
      • Трансформаторы
      • Дифференциальное реле давления
      • Термостаты
      • Электроприводы
      • Коммуникационное оборудование
      • Панели управления
    • Воздуховоды и монтажные элементы

      • Меню
      • Система ПВХ каналов «ПЛАСТИВЕНТ»
      • Соединительно-монтажные элементы
      • Система складывающихся круглых и плоских ПВХ каналов «ПЛАСТИФЛЕКС»
      • Гибкие воздуховоды для систем вентиляции, кондиционирования, отопления
      • Воздуховоды для систем вентиляции, отопления и кондиционирования
      • Спирально-навивные воздуховоды
      • Полужесткие каналы FlexiVent
      • Общая информация о воздуховодах
    • Воздухораспределительные устройства

      • Меню
      • Решетки
      • Диффузоры
      • Анемостаты
      • Колпаки
      • Аксессуары к воздухораспределительным устройствам
      • DESIGN CONCEPT: дизайнерские решения для бытовой вентиляции
    • Вентиляционные наборы и проветриватели

      • Меню
      • Наборы вентиляционные
      • Стеновые проветриватели
      • Оконные проветриватели
  • Подбор оборудования
  • Центр загрузок
    • Меню
    • Центр загрузок
    • Каталоги
    • Учебное пособие по вентиляции
  • Сервисная служба
  • Контакты
    • Меню
    • Объекты с нашим оборудованием
    • Контакты
  • Карьера
  • Объекты, на которых установлено наше оборудование
    • Меню
    • Административные здания, офисы
    • Жилые дома
    • Промышленные предприятия
    • Лечебные учреждения
    • Образовательные учреждения
    • Торговые, развлекательные учреждения
    • Заведения общественного питания
    • Гостиничные комплексы
    • Аэропорты, вокзалы
    • Спортивные сооружения
    • Обслуживание автотранспорта
  • О компании
    • Меню
    • Производство
    • Инновации и технологии
    • Международные ассоциации
  • Политика конфиденциальности
  • Условия использования сайта
  • Советы по вентиляции
    • Меню
    • Определение необходимости воздухообмена помещений. Рекомендации к проектированию
    • Что такое потеря давления?
    • Типы вентиляторов
    • Регулировка скорости вращения вентиляторов
    • Электродвигатели вентиляторов
    • Общие рекомендации для монтажа
    • Шумовые характеристики вентиляторов
    • Что такое IP ?
  • Прайс-лист

Термобарические условия природных резервуаров нефти и газа.

1) Пластовое давление – давление, под которым находятся флюиды в природных резервуарах

Значение величины пластового давления важно для научно обоснованного проектирования разведки и разработки нефтяных и газовых скоплений, а также при бурении глубоких скважин. ПД определяет силу, движущую флюиды в пласте, и является важным параметром, характеризующим энергетическую емкость залежей нефти и газа в недрах

ПД определяет силу, движущую флюиды в пласте, и является важным параметром, характеризующим энергетическую емкость залежей нефти и газа в недрах.

2) Температурный режим. Геотермические условия недр отдельного региона определяются его геологическим строением, литологическими и петрографическими особенностями горных пород, слагающих его, магматической деятельностью и рядом других факторов. Изучение температурных условий земной коры ведется с помощью непосредственных замеров температуры в скважинах или горных выработках. При замерах применяются специальные термометры, которые опускаются в скважины после установления в них температурного равновесия. Для характеристики температурных условий недр используются 2 показателя- геотермическая ступень (интервал по вертикали в земной коре ниже постоянной температуры, на котором температура горных пород повышается на 1 градус, среднее- 33м) и геотермический градиент (прирост температуры на каждые 100 м углубления от зоны постоянной температуры; в среднем 3 градуса)

Вентиляция помещений природным способом

Этот тип вентиляционной системы является самым доступным. Она полностью отвечает установленным нормам санитарии. Правильно организованная вентиляция должна обеспечивать беспрепятственное поступление свежего воздуха в помещения, вытеснение отработанных воздушных масс, насыщенных углекислым газом, за их пределы.

Если сказать коротко о принципе работы естественной вентиляции, то в его основу заложены законы физики. Свежий воздух с улицы поступает в здание через щели в оконных и дверных конструкциях и вытесняет загрязненные воздушные массы наружу через специальные вентиляционные проемы, расположенные в верхней части стен.

Преимущества воздухообмена естественным способом:

  • простота конструкции — нужны только решетки на вентиляционные отверстия;
  • экономия — нет необходимости в дополнительном электрооборудовании;
  • возможность самостоятельного обустройства естественной вентиляции в доме.

Недостатки:

  • нормальный воздухообмен возможен только при значительной разнице внешней и внутренней температуры, в частности, зимой;
  • ничем и никем не управляемый процесс воздухообмена называется неорганизованной естественной вентиляцией, которая не подходит для производственных помещений и закрытых мест с большой проходимостью людей;
  • для качественной работы системы должен быть организован беспрепятственный проход воздушным потокам.

Такая вентиляция предусматривает побуждение циркуляции воздушного потока без применения вентиляторов. Для этого в оконных рамах, дверях делают дополнительные отверстия и прочее. Чтобы правильно организовать естественную систему вентиляции, и она работала эффективно, необходимо предварительно сделать ее расчет.

Этот вид вентиляции предполагает спонтанное передвижение воздушного потока из-за разницы температуры на улице и внутри здания. Такая система может быть канальной и бесканальной, по способу работы — периодической и непрерывной.

Постоянное открытие/закрытие дверей, окон обеспечивает проветривание комнат. Бесканальная вентиляция основана на постоянных выделениях тепловой энергии в производственных помещениях — процесс аэрирования.

Каким прибором измеряют скорость движения воздуха

Все устройства такого типа компактны и несложны в использовании, хотя и тут есть свои тонкости.

Приборы для измерения скорости воздуха:

  • Крыльчатые анемометры
  • Температурные анемометры
  • Ультразвуковые анемометры
  • Анемометры с трубкой Пито
  • Дифманометры
  • Балометры

Крыльчатые анемометры одни из самых простых по конструкции устройств. Скорость потока определяется скоростью вращения крыльчатки прибора.

Температурные анемометры имеют датчик температуры. В нагретом состоянии он помещается в воздуховод и по мере его остывания определяют скорость воздушного потока.

Ультразвуковыми анемометрами в основном измеряют скорость ветра. Они работают по принципу определения разницы частоты звука в выбранных контрольных точках воздушного потока.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Анемометры с трубкой Пито оснащены специальной трубкой малого диаметра. Ее помещают в середину воздуховода, тем самым измеряя разницу полного и статического давления. Это одни из самых популярных устройств для измерения воздуха в воздуховоде, но при этом у них есть недостаток — невозможность использования, при высокой концентрации пыли.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Дифманометры могут измерять не только скорость, а и расход воздуха. В комплекте из трубкой Пито, этим устройством можно измерять потоки воздуха до 100 м/с.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Балометры наиболее эффективны при измерениях скорости воздуха на выходе из вентиляционных решеток и диффузоров. Они имеют раструб, который захватывает весь воздух, выходящий из вент-решетки, тем самым сводя погрешность измерения к минимуму.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Как рассчитать давление в вентиляционной сети

Для того чтобы определить предполагаемое давление для каждого отдельного участка, необходимо воспользоваться приведенной ниже формулой:

Н х g (РН – РВ) = DPE.

Теперь попытаемся разобраться, что обозначает каждая из этих аббревиатур. Итак:

  • Н в данном случае обозначает разницу в отметках шахтного устья и заборной решетки;
  • РВ и РН – это показатель плотности газа, как снаружи, так и изнутри вентиляционной сети, соответственно (измеряется в килограммах на кубический метр);
  • наконец, DPE – это показатель того, каким должно быть естественное располагаемое давление.

Продолжаем разбирать аэродинамический расчет воздуховодов. Для определения внутренней и наружной плотности необходимо воспользоваться справочной таблицей, при этом должен быть учтен и температурный показатель внутри/снаружи. Как правило, стандартная температура снаружи принимается как плюс 5 градусов, причем вне зависимости от того, в каком конкретном регионе страны планируются строительные работы. А если температура снаружи будет более низкой, то в результате увеличится нагнетание в вентиляционную систему, из-за чего, в свою очередь, объемы поступающих воздушных масс будут превышены. А если температура снаружи, напротив, будет более высокой, то давление в магистрали из-за этого снизится, хотя данную неприятность, к слову, вполне можно компенсировать посредством открывания форточек/окон.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Что же касается главной задачи любого описываемого расчета, то она заключается в выборе таких воздуховодов, где потери на отрезках (речь идет о значении ?(R*l*?+Z)) будут ниже текущего показателя DPE либо, как вариант, хотя бы равняться ему. Для пущей наглядности приведем описанный выше момент в виде небольшой формулы:

DPE ? ?(R*l*?+Z).

Теперь более детально рассмотрим, что обозначают использованные в данной формуле аббревиатуры. Начнем с конца:

  • Z в данном случае – это показатель, обозначающий снижение скорости движения воздуха вследствие местного сопротивления;
  • ? – это значение, точнее, коэффициент того, какова шероховатость стенок в магистрали;
  • l – еще одно простое значение, которое обозначает длину выбранного участка (измеряется в метрах);
  • наконец, R – это показатель потерь на трение (измеряется в паскалях на один метр).

Что же, с этим разобрались, теперь еще выясним немного о показателе шероховатости (то есть ?). Этот показатель зависит только от того, какие материалы были использованы при изготовлении каналов. Стоит отметить, что скорость перемещения воздуха также может быть разной, поэтому следует учитывать и этот показатель.

Скорость – 0,4 метра за секунду

В таком случае показатель шероховатости будет следующим:

  • у штукатурки с применением армирующей сетки – 1,48;
  • у шлакогипса – около 1,08;
  • у обычного кирпича – 1,25;
  • а у шлакобетона, соответственно, 1,11.

С этим все понятно, идем дальше.

Скорость – 0,8 метра за секунду

Здесь описываемые показатели будут выглядеть следующим образом:

  • для штукатурки с применением армирующей сетки – 1,69;
  • для шлакогипса – 1,13;
  • для обыкновенного кирпича – 1,40;
  • наконец, для шлакобетона – 1,19.

Немного увеличим скорость воздушных масс.

Скорость – 1,20 метра за секунду

Для этого значения показатели шероховатости будут такими:

  • у штукатурки с применением армирующей сетки – 1,84;
  • у шлакогипса – 1,18;
  • у обычного кирпича – 1,50;
  • и, следовательно, у шлакобетона – где-то 1,31.

И последний показатель скорости.

Скорость – 1,60 метра за секунду

Здесь ситуация будет выглядеть следующим образом:

  • для штукатурки с применением армирующей сетки шероховатость будет составлять 1,95;
  • для шлакогипса – 1,22;
  • для обыкновенного кирпича – 1,58;
  • и, наконец, для шлакобетона – 1,31.

Обратите внимание! С шероховатостью разобрались, но стоит отметить еще один важный момент: при этом желательно учитывать и незначительный запас, колеблющийся в пределах десяти-пятнадцати процентов

Добавить комментарий