Загрузить PDF
Загрузить PDF
Статическое электричество появляется при неравенстве положительного и отрицательного зарядов на поверхности предметов.[1]
Его легко обнаружить — например, при прикосновении к металлической дверной ручке между ней и рукой может проскочить искра. Однако измерение статического электричества является намного более сложным процессом. Узнайте, как измерять статическое электричество, и вы сможете определять электрический заряд на поверхности различных предметов.
-
1
Подготовьте все необходимое. Для данного эксперимента вам понадобятся: небольшая медная пластинка, заземление, электрические провода с зажимами “крокодил”, белая бумага, ножницы, линейка, воздушный шарик, волосы, хлопчатобумажная футболка, футболка из полиэстера, ковер и керамическая плитка.[2]
Этот метод позволяет определить относительное количество статического заряда.- Небольшую медную пластинку можно довольно дешево приобрести в магазине хозяйственных товаров или заказать через интернет.
- Заземление и провода с зажимами “крокодил” можно приобрести в магазине хозяйственных или электротехнических товаров.
-
2
Подсоедините медную пластинку к заземлению с помощью провода. Один зажим провода прикрепите к заземлению, а второй — к медной пластинке. Не имеет значения, куда подсоединять провод, просто прикрепите его к проводу заземления.
- Когда предмет касается медной пластинки, с него стекает скопившийся статический заряд.
-
3
Разрежьте лист бумаги на 100 квадратных кусочков размером 5 мм x 5 мм. Линейкой разделите лист на 5-миллиметровые квадратики и вырежьте их. Постарайтесь как можно точнее выдержать размеры. Это проще сделать с помощью бумагорезальной машины.
- На кусочках бумаги может остаться статический заряд. Чтобы избавиться от него, положите бумажные квадратики на медную пластинку.[3]
- После того как вы удалите возможный статический заряд, высыпьте кусочки бумаги на плоскую поверхность и перейдите к следующему этапу эксперимента.
- На кусочках бумаги может остаться статический заряд. Чтобы избавиться от него, положите бумажные квадратики на медную пластинку.[3]
-
4
Надуйте воздушный шарик. Надуйте шарик до средних или больших размеров. Размеры шарика не важны, если для всех материалов использовать один и тот же шарик. Если во время опыта шарик лопнет, придется надуть новый шарик и начать сначала, чтобы сохранить неизменными условия эксперимента.
- Разрядите шарик: для этого прокатите его по медной пластинке.[4]
- Разрядите шарик: для этого прокатите его по медной пластинке.[4]
-
5
Пять раз проведите шариком по поверхности исследуемого материала. Для начала выберите материал, на котором вы хотите измерить статический заряд. Для данных целей хорошо подойдут волосы, ковер, хлопчатобумажная футболка, футболка из полиэстера, ковер или керамическая плитка.[5]
- Поводите шариком по материалу в одном и том же направлении.
-
6
Положите шарик поверх кусочков бумаги. После трения об исследуемый материал шарик зарядится определенным количеством статического электричества (это количество будет разным для различных материалов). Когда вы положите шарик на кусочки бумаги, они пристанут к нему, причем их количество будет зависеть от величины статического заряда на шарике.
- Не перекатывайте шарик по бумаге. Просто положите его поверх кусочков бумаги и посмотрите, сколько их пристанет к шарику.
-
7
Посчитайте число приставших к шарику клочков бумаги. Соберите клочки бумаги с шарика и посчитайте их. После трения о различные материалы к шарику пристанет разное число кусочков бумаги. Повторите эксперимент с разными материалами и посмотрите, как они различаются.
- Перед каждым новым экспериментом разряжайте бумагу и шарик.
-
8
Сравните результаты для разных материалов. Посмотрите на полученные данные и сравните, сколько кусочков бумаги пристало к шарику после того, как вы потерли его о различные материалы. Чем больше клочков бумаги пристало к шарику, тем выше его статический заряд.
- Просмотрите результаты и определите, после трения о какие материалы к шарику пристало наибольшее количество бумаги. На волосах собирается большое количество статического электричества, и после трения о них к шарику, вероятно, пристанет больше всего кусочков бумаги.[6]
- Хотя данный метод не позволяет определить точную величину статического заряда, с его помощью можно судить об относительном статическом электричестве, которое содержится в различных материалах.
Реклама
- Просмотрите результаты и определите, после трения о какие материалы к шарику пристало наибольшее количество бумаги. На волосах собирается большое количество статического электричества, и после трения о них к шарику, вероятно, пристанет больше всего кусочков бумаги.[6]
-
1
Подготовьте все необходимое. Электроскоп — это прибор, позволяющий выявить статическое электричество с помощью тонких металлических пластинок, которые разделяются в присутствии статического заряда.[7]
Простейший электроскоп можно сделать из нескольких бытовых предметов. Для этого понадобятся стеклянная банка с пластиковой крышкой, алюминиевая фольга и дрель. -
2
Сделайте шар из фольги. Вырежьте из фольги квадрат примерно 25 см x 25 см. Точные размеры не важны. Скомкайте вырезанный лист фольги, так чтобы получился шар.[8]
Постарайтесь, чтобы шар имел как можно более правильную форму.- Должен получиться шар диаметром около 5 сантиметров. И в этом случае точные размеры не важны — главное, чтобы шар не был слишком большим или маленьким.
-
3
Скрутите стержень из алюминиевой фольги. Вырежьте из фольги еще один лист и скрутите его в виде стержня. Стержень должен быть немного короче, чем стеклянная банка. Этот алюминиевый стержень должен располагаться в 7–8 сантиметрах выше дна банки и выступать примерно на 10 сантиметров над ее верхним краем.
-
4
Прикрепите шар к стержню. Возьмите для этого еще один лист фольги. Приставьте шар к концу стержня, наденьте на них лист фольги и скрутите его. Плотно обмотайте фольгой шар и стержень, чтобы она удерживала их вместе.
-
5
Просверлите отверстие в пластиковой крышке банки. Дрелью проделайте отверстие посередине крышки. Отверстие должно быть достаточно большим, чтобы в него проходил алюминиевый стержень. Если у вас нет под рукой дрели, можно пробить отверстие с помощью молотка и гвоздя.
- Будьте осторожны при обращении с молотком и гвоздем. Дети должны пользоваться ими под наблюдением взрослых.
-
6
Закрепите на крышке стержень с шаром. Проденьте стержень через отверстие в крышке, так чтобы шар выступал над крышкой. Скотчем закрепите стержень сверху и снизу крышки. В 12–13 миллиметрах от дна крышки загните стержень на 90° (под прямым углом).
-
7
Вырежьте треугольник из сложенной пополам фольги. Вырежьте из фольги полоску примерно 15 см x 7,5 см. Согните полоску пополам вдоль короткого края — в результате у вас получится квадрат 7,5 см x 7,5 см. Вырежьте из сложенной пополам полоски треугольник, так чтобы в его вершине осталось немного неразрезанной фольги. В результате у вас получится два треугольника с сомкнутыми вершинами.[9]
Вершины треугольников будет соединять узкая полоска фольги.- Если вы разрежете фольгу так, что она распадется на два треугольника, вырежьте новую полоску фольги и попробуйте еще раз.
-
8
Подвесьте треугольники из фольги на загнутый конец стержня. Закрепите треугольники так, чтобы они свисали вниз и почти касались друг друга. Накрутите крышку на банку. Держите банку вертикально и действуйте осторожно, чтобы треугольники не соскользнули со стержня.
- Если треугольники все же упадут со стержня, просто открутите крышку и повесьте их на место.
-
9
Проверьте прибор в действии. Потрите шарик о свои волосы и поднесите его к сфере над крышкой электроскопа. Треугольники должны отклониться друг от друга. При контакте прибора со статическим электричеством треугольники заряжаются одинаковым зарядом и отталкиваются друг от друга. При отсутствии статического электричества треугольники останутся висеть рядом.
- Попробуйте подносить шар электроскопа к различным предметам в доме и посмотрите, насколько сильно они заряжены.
Реклама
Об этой статье
Эту страницу просматривали 13 305 раз.
Была ли эта статья полезной?
Когда синтетическая пленка касается подающего/приемного вала, невысокий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение возрастает точно также как в случае с конденсаторными пластинами в момент их разделения. Практика показывает, что амплитуда результирующего напряжения ограничена вследствие электрического пробоя, возникающего в промежутке между соседними материалами, поверхностной проводимости и других факторов. На выходе пленки из контактной зоны часто можно слышать слабое потрескивание или наблюдать искрение. Это происходит в момент, когда статический заряд достигает величины, достаточной для пробоя окружающего воздуха. До контакта с валом синтетическая пленка с точки зрения электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал металлический и заземленный его положительный заряд быстро стекает.
Большая часть оборудования имеет много валов, поэтому величина заряда и его полярность могут часто меняться. Наилучший способ контроля статического заряда – это его точное определение на участке непосредственно перед проблемной зоной. Если заряд нейтрализован слишком рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.
В теории возникновение статического заряда может быть проиллюстрировано простой электрической схемой:
C – выполняет функцию конденсатора, который накапливает заряд, как батарея. Это обычно поверхность материала или изделия.
R – сопротивление, способное ослабить заряд материала/механизма (обычно при слабой циркуляции тока). Если материал является проводником, заряд стекает на землю и не создает проблем. Если же материал является изолятором, заряд не сможет стекать, и возникают сложности. Искровой разряд возникает в том случае, когда напряжение накопленного заряда достигает предельного порога.
Токовая нагрузка — заряд, сгенерированный, например, в процессе перемещения пленки по валу. Ток заряда заряжает конденсатор (объект) и повышает его напряжение U. В то время как напряжение повышается, ток течет через сопротивление R. Баланс будет достигнут в момент, когда ток заряда станет равен току, циркулирующему по замкнутому контуру сопротивления. (Закон Ома: U = I х R).
Если объект имеет способность накапливать значительный заряд, и если имеет место высокое напряжение, статическое электричество приводит к возникновению таких серьезных проблем, как искрение, электростатическое отталкивание/притягивание или электропоражение персонала.
Полярность заряда
Статический заряд может быть либо положительным, либо отрицательным. Для разрядников постоянного тока (AC) и пассивных разрядников (щеток, шнуров, мишуры) полярность заряда обычно не важна.
Вернуться к списку для выбора раздела.
IV. Измерение статического заряда
Измерение величины статического заряда является очень важной процедурой, которая позволяет обнаружить присутствие заряда, определить его амплитуду и породивший источник.
Как уже отмечалось выше, статическое электричество возникает при дефиците или избытке электронов в атоме. Вследствие того, что измерить величину заряда на поверхности объекта в кулонах невозможно, измеряют сопротивление или напряженность электрического поля, связанную со статическим зарядом. Этот способ измерения широко применяется в промышленности.
Зависимость между сопротивлением поля и напряженностью заключается в том, что в любой точке сопротивление является составляющей градиента напряженности.
Приборы Fraser серии 710 собраны по представленной ниже схеме и измеряют напряжение на поверхности объекта.
А – напряжение в конденсаторе изменяется вместе с изменением величины заряда.
Проводя измерения с расстояния 100 мм, и пользуясь формулой Q (заряд) = С (емкостное сопротивление) х U (напряжение), можно вычислить емкостное сопротивление.
Измерительные приборы Fraser просты в использовании и очень полезны для анализа возникших проблем или прогноза их появления в будущем.
При измерениях параметров статического электричества важно следовать инструкциям по эксплуатации приборов. Электрическое поле действует в единственном направлении, поэтому его практическое изучение не представляет сложностей. Одними из наиболее интересных и важных для измерения заряда характеристик электрического поля являются:
- Электрическое поле — участок пространства, на котором действуют электрические силы, величины которых выражены в кулонах.
- Все заряженные объекты окружены электрическим полем.
- Силовые линии поля проходят перпендикулярно поверхности объекта и указывают направление, по которому действует сила.
- Электрическое поле может охватывать несколько объектов, что важно учитывать при проведении измерений и осуществлении мероприятий по нейтрализации статического заряда.
Как отмечалось выше, в воздушном пространстве силовые линии электрического поля проходят перпендикулярно поверхности заряженного объекта. Это позволяет производить измерения с очень высокой точностью.
В случае с производством и обработкой синтетической пленки следует отметить важную деталь. Когда материал перемещается по валу, электрический заряд переходит к валу, и кажется, что поле исчезло. Поэтому вблизи вала нет возможности производить точные измерения. Электрическое поле появляется вновь, когда материал преодолевает зону контакта, и статический заряд можно снова измерить точно.
Вернуться к списку для выбора раздела.
V. Четыре основные проблемы, связанные со статическим электричеством
1. Статический разряд в электронике
На эту проблему необходимо обратить внимание, т.к. она часто возникает в работе с электронными блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.
В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и пренебрегать этим нельзя. При разряде образуется тепло, которое приводит к выжиганию соединений, прерыванию контактов и разрыву дорожек микросхем. Высокое напряжение уничтожает также тонкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.
Часто компоненты не полностью выходят из строя, что можно считать еще более опасным, т.к. неисправность проявляется не сразу, а в непредсказуемый момент в процессе эксплуатации устройства.
Общее правило: при работе с чувствительными к статическому электричеству деталями и устройствами необходимо всегда принимать меры для нейтрализации заряда, накопленного на теле человека. Подробная информация по этому вопросу содержится в документах европейского стандарта CECC 00015.
2. Электростатическое притяжение/отталкивание
Это, возможно, наиболее широко распространенная проблема, возникающая на предприятиях, связанных с производством и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы самостоятельно меняют свое поведение — склеиваются между собой или, наоборот, отталкиваются, прилипают к оборудованию, притягивают пыль, неправильно наматываются на приемное устройство и пр.
Притягивание/отталкивание происходит в соответствии с законом Кулона, в основе которого лежит принцип обратной пропорциональности квадрата расстояния. В простой форме он выражается следующим образом:
Сила притяжения или отталкивания = Заряд А * Заряд В / Расстояние между объектами2
Следовательно, интенсивность проявления этого эффекта напрямую связана с амплитудой статического заряда и расстоянием между притягивающимися или отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электрического поля.
Если два заряда имеют одинаковую полярность – они отталкиваются, если противоположную – притягиваются. Если один из объектов заряжен, он будет провоцировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.
3. Риск возникновения пожара
Риск возникновения пожара не является общей для всех производств проблемой. Но вероятность возгорания очень велика на полиграфических и других предприятиях, где используются легковоспламеняющиеся растворители.
В опасных зонах наиболее распространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в опасной зоне, надета спортивная обувь или туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в опасной зоне должно быть хорошо заземлено.
Нижеследующая информация дает краткое пояснение способности статического разряда провоцировать возгорание в легковоспламеняющихся средах. Важно, чтобы неопытные продавцы были заранее осведомлены о видах оборудования, чтобы не допустить ошибки в подборе устройств для применения в таких условиях.
Способность разряда провоцировать возгорание зависит от многих переменных факторов:
- типа разряда;
- мощности разряда;
- источника и энергии разряда;
- минимальной энергии воспламенения (МЭВ) легковоспламеняющейся среды;
- наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли или горючих жидкостей).
Типы разряда
Существует три основных типа — искровой, кистевой и скользящий кистевой разряды. Коронный разряд в данном случае во внимание не принимается, т.к. он отличается невысокой энергией и происходит достаточно медленно. Коронный разряд чаще всего неопасен, его следует учитывать только в зонах очень высокой пожаро- и взрывоопасности.
Искровой разряд в основном исходит от умеренно проводящего, электрически изолированного объекта. Это может быть тело человека, деталь машины или инструмент. Предполагается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.
Энергия искры рассчитывается следующим образом: Е (в Джоулях) = 1/2 С U2
Кистевой разряд возникает, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные свойства которых приводят к его накоплению. Кистевой разряд отличается более низкой энергией по сравнению с искровым и, соответственно, представляет меньшую опасность в отношении воспламенения.
Скользящий кистевой разряд происходит на листовых или рулонных синтетических материалах с высоким удельным сопротивлением, имеющих повышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением или распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.
Мощность разряда
Если объект, имеющий энергию, не очень хорошо проводит электрический ток, например, человеческое тело, сопротивление объекта будет ослаблять разряд и понижать опасность. Для человеческого тела существует эмпирическое правило: считать, что любые растворители с внутренней минимальной энергией воспламенения менее 100 мДж могут воспламениться несмотря на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.
Источник и энергия разряда
Величина и геометрия распределения заряда являются важными факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы повышают мощность поля и поддерживают разряды.
Минимальная энергия воспламенения МЭВ
Минимальная энергия воспламенения растворителей и их концентрация в опасной зоне являются очень важными факторами. Если минимальная энергия воспламенения ниже энергии разряда, возникает риск возгорания.
4. Удар электрическим током
Вопросу риска статического удара в условиях промышленного предприятия уделяется все больше внимания. Это связано с существенным повышением требований к гигиене и безопасности труда.
Удар током, спровоцированный статическим электричеством, в принципе, не представляет особой опасности. Он просто неприятен, если только не вызывает резкой реакции отклонения от объекта удара.
Существуют две общие причины статического удара.
Наведенный заряд
Если человек находится в электрическом поле и держится за заряженный объект, например, за намоточную бобину для пленки, возможно, что его тело зарядится от наведенной индукции.
Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов или материалов – из-за изолирующей обуви заряд накапливается в теле. Когда оператор трогает металлические детали оборудования, заряд может стечь и спровоцировать электроудар.
При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте между ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, возникшим между сиденьем и их одеждой в момент подъема. Решение этой проблемы – дотронуться до металлической детали автомобиля, например, до рамы дверного проема, до момента подъема с сиденья. Это позволяет заряду безопасно стекать на землю через кузов автомобиля и его шины.
Удар, спровоцированный оборудованием
Такой электроудар возможен, хотя происходит значительно реже, чем поражение, спровоцированное материалом.
Если намоточная бобина имеет значительный заряд, случается, что пальцы оператора концентрируют заряд до такой степени, что он достигает точки пробоя, и происходит разряд. Помимо этого, если металлический незаземленный объект находится в электрическом поле, он может зарядиться наведенным зарядом. По причине того, что металлический объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.
Вернуться к списку для выбора раздела.
VI. Оценка минимального заряда, достаточного для воспламенения опасных атмосфер
При определении эффективности применения антистатического ионизатора ЕХ1250 во взрывоопасной среде может возникнуть вопрос о количественной оценке остаточного статического поля на предмет возможности привести к воспламенению или взрыву в опасной атмосфере, возникающей в производственном процессе.
Увы, на этот вопрос вряд ли есть точный и однозначный ответ, так как степень опасности зависит от того, способен ли накопленный заряд генерировать электрическое поле с достаточным напряжением, чтобы сформировать пробой на материале с последующим разрядом, содержащим энергию, большую, чем минимальная энергия воспламенения горючей атмосферы данного процесса.
Конечно, различные виды разрядов требуют различных условий для их возникновения, например, искровой разряд, кистевой разряд и т.д.
Самый лучший международный источник информации по теме, касающейся статических опасностей — это руководство IEC60079-32-1, но и оно не дает никаких точных значений напряжений, но тем не менее в разделе 7.1.5. “Невоспламеняющие разряды при операциях с жидкостями” утверждает следующее:
Опасность воспламенения может возникнуть при гораздо более низких напряжениях (обычно от 5 до 10 кВ), если изолированные проводники, такие, как плавающие металлические объекты или неправильно закрепленные элементы, находятся в емкости, или если контейнер имеет изолирующую подложку без точки контакта для заземления находящейся в нем жидкости и наполняется жидкостью, которая имеет достаточную проводимость для создания разрядов.
Далее раздел A.3. “Электростатические разряды” дает описание статического разряда:
А.3.2. Искры
Искра — это разряд между двумя проводниками, жидкими или твердыми. Она характеризуется ярко выраженным световым каналом разряда, несущим ток высокой плотности. Газ ионизирован на всю длину канала. Разряд очень быстрый и вызывает резкий треск.
Искра происходит между двумя проводниками, когда напряженность поля между ними превышает электрическую напряженность атмосферы. Разница потенциалов между проводниками, необходимая для пробоя, зависит как от формы так и от расстояния между проводниками. Для сравнения: напряженность пробоя для поверхностей плоских или с большим радиусом искривления при расстоянии 10 мм или более между ними составляет 3 МВм-1 (300 В на мм) в нормальном воздухе и увеличивается при увеличении расстояния.
Поскольку объекты, между которыми проскакивает искра, являются проводниками, преобладающая часть сохраненного заряда проходит через искру. В большинстве случаев на практике это рассеивает почти всю сохраненную энергию. Энергия искры между проводящим телом и проводящим заземленным объектом может быть вычислена по следующей формуле:
W = ½ Q V = ½ C V2,
где
- W — рассеянная энергия в джоулях,
- Q — количество заряда на проводнике в кулонах,
- V — его потенциал в вольтах,
- C — его емкость в фарадах.
Результатом расчета является максимальное количество энергии. Энергия искры будет меньше, если есть сопротивление в пути разряда на заземление. Типичные значения емкостей проводников даны в таблице ниже:
Таблица А.2 Значения емкостей типичных проводников | |
Объект | Емкость в пФ (1 пФ = 1х10-12 Ф) |
Мелкие металлические предметы (наконечник шланга, ковш) | от 10 до 20 |
Малые контейнеры (корзина, барабан до 50 л) | от 10 до 100 |
Средние контейнеры (250 — 500 л) | от 50 до 300 |
Крупные объекты (реакторы, окруженные заземленными структурами) | от 100 до 1000 |
Тело человека | от 100 до 200 |
Исходя из того, что искра может возникать как между жидкими, так и твердыми проводниками, мы можем принять в качестве примерной оценки нижнего порога для разряда в 5-10 кВ, что очень приблизительно и не учитывает ни форму проводников, ни состав и концентрацию газовой смеси.
Также в заключение можно сказать, что фактическая возможность пожара или взрыва всегда зависит не только от напряжения, но и емкости проводника и минимальной энергии воспламенения окружающей атмосферы данного производственного процесса.
Вернуться к списку для выбора раздела.
Download Article
Download Article
Static electricity is the imbalance of negative and positive charges on an object’s surface.[1]
It can be easily visible, such as when a spark is seen after touching a metal doorknob. However, physically measuring static electricity is a much more involved process. When you learn how to measure static electricity, you are basically measuring the surface of a particular object.
-
1
Gather your materials. For this experiment you will need a small copper plate, a ground connection, jumper wires with alligator clips, white paper, scissors, a ruler, a balloon, hair, a cotton t-shirt, a polyester t-shirt, carpet, and a ceramic tile. This experiment will test the relative amount of static electricity in an object.[2]
- A small copper sheet plate can be purchased relatively cheaply online or at a hardware store.
- The ground connection and alligator clip jumper wire will need to be purchased at a hardware or electronics store.
-
2
Attach the copper plate to the ground connection with the jumper wire. Take one end of the alligator clip and attach it to the ground connection. Attach the other alligator clip to the copper plate. It doesn’t matter where the clip is placed, just so that it is connected to the grounding wire.
- Touching an object to the plate removes any residual static electricity an object may have.
Advertisement
-
3
Cut the sheet of paper into 100 square pieces 5 mm x 5 mm. Using a ruler, measure out 5 millimeter by 5 millimeter squares and cut them out. Try to cut them as close to identical in size as possible. This process will be more accurate and go faster if you have access to a paper cutter.
- Remove any lingering static electricity in the paper by placing them on the copper plate.
- After removing any residual static, put the pieces of paper onto a flat tray for the remainder of the experiment.
-
4
Inflate the balloon. Blow up the balloon to a medium-to-large size. The size is not important as long as you use the same balloon for every material. If you pop the balloon during one of the tests, you will need to blow up a new balloon and start at the beginning to maintain consistency during the experiment.
- Discharge the balloon of any lingering static electricity by rolling it across the copper plate.
-
5
Rub the balloon 5 times across the surface of a material. First, choose the material you want to measure the static charge. Some good materials to test are hair, carpet, a cotton t-shirt, a polyester t-shirt, and a ceramic tile.[3]
- Rub the balloon in the same direction each time across the surface of the material.
-
6
Place the balloon on the cut pieces of paper. As the balloon is rubbed across the surfaces, it will be charged with varying amounts of static electricity. When you place the balloon in the paper, the pieces will stick based on the amount of static electricity the balloon holds.
- Avoid rolling the balloon around the pile of paper, just set it on top and see how many pieces stick.
-
7
Count and record the number of paper pieces stuck to the balloon. Peel the pieces of paper off the balloon and count them as you do. Different materials will lead to more or fewer pieces sticking. Repeat the procedure with the various different materials to see how they differ.
- Be sure to discharge the paper and the balloon before beginning again.
-
8
Compare the results of the different materials. Look at the information you have recorded and compare how many pieces of paper stick to the balloon after being rubbed across the various materials. When more pieces of paper stick to the balloon, it indicates that the material has a higher static charge.
- Look at the list and see which materials caused the balloon to attract the most paper. Hair has a lot of static electricity and will likely have led to the most paper pieces sticking.
- Although this method does not tell you the exact amount of static electricity an object has, it does allow you to see the relative amounts of static electricity the material contains.
Advertisement
-
1
Gather your materials. An electroscope is a device that can detect static electricity by using thin metal pieces that separate in the presence of an electrical charge.[4]
You can build a very simple electroscope using a few simple household items. You’ll need a glass jar with a plastic lid, aluminum foil, and a drill. -
2
Make a ball of foil. Cut off a sheet of aluminum foil about 10 inches by 10 inches. The exact dimensions of the piece of foil are not important. Crumple the sheet of foil into a sphere.[5]
Try to keep the ball as round as possible.- The size of the ball should be about 2 inches in diameter. Again, exact dimensions are not important, but you don’t want the ball to be too big or too small.
-
3
Twist together an aluminum foil rod. Take another sheet of foil and twist it into a rod shape that is a little bit less than the length of your jar. You want the aluminum rod to be about 3 inches above the bottom of the jar and stick out about 4 inches above the top of the jar.
-
4
Attach the ball to the rod by wrapping foil around both and twisting together. Using another sheet of foil, place the ball and the rod together and wrap the larger sheet around both pieces. Twist the foil around the rod to secure everything tightly in place.
-
5
Drill a hole in the plastic lid of the jar. Using a drill, make a hole in the center of lid that is big enough for the foil rod to slide through. If you do not have a drill on hand, you can use a hammer and a nail to punch a hole through the lid.[6]
- Use caution with the drill or hammer. Adult supervision is recommended.
-
6
Secure the foil rod/sphere to the lid. Slide the foil rod through the hole in the lid with the foil sphere sticking out of the top end of the lid. Tape the rod in place from the bottom and the top. A half inch from the bottom of the rod, make a 90° (right angle) bend.
-
7
Cut out a triangle shape from folded foil. Cut out a piece of foil that is around 6 inches by 3 inches. Fold the foil length-wise so that it is now a 3 in by 3 in square. Cut out a triangle shape, with the point of the triangle almost reaching the folded age. Leave the triangles attached at the point by not cutting all the way to the fold.[7]
When you are finished cutting you should have two triangles connected by a little bit of foil at the top.- If you cut through the fold, cut a new piece of foil and start again.
-
8
Hang the foil triangles on the bend of the rod. Drape the foil triangles over the rod so that they hang almost touching each other. Screw the lid onto the jar, being careful not to knock the foil triangles off the rod as you do. Keep the electroscope upright.
- If the triangles do fall off, simply unscrew the lid and reposition them.
-
9
Observe your device in action. Rub a balloon against your hair and place it near the sphere at the top of your electroscope. You should see the triangles move apart from each other. As the device comes in contact with static electricity, the two triangles will have the same charges and will move apart from each other. When there is no static electricity, the triangles will sit close to each other.[8]
- Wander around your home placing the sphere near different objects to see how charged they are.
Advertisement
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Thanks for submitting a tip for review!
References
About This Article
Thanks to all authors for creating a page that has been read 87,235 times.
Did this article help you?
Get all the best how-tos!
Sign up for wikiHow’s weekly email newsletter
Subscribe
You’re all set!
Измерение статического напряжения. Основы знаний о статическом электричестве
Что такое статическое электричество
Статическое электричество возникает в случае нарушения внутриатомного или внутримолекулярного равновесия вследствие приобретения или потери электрона. Обычно атом находится в равновесном состоянии благодаря одинаковому числу положительных и отрицательных частиц – протонов и электронов. Электроны могут легко перемещаться от одного атома к другому. При этом они формируют положительные (где отсутствует электрон) или отрицательные (одиночный электрон или атом с дополнительным электроном) ионы. Когда происходит такой дисбаланс, возникает статическое электричество.
Электрический заряд электрона – (-) 1,6 х 10 -19 кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален избытку или дефициту электронов, т.е. числу неустойчивых ионов. Кулон – это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.
У положительного иона отсутствует один электрон, следовательно, он может легко принимать электрон от отрицательно заряженной частицы. Отрицательный ион в свою очередь может быть либо одиночным электроном, либо атомом/молекулой с большим числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.
Как генерируется статическое электричество
Основные причины появления статического электричества:
1. Контакт между двумя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).
2. Быстрый температурный перепад (например, в момент помещения материала в духовой шкаф).
3. Радиация с высокими значениями энергии, ультрафиолетовое излучение, рентгеновские X-лучи, сильные электрические поля (нерядовые для промышленных производств).
4. Резательные операции (например, на раскроечных станках или бумагорезальных машинах).
5. Электромагнитная индукция (вызванное статическим зарядом возникновение электрического поля).
Поверхностный контакт и разделение материалов, возможно, являются наиболее распространенными причинами возникновения статического электричества на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов или перемещения друг относительно друга различных слоев материалов. Этот процесс не вполне понятен, но наиболее правдивое объяснение появления статического электричества в данном случае может быть получено проведением аналогии с плоским конденсатором, в котором механическая энергия при разделении пластин преобразуется в электрическую:
Результирующее напряжение = начальное напряжение х (конечное расстояние между пластинами/начальное расстояние между пластинами).
Когда синтетическая пленка касается подающего/приемного вала, невысокий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение возрастает точно также как в случае с конденсаторными пластинами в момент их разделения. Практика показывает, что амплитуда результирующего напряжения ограничена вследствие электрического пробоя, возникающего в промежутке между соседними материалами, поверхностной проводимости и других факторов. На выходе пленки из контактной зоны часто можно слышать слабое потрескивание или наблюдать искрение. Это происходит в момент, когда статический заряд достигает величины, достаточной для пробоя окружающего воздуха. До контакта с валом синтетическая пленка с точки зрения электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал металлический и заземленный его положительный заряд быстро стекает.
Большая часть оборудования имеет много валов, поэтому величина заряда и его полярность могут часто меняться. Наилучший способ контроля статического заряда – это его точное определение на участке непосредственно перед проблемной зоной. Если заряд нейтрализован слишком рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.
В теории возникновение статического заряда может быть проиллюстрировано простой электрической схемой:
C – выполняет функцию конденсатора, который накапливает заряд, как батарея. Это обычно поверхность материала или изделия.
R – сопротивление, способное ослабить заряд материала/механизма (обычно при слабой циркуляции тока). Если материал является проводником, заряд стекает на землю и не создает проблем. Если же материал является изолятором, заряд не сможет стекать, и возникают сложности. Искровой разряд возникает в том случае, когда напряжение накопленного заряда достигает предельного порога.
Токовая нагрузка – заряд, сгенерированный, например, в процессе перемещения пленки по валу. Ток заряда заряжает конденсатор (объект) и повышает его напряжение U. В то время как напряжение повышается, ток течет через сопротивление R. Баланс будет достигнут в момент, когда ток заряда станет равен току, циркулирующему по замкнутому контуру сопротивления. (Закон Ома: U = I х R).
Если объект имеет способность накапливать значительный заряд, и если имеет место высокое напряжение, статическое электричество приводит к возникновению таких серьезных проблем, как искрение, электростатическое отталкивание/притягивание или электропоражение персонала.
Полярность заряда
Статический заряд может быть либо положительным, либо отрицательным. Для разрядников постоянного тока (AC) и пассивных разрядников (щеток) полярность заряда обычно не важна.
Измерение статического заряда
Измерение величины статического заряда является очень важной процедурой, которая позволяет обнаружить присутствие заряда, определить его амплитуду и породивший источник.
Как отмечалось выше, статическое электричество возникает при дефиците или избытке электронов в атоме. Вследствие того, что измерить величину заряда на поверхности объекта в кулонах невозможно, измеряют сопротивление или напряженность электрического поля, связанную со статическим зарядом. Этот способ измерения широко применяется в промышленности.
Зависимость между сопротивлением поля и напряженностью заключается в том, что в любой точке сопротивление является составляющей градиента напряженности.
Измерительные приборы собираются преимущественно по представленной ниже схеме и измеряют напряжение на поверхности объекта.
А – напряжение конденсатора изменяется вместе с изменением величины заряда.
Проводя измерения с расстояния 100 мм, и пользуясь формулой Q (заряд) = С (емкостное сопротивление) х U (напряжение), можно вычислить емкостное сопротивление.
Измерительные приборы обычно просты в использовании и очень полезны для анализа возникших проблем или прогноза их появления в будущем.
При измерениях параметров статического электричества важно следовать инструкциям по эксплуатации приборов. Электрическое поле действует в единственном направлении, поэтому его практическое изучение не представляет сложностей. Одними из наиболее интересных и важных для измерения заряда характеристик электрического поля являются:
Электрическое поле – участок пространства, на котором действуют электрические силы, величины которых выражены в кулонах.
Все заряженные объекты окружены электрическим полем.
Силовые линии поля проходят перпендикулярно поверхности объекта и указывают направление, по которому действует сила.
Электрическое поле может охватывать несколько объектов, что важно учитывать при проведении измерений и осуществлении мероприятий по нейтрализации статического заряда.
Как отмечалось выше, в воздушном пространстве силовые линии электрического поля проходят перпендикулярно поверхности заряженного объекта. Это позволяет производить измерения с очень высокой точностью.
В случае с производством и обработкой синтетической пленки следует отметить важную деталь. Когда материал перемещается по валу, электрический заряд переходит к валу и кажется, что поле исчезло. Поэтому вблизи вала нет возможности производить точные измерения. Электрическое поле появляется вновь, когда материал преодолевает зону контакта и статический заряд можно снова измерить точно.
Проблемы, связанные со статическим электричеством
Существует 4 основные области:
Статический разряд в электронике
На эту проблему необходимо обратить внимание, т.к. она часто возникает в процессе обращения с электронными блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.
В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и пренебрегать этим нельзя. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высокое напряжение уничтожает также тонкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.
Часто компоненты не полностью выходят из строя, что можно считать еще более опасным, т.к. неисправность проявляется не сразу, а в непредсказуемый момент в процессе эксплуатации устройства.
Общее правило: при работе с чувствительными к статическому электричеству деталями и устройствами необходимо всегда принимать меры для нейтрализации заряда, накопленного на теле человека. Подробная информация по этому вопросу содержится в документах европейского стандарта CECC 00015.
Электростатическое притяжение/отталкивание
Это, возможно, наиболее широко распространенная проблема, возникающая на предприятиях, связанных с производством и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы самостоятельно меняют свое поведение – склеиваются между собой или, наоборот, отталкиваются, прилипают к оборудованию, притягивают пыль, неправильно наматываются на приемное устройство и пр.
Притягивание/отталкивание происходит в соответствии с законом Кулона, в основе которого лежит принцип противоположности квадрата. В простой форме он выражается следующим образом:
Сила притяжения или отталкивания (в Ньютонах) = Заряд (А) х Заряд (В) / (Расстояние между объектами ² (в метрах)).
Следовательно, интенсивность проявления этого эффекта напрямую связана с амплитудой статического заряда и расстоянием между притягивающимися или отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электрического поля.
Если два заряда имеют одинаковую полярность – они отталкиваются, если противоположную – притягиваются. Если один из объектов заряжен, он будет провоцировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.
Риск возникновения пожара
Риск возникновения пожара не является общей для всех производств проблемой. Но вероятность возгорания очень велика на полиграфических и других предприятиях, где используются легковоспламеняющиеся растворители.
В опасных зонах наиболее распространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в опасной зоне, надета спортивная обувь или туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в опасной зоне должно быть хорошо заземлено.
Нижеследующая информация дает краткое пояснение способности статического разряда провоцировать возгорание в легковоспламеняющихся средах.
Способность разряда провоцировать возгорание зависит от многих переменных факторов:
- типа разряда;
- мощности разряда;
- источника разряда;
- энергии разряда;
- наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли или горючих жидкостей);
- минимальной энергии воспламенения (МЭВ) легковоспламеняющейся среды.
Типы разряда
Существует три основных типа – искровой, кистевой и скользящий кистевой разряды. Коронный разряд в данном случае во внимание не принимается, т. к. он отличается невысокой энергией и происходит достаточно медленно. Коронный разряд чаще всего неопасен, его следует учитывать только в зонах очень высокой пожаро- и взрывоопасности.
Искровой разряд
В основном он исходит от умеренно проводящего, электрически изолированного объекта. Это может быть тело человека, деталь машины или инструмент. Предполагается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.
Энергия искры рассчитывается следующим образом: Е (в Джоулях) = ½ С U2.
Кистевой разряд
Кистевой разряд возникает, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные свойства которых приводят к его накоплению. Кистевой разряд отличается более низкой энергией по сравнению с искровым и, соответственно, представляет меньшую опасность в отношении воспламенения.
Скользящий кистевой разряд
Скользящий кистевой разряд происходит на листовых или рулонных синтетических материалах с высоким удельным сопротивлением, имеющих повышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением или распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.
Источник и энергия разряда
Величина и геометрия распределения заряда являются важными факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы повышают мощность поля и поддерживают разряды.
Мощность разряда
Если объект, имеющий энергию, не очень хорошо проводит электрический ток, например, человеческое тело, сопротивление объекта будет ослаблять разряд и понижать опасность. Для человеческого тела существует эмпирическое правило: считать, что любые растворители с внутренней минимальной энергией воспламенения менее 100 мДж могут воспламениться несмотря на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.
Минимальная энергия воспламенения МЭВ
Минимальная энергия воспламенения растворителей и их концентрация в опасной зоне являются очень важными факторами. Если минимальная энергия воспламенения ниже энергии разряда, возникает риск возгорания.
Электропоражение
Вопросу риска статического удара в условиях промышленного предприятия уделяется все больше внимания. Это связано с существенным повышением требований к гигиене и безопасности труда.
Электропоражение, спровоцированное статическим электричеством, в принципе не представляет особой опасности. Оно просто неприятно и часто вызывает резкую реакцию.
Существуют две общие причины статического удара:
Наведенный заряд
Если человек находится в электрическом поле и держится за заряженный объект, например, за намоточную бобину для пленки, возможно, что его тело зарядится.
Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов или материалов – из-за изолирующей обуви заряд накапливается в теле. Когда оператор трогает металлические детали оборудования, заряд может стечь и спровоцировать электроудар.
При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте между ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, возникшим между сиденьем и их одеждой в момент подъема. Решение этой проблемы – дотронуться до металлической детали автомобиля, например, до рамы дверного проема, до момента подъема с сиденья. Это позволяет заряду безопасно стекать на землю через кузов автомобиля и его шины.
Электропоражение, спровоцированное оборудованием
Такой электроудар возможен, хотя происходит значительно реже, чем поражение, спровоцированное материалом.
Если намоточная бобина имеет значительный заряд, случается, что пальцы оператора концентрируют заряд до такой степени, что он достигает точки пробоя и происходит разряд. Помимо этого, если металлический незаземленный объект находится в электрическом поле, он может зарядиться наведенным зарядом. По причине того, что металлический объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.
Татьяна Дементьева
инженер-технолог
Статья подготовлена на основе материалов компании Fraser-antistatic (Великобритания)
Приборы для измерения параметров статического
электричества
Электрические измерения необходимы для изучения причин и условий электризации и постоянного контроля электростатических величин: разности потенциалов U
между заряженным телом и землей или заземленными предметами; поверхностной плотности электрических зарядов s и напряженности электрического поля Е
.
Указателями электрических потенциалов служат различные механические (лепестковые, стрелочные, струнные, квадрантные) и электронные электрометры. В механических электрометрах измеряемый заряд подается на один из пары электродов, кулоновское взаимодействие которых фиксируется различными методами. Например, принцип действия квадрантных электрометров положен в основу электростатических вольтметров. Электростатический заряд воздействует на подвижный секторный электрод, который под воздействием кулоновских сил перемещается. По углу поворота судят о величине измеряемого напряжения
По условиям пожаро- и взрывобезопасности приборы для электростатических измерений во взрывоопасных зонах должны иметь соответствующий уровень и вид взрывозащиты, а их датчики (в частности, у переносных приборов) должны соответствовать требованиям электростатической искробезопасности. Датчик прибора считают искробезопасным
для данной взрывоопасной смеси, если искровой разряд на него с металлического электрода, имеющего потенциал 50 кВ и емкость 60-100 пФ, вызывает воспламенение этой смеси с вероятностью не более 10 -3 (либо энергия этих зарядов, по крайней мере, в 2,5 раза меньше энергии воспламенения смеси).Так, датчик прибора ИСПИ-4 с отклонением электронного потока в вакууме покрыт толстым слоем диэлектрика (фторопластом), что обеспечивает электростатическую искробезопасность. В приборе СМ-2/С-59 взрывозащита достигнута путем заключения электростатического вольтметра С-53 во взрывонепроницаемый корпус, а специальное покрытие датчика (например, фторопласт) обеспечивает его электростатическую безопасность. Взрывобезопасность процесса измерения достигается в том случае, когда во взрывоопасной зоне применяется искробезопасный датчик, а сам прибор (например, статический вольтметр любого типа) устанавливается в невзрывоопасной зоне.
Устройства для заземления и контроля
цепи заземления средств транспорта и хранения ЛВЖ
и сжиженных горючих газов
Технологические процессы налива или слива нефтепродуктов и других взрывопожароопасных веществ химических, нефтехимических и нефтеперерабатывающих производств, предприятий снабжения нефтепродуктами, нефтебаз, складов ГСМ, автозаправочных станций (АЗС), автозаправочных комплексов (АЗК) и авто-газозаправочных станций (АГЗС) сопровождаются образованием и накоплением зарядов статического электричества. Зажигающая способность разрядов статического электричества нередко является вероятным источником зажигания пожаровзрывоопасной среды, что приводит к пожарам и взрывам, сопровождающимся материальными потерями и летальным травматизмом.
Экспериментальные и аналитические исследования показывают, что в летнее время в зоне заправки бензином на АЗС легковых и грузовых автомобилей взрывоопасная смесь горючих паров с воздухом может образоваться в объемах до 2,5 и до 8 м 3 соответственно. При сливе бензина из автоцистерн (АЦ) выходящая из дыхательной арматуры взрывоопасная паро-воздушная смесь может образоваться в объеме до 105 м 3 .
В подтверждение реальности пожарного риска такого рода следует отметить, что в разных регионах России происходят пожары при обращении с нефтепродуктами и сниженными горючими газами (СГГ). Например, 02.11.1997 г. крупный пожар 5-й степени сложности возник в Москве на
1-й улице Ямского Поля при сливе топлива в подземный резервуар.
Поэтому, на этих объектах средства защиты от опасных проявлений статического электричества должны применяться как одна из мер снижения пожарного риска. Заземляться и надежно электрически соединяться между собой должны наливные стояки эстакад, находящиеся под наливом железнодорожные цистерны и рельсы в пределах сливоналивного фронта. Перед проведением и в процессе сливоналивных операций заземлению также подлежат: автоцистерны, танкеры, самолеты и другие транспортные средства, а также средства транспорта и хранения нефтепродуктов или СГГ.
Несоответствующие требованиям, предъявляемым к электрооборудованию во взрывозащищенном исполнении, электрические контактные соединения и другие устройства для присоединения заземляющих проводников должны располагаться вне взрывоопасных зон (не менее 9 м от мест налива или слива) . При этом провода заземления сначала присоединяют к корпусу заземляемого объекта, а затем к заземляющему устройству. Отсоединение же их, что еще более важно для предупреждения искрообразования при размыкании цепи заземления с током случайного происхождения (гальваническим, блуждающим, обусловленным электромагнитной бурей или воздействием электромагнитного радиочастотного поля), следует осуществлять в обратном порядке.
Важно отметить, что существуют конструктивные различия устройств заземления АЦ, применяемых на нефтебазах и складах ГСМ и АЗК, от устройств их заземления на АЗС общего пользования и ведомственных пунктов заправки топливом. Подобные различия существуют и при оснащении АЦ заземляющими проводниками, конструктивно непригодными для применения при наливе топлива на нефтебазе (или на АЗК) или при сливе его на АЗС. Таким образом, нередко заземляющие устройства не обеспечивают требуемого уровня пожаровзрывобезопасности технологии сливоналивных операций топлива, ЛВЖ и СГГ.
В целях обеспечения требований пожарной безопасности разработаны и выпускаются устройства заземления автоцистерн (УЗА) типов: УЗА-2МК02, УЗА-2МК03, УЗА-2МК04, УЗА-2МК05, УЗА-2МК06. Данные устройства УЗА осуществляют одновременно и функции контроля заземленного состояния объектов защиты. Питание коммутационных устройств (по желанию заказчика) предусмотрено либо от промышленной цепи переменного тока с напряжением 220 В (например, УЗА-2МК04), либо от цепи постоянного тока с напряжением 12 В (УЗА-2МК05), либо от батареи аккумуляторов с напряжением 6,3 В, служащей автономным источником питания (УЗА-2МК03 и УЗА-2МК06).
УЗА соответствуют требованиям: ГОСТ 12.4.124-83 , ГОСТ Р 5250.0-2005 (МЭК 60079-0:2005) и др.
Общий вид устройств заземления автоцистерн представлен на рис. 9.3 а их основные технические характеристики приведены в табл. 9.3.
Рис. 9.3. Общий вид УЗА
На разработку и применение УЗА-2МК даны лицензии и разрешения Госгортехнадзора и сертификат о взрывозащищеннности Центра сертификации взрывозащищенного электрооборудования (ЦСВЭ). С учетом требований нормативных документов область применения УЗА-2МК – взрывоопасные зоны 1, 2, 2н. Применение той или иной модификации определяется технической оснащенностью сливоналивных эстакад нефтебаз и наливных пунктов, АЗС, АГЗС и АЗК.
Таблица 9.3
Технические характеристики устройств УЗА
Окончание табл. 9.3
УЗА-2МК04 и УЗА-2МК05 предназначены для заземления автоцистерн или других транспортных средств, для блокировки и запуска слива, исключающего (по желанию заказчика) техническую возможность проведения операции слива без предварительного подключения их к устройствам заземления и обеспечения эквипотенциальности электропроводящих узлов объекта защиты и сливного оборудования. Данные устройства обеспечивают также непрерывный контроль целостности электрической цепи заземления и ее величины сопротивления в Ом на участке «заземляемая емкость – заземляющее устройство» и осуществляют световую сигнализацию о состоянии данного участка электрической цепи. Устройства комплектуются универсальным проводом заземления со специальным зажимом для подключения УЗА к автоцистерне. Этот провод является принадлежностью УЗА, а его подключение к АЦ допускается только при разомкнутой коммутационной цепи УЗА специальной кнопкой в ее корпусе (рис. 9.3а и 9.3б).
Индикаторы электрических полей могут быть использованы для индивидуальной защиты электромонтеров, при поиске мест повреждений электрических сетей. С их помощью определяется наличие электростатических зарядов в полупроводниковом, текстильном производствах, хранилищах легковоспламеняющихся жидкостей. При поиске источников магнитных полей, определении их конфигурации и исследовании полей рассеяния трансформаторов, дросселей и электродвигателей не обойтись без индикаторов магнитных полей.
Схема индикатора высокочастотных излучений показана на рис. 20.1. Сигнал с антенны попадает на детектор, выполненный на германиевом диоде. Далее через Г-образный LC-фильтр сигнал поступает на базу транзистора, в коллекторную цепь которого включен микроамперметр. По нему и определяется мощность высокочастотных излучений.
Для индикации низкочастотных электрических полей используют индикаторы с входным каскадом на полевом транзисторе (рис. 20.2 — 20.7). Первый из них (рис. 20.2) выполнен на основе мультивибратора [ВРЯ 80-28, Р 8/91-76]. Канал полевого транзистора является управляемым элементом, сопротивление которого зависит от величины контролируемого электрического поля. К затвору транзистора подключена антенна. При внесении индикатора в электрическое поле, сопротивление исток — сток полевого транзистора возрастает, и мультивибратор включается.
В телефонном капсюле раздается звуковой сигнал, частота которого зависит от напряженности электрического поля.
Следующие две конструкции по схемам Д. Болотника и Д. Приймака (рис. 20.3 и 20.4) предназначены для поиска неисправностей в новогодних электрических гирляндах [Р 11/88-56]. Индикатор (рис. 20.3) в целом представляет собой резистор с управляемым сопротивлением. Роль такого сопротивления опять же играет канал сток — исток полевого транзистора, дополненного двухкаскадным усилителем постоянного тока. Индикатор (рис. 20.4) выполнен по схеме управляемого низкочастотного генератора. Он содержит пороговое устройство, усилитель и детектор сигнала, наведенного в антенне переменным электрическим полем. Все эти функции выполняет один транзистор — VT1. На транзисторах VT2 и VT3 собран генератор низкой частоты, работающий в ждущем режиме. Как только антенну устройства приближают к источнику электрического поля, транзистор VT1 включает звуковой генератор.
Индикатор электрического поля (рис. 20.5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].
В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3). При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует. Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы. Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.
Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.
Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.
Индикатор электрических и магнитных полей (рис. 20.6) содержит релаксационный генератор импульсов. Он выполнен на биполярном лавинном транзисторе (транзистор микросхемы К101КТ1А, управляемый электронным ключом на полевом транзисторе типа КП103Г), к затвору которого подключена антенна. Для задания рабочей точки генератора (срыв генерации в отсутствии индицируемых электрических полей) используют резисторы R1 и R2. Генератор импульсов через конденсатор С1 нагружен на высокоомные головные телефоны. При наличии переменного электрического поля (или перемещении предметов, несущих электростатические заряды) на антенне и, соответственно, затворе полевого транзистора появляется сигнал переменного тока, что приводит к изменению электрического сопротивления перехода сток — исток с частотой модуляции. В соответствии с этим релаксационный генератор начинает генерировать пачки модулированных импульсов, а в головных телефонах будет прослушиваться звуковой сигнал.
Чувствительность прибора (дальность обнаружения токонесущего провода сети 220 В 50 Гц) составляет 15…20 см. В качестве антенны использован стальной штырь 300×3 мм. При напряжении питания 9 В ток, потребляемый индикатором в режиме молчания, составляет 100 мкА, в рабочем режиме — 20 мкА.
Индикатор магнитных полей (рис. 20.6) выполнен на втором транзисторе микросхемы. Нагрузкой второго генератора является высокоомный головной телефон. Сигнал переменного тока, снимаемый с индуктивного датчика магнитного поля L1, через переходной конденсатор С1 подается на базу лавинного транзистора, не связанную по постоянному току с другими элементами схемы («плавающая» рабочая точка). В режиме индикации переменного магнитного поля напряжение на управляющем электроде (базе) лавинного транзистора периодически изменяется, изменяется также и напряжение лавинного пробоя коллекторного перехода и, в связи с этим, частота и продолжительность генерации.
Индикатор (рис. 20.7) изготовлен на основе делителя напряжения, одним из элементов которого является полевой транзистор VT1, сопротивление перехода сток — исток которого определяется потенциалом управляющего электрода (затвора) с подключенной к нему антенной [Рк 6/00-19]. К резистивному делителю напряжения подключен релаксационный генератор импульсов на лавинном транзисторе VT2, работающий в ждущем режиме. Уровень начального напряжения (порог срабатывания), подаваемого на релаксационный генератор импульсов, устанавливается потенциометром R1.
Для предотвращения пробоя управляющего перехода полевого транзистора в схему введена защита (при отключении источника питания цепь затвор — исток закорочена). Повышение уровня громкости звукового сигнала достигается введением усилителя на биполярном транзисторе VT3. В качестве нагрузки выходного транзистора VT3 можно использовать низкоомный телефонный капсюль.
Для упрощения схемы высокоомный телефонный капсюль, например, ТОН-1, ТОН-2 (либо «среднеомный» — ТК-67, ТМ-2) может быть включен вместо резистора R3. В этом случае надобность в использовании элементов VT3, R4, С2 отпадает. Разъем, в который включается телефон, для снижения габаритов устройства, может одновременно служить выключателем питания.
При отсутствии входного сигнала сопротивление перехода сток — исток полевого транзистора составляет несколько сотен Ом, и напряжение, снимаемое с движка потенциометра на питание релаксационного генератора импульсов, мало. При появлении сигнала на управляющем электроде полевого транзистора сопротивление перехода сток — исток последнего возрастает пропорционально уровню входного сигнала до единиц, сотен кОм. Это приводит к увеличению напряжения, подаваемого на релаксационный генератор импульсов до величины, достаточной для возникновения колебаний, частота которых определяется произведением R4C1. Потребляемый устройством ток при отсутствии сигнала — 0,6 мА, в режиме индикации — 0,2…0,3 мА. Дальность обнаружения токонесущего провода сети 220 В 50 Гц при длине штыревой антенны 10 см составляет 10…100 см.
Индикатор высокочастотного электрического поля (рис. 20.8) [МК 2/86-13] отличается от аналога (рис. 20.1) тем, что его выходная часть выполнена по мостовой схеме, имеющей повышенную чувствительность. Резистор R1 предназначен для балансировки схемы (установки стрелки прибора на ноль).
Ждущий мультивибратор (рис. 20.9) использован для индикации сетевого напряжения [МК 7/88-12]. Индикатор работает при приближении его антенны к сетевому проводу (220 В) на расстояние 2…3 см. Частота генерации для приведенных на схеме номиналов близка к 1 Гц.
Индикаторы магнитных полей по схемам, представленным на рис. 20.10 — 20.13, имеют индуктивные датчики, в качестве которых может быть использован телефонный капсюль без мембраны, либо многовитковая катушка индуктивности с железным сердечником.
Индикатор (рис. 20.10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.
Индикаторы (рис. 20.11, 20.12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].
Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 20.13. Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1. Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ. Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Компания «Юман» предлагает широкую линейку приборов для измерения статического электричества
производства ELTEX (Германия).
Возможность точного измерения электростатических зарядов (включая высокие напряжения, электрические поля и высокие сопротивления, связанные с материалами, несущими заряд) обеспечивает информационную основу для уничтожения разрушительной нежелательной электростатической энергии. Измерение высокого сопротивления также является важным инструментом в защитных средствах контроля. Точное измерение сопротивления утечки способствует контролю и гарантии качества, поддержанию стандартизированных свойств в материалах.
С учетом нестабильности электростатического явления, измерение статического электричества должно также учитывать различные источники ошибок. Это значит, что сам измерительный процесс должен соответствовать точным требованиям. Измерительное оборудование Eltex отличается своей высокой точностью и широкой сферой возможных применений.
Предлагаем приборы для замера статического электричества ELTEX (Германия):
Измеритель электрического поля EMF58
Высокочувствительное портативное устройство. С помощью EMF58 можно измерить подъем, уровень и полярность заряда и оценить эффективность любых мер противодействия. Доступны четыре диапазона измерения от ±0 кВ/м до ±2 мВ/м
.
Измеритель электрического поля EM02
Ручное устройства для безопасного измерения статических зарядов. Диапазон измерений от ± 0 до ± 2 мВ/м
.
Измеритель электрического поля EM03
Ручное удобное устройство для измерения статических зарядов, причем расстояние измерения выбирается между 2 и 20 см. Автоматическое преобразование и отображение силы поля в вольтах. Диапазон измерений от ± 0 до ± 200 кВ
.
Статическое электричество появляется при неравенстве положительного и отрицательного зарядов на поверхности предметов. Его легко обнаружить – например, при прикосновении к металлической дверной ручке между ней и рукой может проскочить искра. Однако измерение статического электричества является намного более сложным процессом. Узнайте, как измерять статическое электричество, и вы сможете определять электрический заряд на поверхности различных предметов.
Шаги
Оценка статического заряда различных материалов
- Небольшую медную пластинку можно довольно дешево приобрести в магазине хозяйственных товаров или заказать через интернет.
- Заземление и провода с зажимами “крокодил” можно приобрести в магазине хозяйственных или электротехнических товаров.
-
Подсоедините медную пластинку к заземлению с помощью провода.
Один зажим провода прикрепите к заземлению, а второй – к медной пластинке. Не имеет значения, куда подсоединять провод, просто прикрепите его к проводу заземления.- Когда предмет касается медной пластинки, с него стекает скопившийся статический заряд.
-
Разрежьте лист бумаги на 100 квадратных кусочков размером 5 мм x 5 мм.
Линейкой разделите лист на 5-миллиметровые квадратики и вырежьте их. Постарайтесь как можно точнее выдержать размеры. Это проще сделать с помощью бумагорезальной машины.
Надуйте воздушный шарик.
Надуйте шарик до средних или больших размеров. Размеры шарика не важны, если для всех материалов использовать один и тот же шарик. Если во время опыта шарик лопнет, придется надуть новый шарик и начать сначала, чтобы сохранить неизменными условия эксперимента.
Пять раз проведите шариком по поверхности исследуемого материала.
Для начала выберите материал, на котором вы хотите измерить статический заряд. Для данных целей хорошо подойдут волосы, ковер, хлопчатобумажная футболка, футболка из полиэстера, ковер или керамическая плитка.- Поводите шариком по материалу в одном и том же направлении.
-
Положите шарик поверх кусочков бумаги.
После трения об исследуемый материал шарик зарядится определенным количеством статического электричества (это количество будет разным для различных материалов). Когда вы положите шарик на кусочки бумаги, они пристанут к нему, причем их количество будет зависеть от величины статического заряда на шарике.- Не перекатывайте шарик по бумаге. Просто положите его поверх кусочков бумаги и посмотрите, сколько их пристанет к шарику.
-
Посчитайте число приставших к шарику клочков бумаги.
Соберите клочки бумаги с шарика и посчитайте их. После трения о различные материалы к шарику пристанет разное число кусочков бумаги. Повторите эксперимент с разными материалами и посмотрите, как они различаются.- Перед каждым новым экспериментом разряжайте бумагу и шарик.
-
Сравните результаты для разных материалов.
Посмотрите на полученные данные и сравните, сколько кусочков бумаги пристало к шарику после того, как вы потерли его о различные материалы. Чем больше клочков бумаги пристало к шарику, тем выше его статический заряд.
С помощью самодельного электроскопа
-
Подготовьте все необходимое.
Электроскоп – это прибор, позволяющий выявить статическое электричество с помощью тонких металлических пластинок, которые разделяются в присутствии статического заряда. Простейший электроскоп можно сделать из нескольких бытовых предметов. Для этого понадобятся стеклянная банка с пластиковой крышкой, алюминиевая фольга и дрель.Сделайте шар из фольги.
Вырежьте из фольги квадрат примерно 25 см x 25 см. Точные размеры не важны. Скомкайте вырезанный лист фольги, так чтобы получился шар. Постарайтесь, чтобы шар имел как можно более правильную форму.- Должен получиться шар диаметром около 5 сантиметров. И в этом случае точные размеры не важны – главное, чтобы шар не был слишком большим или маленьким.
-
Скрутите стержень из алюминиевой фольги.
Вырежьте из фольги еще один лист и скрутите его в виде стержня. Стержень должен быть немного короче, чем стеклянная банка. Этот алюминиевый стержень должен располагаться в 7–8 сантиметрах выше дна банки и выступать примерно на 10 сантиметров над ее верхним краем.Прикрепите шар к стержню.
Возьмите для этого еще один лист фольги. Приставьте шар к концу стержня, наденьте на них лист фольги и скрутите его. Плотно обмотайте фольгой шар и стержень, чтобы она удерживала их вместе.
-
Подготовьте все необходимое.
Для данного эксперимента вам понадобятся: небольшая медная пластинка, заземление, электрические провода с зажимами “крокодил”, белая бумага, ножницы, линейка, воздушный шарик, волосы, хлопчатобумажная футболка, футболка из полиэстера, ковер и керамическая плитка. Этот метод позволяет определить относительное количество статического заряда.
Как измерить статическое электричество на производстве?
Когда возникают проблемы со статикой на производстве, первым и очень важным этапом является измерение статического электричества, чтобы понять, где и каким образом генерируется статический заряд, определить его величину и полярность, правильно подобрать антистатическое оборудование для решения проблем со статикой. Для измерения статического напряжения существуют специальные устройства — измерители статики.
Единицы измерения напряженность электростатического поля, кВ/м (kV)
Производители измерительного промышленного оборудования выпускают приборы, позволяющие точно определить величину напряжения накопленных статических зарядов, например, на корпусах оборудования. На мировом рынке давно существуют специальные приборы для измерения параметров электростатического поля или статического заряда в текстильной, резиновой, кожевенной и бумажной промышленности, при производстве полимерных материалов, в печатном производстве, в приборостроении для измерения электростатических полей и Вы можете их купить в России.
Dr. Statik рекомендует следующие измерители статики:
Измеритель статического заряда модель 715 (Fraser, Англия)
Преимущества этого измерителя:
- Модель 715 позволяет контролировать эффективность устранения статического электричества.
- Компактный размер
- Дает возможность инженеру определять оптимальные внутрипроизводственные технические условия. Нормироваться могут, например, заряд на поверхности материалов и уровень заряда на объектах в процессе их обработки.
- Возможность сохранения текста на LCD экране
Измеритель EX715 взрывобезопасный (Fraser) Англия
Измеритель статического заряда специально разработан для анализа производственных проблем, связанных со статическим электричеством, и сертифицирован для использования в различных опасных атмосферах . Если прибор используется правильно, полученные с помощью него данные представляют очень важную информацию.
Измеритель статики, модель FMX-004 (Simco)
Удобный карманный измеритель электростатического поля, позволяющий производить измерения и сохранять в памяти прибора показатели полярностии напряженность электрического поля.
- FMX-004 позволяет проводить измерения в труднодоступных местах
- Правильное расстояние измерения отображается двумя встроенными светодиодами
- Состояние батареи отображается на дисплее
Измеритель электростатического поля EFM 022 (Германия)
Elektrofeldmeter EFM 022 очень удобен в использовании благодаря своей компактной конструкции и одной операционной кнопке.
Приобретая измеритель электростатического поля EFM, Вы получаете прибор, с помощью которого на регулируемом расстоянии (расстояние между объектом измерения и измерительным электродом) можно измерять потенциал объекта в вольтах. Таким образом, с помощью прибора осуществляется локализация и измерение электростатических зарядов и полей обоих полярностей на поверхности различных материалов.
Меню: имеется 5 вариантов измерения расстояний, что позволяет проводить оптимальные измерения прибором даже в «проблемных» зонах.
Видео на нашем Youtube-канале демонстрирует, как работает измеритель статического заряда модель 715:
Для подробной экспертной консультации по подбору измерителя статики
под ваши потребности и получения коммерческого предложения обратитесь к Dr. Statik
Источник
Как измерять мультиметром — подробная инструкция
Измеряем напряжение мультиметром
При работе с электрической цепью под напряжением требуется соблюдать осторожность.
Первый шаг — установить режим работы и диапазон величин. Для этого нужно знать, постоянный или переменный ток в цепи. Диапазон рекомендуется сначала выставить по максимуму (если напряжение неизвестно) или выше границы действующего потенциала. Для сети 220 В это 600 или 750 В.
Второй шаг — черный щуп подключить к гнезду СОМ, красный к разъему для определения напряжения.
Третий — непосредственно измерение. Для этого завести концы проводов в гнезда розетки или, например, к полюсам батарейки.
На экране высветится значение напряжения в вольтах. Зафиксировать число можно нажатием кнопки HOLD (при наличии). Это очень удобная функция, особенно если измерений много.
При несоблюдении полярности величина будет со знаком «минус». В цифровых мультметрах, в отличие от стрелочных, это не критично.
Измерение сопротивления мультиметром
Мультиметр позволяет определить сопротивление в элементах, участках цепи или простейших электрических приборах без подачи напряжения. Такие замеры неопасны, так как обесточенные объекты не создают угрозы.
- Выставить переключателем нужный режим в максимальном диапазоне.
- Подключить провода к соответствующим разъемам.
- Проконтролировать состояние прибора. Для этого соединить концы щупов между собой. Дисплей покажет «0» или незначительное сопротивление самих проводников, которое учитывается при высокоточных расчетах.
- Измерить сопротивление прикосновением к выводам исследуемого объекта. Часто для этого пользуются зажимами «крокодил». Работать будет удобнее, а показания точнее.
Прибор автоматически выдает значение сопротивления в Ом. Для правильного результата достаточно 2 попыток.
Источник
Как измерить статическое электричество
Автор: kazakov ,
23 Апреля 2009 в Измерения
9 сообщений в этой теме
Рекомендуемые сообщения
Присоединиться к обсуждению
Вы можете ответить сейчас, а зарегистрироваться позже. Если у вас уже есть аккаунт, войдите, чтобы ответить от своего имени.
Информация
Недавно просматривали 0 пользователей
Ни один зарегистрированный пользователь не просматривает эту страницу.
Популярные темы
Автор: AtaVist
Создана 11 Августа 2017
Автор: Savk
Создана Вчера в 05:18
Автор: uk_domovoi
Создана 21 час назад
Автор: AtaVist
Создана 11 Августа 2017
Автор: Дмитрий1971
Создана 5 Января 2020
Автор: AtaVist
Создана 11 Августа 2017
Автор: Metrolog-sever
Создана 2 Июля 2014
Автор: Дмитрий1971
Создана 5 Января 2020
Автор: AtaVist
Создана 11 Августа 2017
Автор: berkut008
Создана 16 Января 2019
Автор: ЭДСка
Создана 23 Ноября 2020
Автор: Metrolog-sever
Создана 2 Июля 2014
Автор: владимир 332
Создана 3 Декабря 2019
Автор: AtaVist
Создана 11 Августа 2017
Автор: berkut008
Создана 16 Января 2019
Автор: Metrolog-sever
Создана 2 Июля 2014
Источник
Как пользоваться электрическим тестером
Даже если вы не профессиональный электрик, элементарные приборы для измерения электрических величин в доме должны быть. Для того чтобы измерить напряжение в сети, или прозвонить предохранитель, не обязательно вызывать оплачиваемого мастера. Все это можно сделать с помощью простого прибора — мультиметра или тестера. Они бывают разного размера, стоимости. Функционал от самого примитивного, до измерения температуры и уровня освещенности.
Чтобы деньги, вложенные в этот прибор, не пропали зря — надо знать, как правильно пользоваться тестером. Для начала рассмотрим типовое устройство, и его базовые функции.
Что может простой мультиметр, и как им правильно пользоваться
Чтобы заставить его работать, требуется питание. Обычная 1.5 вольтовая батарейка не подходит, нужен вольтаж побольше. В моделях с крупным корпусом могут применяться элементы питания типа «Крона»: 6F22, 1606 и прочие, с напряжением 9 вольт. Компактные модели укомплектованы батареей типа А23, с напряжением 12 вольт. При критическом разряде, прибор подаст сигнал о невозможности проводить измерения, останется лишь режим прозвонки. Дело в том, что цифровые приборы при измерениях используют электронную схему, которой необходимо определенное напряжение для работы.
Стрелочные приборы для измерения силы тока или напряжения могут работать автономно.
Но даже стрелочным тестерам, для замера сопротивления резистора, или проверки исправности диода, требуется питание.
Итак, элемент питания установлен, тестер готов к работе. Мы рассмотрим популярную цифровую модель, стрелочные мультиметры в быту уже почти не встречаются.
Перед началом работ (или, правильнее сказать, приобретением прибора), надо понять: для чего он вам нужен. Каковы должны быть пределы измерения, класс точности, дополнительные функции. Например, для бытового использования нет необходимости брать токовые клещи с пределом измерения в сотни ампер. Такие функции, как измерение температуры, силы звука и света, влажности — безусловно, полезны. Но дополнительные датчики увеличивают стоимость прибора, а пользоваться ими вы будете крайне редко.
Для удобства пользователя, многие производители добавляют подсветку экрана, подставки, чехлы для хранения.
Это позволяет работать с прибором более комфортно, просто вы оплачиваете каждую опцию.
На самом деле, для большинства задач достаточно следующих функций:
- Измерение величины переменного и постоянного напряжения в диапазоне до 500 вольт.
- Замер сопротивления и прозвонка линии со звуковым индикатором.
- Измерение силы тока до 2 ампер.
Дополнительные опции, которые почти всегда есть даже в недорогих моделях:
- Проверка транзисторов.
- Проверка конденсаторов, иногда с возможностью измерения емкости.
- Проверка исправности и направления проводимости диодов.
- Проверка светодиодов.
Измерение производится довольно просто: рукоять управления устанавливается в требуемый режим.
Предел измерений выбирается максимально близкий к предполагаемому значению, но не меньше. Например, если вы проверяете напряжение на 12 вольтовом аккумуляторе, предел измерений устанавливается 15 вольт (в зависимости от модели). Затем следует надежно закрепить измерительные кабели в гнездах, и соединить щупы с точками замера.
Меры безопасности при работе с тестером
- Перед началом работ прочитайте в инструкции раздел «безопасность».
- Убедитесь в целостности корпуса, а также в том, что соединительные винты полностью закручены. Во многих приборах для замены элемента питания требуются разобрать корпус. Многие пользователи затем просто защелкивают половинки, забывая зафиксировать винты.
- Проверьте надежность соединения измерительных кабелей в разъемах. Для этого достаточно с небольшим усилием потянуть провод, удерживая в руках изолятор.
- При работе с напряжением, большим, чем 60 вольт, не держите оба измерительных провода разными руками. Выполняя это простое требование, вы обезопасите себя от поражения электрическим током вдоль так называемые «линии смерти»: рука-сердце-рука.
Типовые измерения бытовым мультиметром
Измерение постоянного тока
Измерение постоянного тока безопасной величины. Например — проверка автомобильного аккумулятора. Установка режима: измерение постоянного напряжения. Предел измерения — 20 вольт (ближайший диапазон). Измерительные кабели включаются в соответствии с инструкцией.
Как проверить батарейки или аккумуляторы
Аналогичным способом проверяем пальчиковые батарейки или аккумуляторы. Предел измерения в нашем случае те же 20 вольт постоянного напряжения. Предполагаемое значение 1.4 вольта. Прижимаем контакты к аккумулятору (соблюдая полярность), снимаем показания.
Измерение опасного напряжения
Внимание! Работать с опасным напряжением могут только лица, имеющие соответствующие группы допуска!
Измерение опасного напряжения: например, в розеточной сети. Для начала проверяем измерительные кабели. Изолирующие рукояти должны быть целыми, провода надежно удерживаться. На измерительном кабеле отформованы ограничительные кольца, чтобы пальцы не соскользнули в опасную зону во время прижимания к измеряемым контактам.
Выставляем режим измерения переменного тока, предел измерения — 500 (или 750) вольт (измеряемое напряжение 220 вольт). Надежно фиксируем кабели в приборе, подключаемся к розетке, манипулируя одной рукой.
Чтобы измерить напряжение в сети, достаточно нескольких секунд. Не следует надолго оставлять подключенный к розетке прибор.
Прозвонка цепи
Разобравшись, как пользоваться тестером напряжения, переходим к самой простой операции: прозвонка цепи.
Внимание! Допустимо выполнять прозвонку только полностью обесточенных участков цепи.
Производится при наличии такого режима на приборе.
Перед началом прозвонки, соединяем щупы между собой и проверяем работоспособность прибора (устойчивый звуковой сигнал). Если концы проверяемой проводки разнесены далеко друг от друга, воспользуйтесь удлинителем.
Важно! Чтобы вы могли безопасно работать на сетевой электропроводке в режиме прозвонки, следует физически отсоединить проверяемую линию в ближайшей распределительной коробке.
Проверка радиокомпонентов
Разумеется, детали следует проверять после извлечения их из монтажной платы. В крайнем случае, достаточно отсоединить один контакт.
Проверка диода или резистора. Выставляем соответствующий режим на переключателе. Если вы не знаете приблизительный номинал, начинаем измерения с большего предела. Переключая диапазон измерений, вы рано или поздно найдете нужный номинал.
Светодиоды проверяются в режиме прозвонки. Даже если вы увидите, что диод исправно проводит ток в одну сторону (в режиме проверки обычных диодов), но при этом не светится, измерения не имеют значения.
В режиме прозвонки, силы тока будет достаточно для зажигания кристалла. Перепутав полярность, вы не испортите деталь. Просто диод не засветится.
Это надо знать: Даже тестеры эконом класса имеют определенную защиту от перегрузки и предохранитель на входных контактах.
Но это не означает, что вы можете путать режимы, и подключаться к высокому напряжению с установленным низким порогом измерения.
Как проверить заземление
Измерение заземления также можно произвести с помощью бытового тестера.
- Прежде всего убедимся, что у вас в доме выполнена разводка «земли». Для этого открываем корпус любой розетки, и проводим визуальный осмотр. Если на «земляной» контакт ничего не заведено, или есть перемычка (это опасно!) между нулевым и «земляным» выводом, собственно и проверять нечего. При наличии на контакте «земли»: типового желто — зеленого провода, вы можете проверить, подключено «естественное заземление», либо у вас объединены нулевая и земляная шины.
- Определяем фазу. Для этого существует индикаторная отвертка.
- Затем, предварительно проверив провода, и выставив правильный режим, замеряем напряжение между фазой и нулевым контактом. Записываем результат и проводим измерение между фазой и проверяемым заземлением.
- Если результат п.3 одинаковый — значит у вас фальшивая «земля», провод объединен с нулевой шиной. Это крайне опасно, лучше вообще отсоединить такой провод и закрыть изолирующим колпачком.
- Если результат п.3 отличается на несколько вольт — проверьте несколько раз с минимально возможным интервалом измерения. При устойчивом отличии значения вы можете быть уверены в безопасности вашей электросети. У вас естественное заземление.
Как проверить заземление без индикаторной отвертки
Для этого необходимо с помощью тестера проверить напряжение между всеми парами контактов. Разумеется, в этом есть смысл при наличии подключенного провода к заземляющему контакту розетки.
Напряжение, близкое к значению 220 вольт будет только между парами: фаза-ноль, и фаза-«земля». Понятное дело, что фаза не может быть заведена на заземляющие контакты розетки, стало быть, она в одном из рабочих отверстий.
Как пользоваться тестером для проверки естественного заземления (при известном фазном контакте), вы уже знаете.
Подробнее об измерении силы тока
В принципе, все, кто учил в школе физику, знает, как измерить силу тока на участке цепи. Необходимо пропустить ток через прибор: то есть, включить его в разрыв цепи. В лабораторных условиях это просто, там выверенные параметры и прибор с запасом прочности. А как, к примеру, проверить утечку тока на автомобильном аккумуляторе?
Для такой работы подойдет не каждый тестер. Предел измерения силы тока, как минимум, должен превышать мощность ламп головного света. Например, у вас в фарах галогенки по 55 Вт. Суммарная мощность 110 Вт, делим на напряжение 12 вольт, получаем значение около 10 ампер. Значит, на бытовом тестере должен быть режим измерения постоянного тока с пределом в 20 ампер.
Далее — стандартное включение (как в школьной лаборатории):
- Отключаем минусовой провод (массу) от аккумулятора.
- Надежно соединяем минусовой измерительный кабель тестера, с минусовой клеммой АКБ.
- Плюсовой измерительный кабель прибора соединяем с минусовым проводом автомобиля.
Видим ток утечки при отключенных потребителях. Если он измеряется амперами, поочередно извлекаем предохранители, и находим узел, который дает паразитную нагрузку.
Нулевого тока быть не должно: под постоянным питанием находится бортовой компьютер, магнитола, сигнализация (при наличии). Но это десятки миллиампер. Если значение на порядок выше — тестер поможет найти проблемный участок.
Как правильно выбрать мутьтиметр
Однозначная рекомендация для тех, кто не увлекается радиоэлектроникой — базовый цифровой тестер серии 830, 832 или 182. Его цена — несколько сотен рублей. Единственный недостаток такого прибора — малый диапазон измерения силы тока. Тем не менее, для бытовых измерений его хватит с запасом.
Если вы самостоятельно обслуживаете автомобиль — следует выбрать модель в крепком прорезиненном корпусе, с пределом измерений по току не ниже 10 ампер.
Такой прибор будет стоить порядка 1000 руб., но запас прочности у него выше.
Приобретение стрелочных тестеров сегодня не имеет смысла. Разве что для специфических задач, когда необходимо следить за некими импульсами в реальном времени.
Видео по теме
Источник