Как найти степень числа физика

Подскажите как посчитать степени чисел задачи в физике ? как это работает?



Ученик

(226),
закрыт



5 месяцев назад

Dmitriy Hoke

Ученик

(229)


12 месяцев назад

Здравствуйте. Начнём с основы вашего вопроса – степеней числа “10”. По свойству степеней сначала считаем показатель степени в числителе, т.е -34+8=-26, затем находим “итоговый” показатель: -26/(-9)=-26+9=-17. Перейдём к числам. Первый множитель до представления в стандартном виде получается путём нескольких операций: 6,62*3 и деление этого произведения на 530, получается 0,03747 ≈ 0,0375. Т.к. ответ представлен в стандартном виде, т.е первый множитель должен быть представлен в виде числа, находящемся в промежутке от 1 до 10, Под ваши данные подходит число 3,75, которое можно получить путём переноса запятой на два знака влево, т.е умножением на 10 во второй степени. Путём сложения показателей степеней мы получаем -19. Стандартный вид в данном случае: 3,75 * 10 в -19 степени.
Надеюсь я помог вам.

Физические величины при измерениях и вычислениях обычно выражают числами. Они могут значительно отличаться друг от друга и выражаться как чрезвычайно малыми, так и гигантскими числами. Например, размеры различных тел лежат в пределах от микроскопических до космических масштабов и различаются в (1000000000000000000000000000000…) раз (всего надо написать (60) нулей).

Как же записать очень малое или очень большое число, чтобы сэкономить бумагу, чтобы легко было оперировать этими числами — складывать, вычитать, умножать, делить, да и вообще быстро прочитать и понять записанное?

Наиболее удобный способ записи малых и больших чисел заключается в использовании множителя (10) в некоторой степени.

Пример:

например, число

2000

 можно записать как

2⋅1000

, или

2⋅103

. Степень (10) (в данном случае «(3)») показывает, сколько нулей нужно приписать справа за первым множителем (в нашем примере — «(2)»).

Это называют записью числа в стандартной форме.

Если число содержит более чем одну значащую цифру, например

21500

, то его можно записать как

2150⋅101

, или

215⋅102

, или

21,5⋅103

, или

2,15⋅104

, или

0,215⋅105

, или

0,0215⋅106

, и так далее.

Обрати внимание!

Надо запомнить: в стандартной форме числа до запятой всегда оставляют только одну цифру, отличную от нуля, а остальные цифры записывают после запятой.
Итак, в стандартной форме число

21500=2,15⋅104

.

Когда надо будет «разворачивать» (то есть записывать в обычном виде) число, представленное в стандартной форме, например

3,71⋅105

, то начинай отсчитывать цифры в количестве пяти (таков в нашем примере показатель степени десяти) сразу после запятой, включая и значащие цифры «(71)», а недостающие цифры замени нулями:

3,71⋅105=371000

.

С большими числами мы разобрались, перейдём теперь к малым.

Пример:

число

0,0375

тоже можно записать в стандартной форме так:

3,75⋅10−2

. Первый множитель — первая значащая цифра, затем запятая и остальные цифры (в нашем примере это «(3)», «запятая», «(75)»). Показатель степени равен позиции после запятой, на которой стоит первая отличная от нуля цифра (в нашем примере это вторая позиция, поскольку именно там стоит первая ненулевая цифра «(3)»).

Перед показателем ставится знак «минус», и это означает, что при «разворачивании» числа нули нужно будет ставить не справа, а слева.

Размеры некоторых малых тел

Острие булавки

(0,0001) м

1⋅10−4 м

Инфузория-туфелька

(0,0002) м

2⋅10−4м

Бактерия пневмонии

(0,0000001) м

1⋅10−7м

Клетка крови

(0,00000075) м

7,5⋅10−7м

Молекула белка

(0,00000001) м

1⋅10−8м

Атом водорода

(0,0000000002) м

2⋅10−10м

Размеры некоторых больших тел

Диаметр Земли

(12800000) м

1,28⋅107 м

Расстояние от Земли до Луны

(384000000) м

3,84⋅108м

Диаметр Солнца

(1390000000) м

1,39⋅109м

Расстояние от Земли до Солнца

(150000000000) м

1,5⋅1011м

(1) световой год

(9500000000000000) м

9,5⋅1015м

(1) парсек

(30800000000000000)м

3,08⋅1016м

kratkij-kurs-fiziki

Краткий Курс школьной физики

СУПЕР АКЦИЯ!!!

Итак, для того, чтобы понять, что такое степень числа, как используется степень в физике  и зачем ее вообще придумали, давайте пофантазируем. Для начала допустим, что нам нужно число, например, десять умножить на себя три раза.

stepen-chisla-desiat

Вроде бы, все просто и понятно. Зачем здесь степень? Но не спеши с выводами. Теперь, давайте представим, что нам нужно то же число умножить на себя, скажем, сто раз. Вы готовы записать такое без степени? Мы — нет!

smiley, scared, surprised-1958283.jpg

Что ж, теперь вспомните, что запись десять в третьей степени значит, что число десять нужно умножить на себя три раза. 

Представим степень в виде числа

vozvesti-desiat-v-stepen

А теперь, рассмотрим на примерах основные свойства степеней.

При умножении степеней с одинаковыми основаниями показатели складываются, а при делении вычитаются. 

stepen-umnozit-na-stepen

stepen-razdelit-na-stepen

А для того, чтобы степень возвести в степень, нужно перемножить показатели степеней.

stepen-v-stepeni

Для того, чтобы разобраться в этой теме более подробно, предлагаем посмотреть наш курс!

КУрс “Перевод единиц измерения”

В школе вам такое вряд ли расскажут…

sila-stepeney-1

Чтобы спокойно и качественно изучать физику и химию, надо владеть действиями со степенями числа 10 – уверенно и во всех вариациях.

При решении задачек по физике (даже самых начальных и самых простых) любое число удобно представлять в стандартном виде. То есть в виде “число от 1 до 10 умножить на 10 в какой-то степени”. Причем степень числа 10 может быть и положительной, и отрицательной.

Необходимо уметь действовать с числами, записанными таким образом.

sila-stepeney-2

Поэтому к началу изучения физики в 7 классе очень желательно, чтобы ученик полностью освоил все навыки, касающиеся степеней числа 10.

Однако базовая школьная программа по математике не полностью это обеспечивает, к сожалению.

Мой опыт преподавания физики показывает, что весьма целесообразно некоторые недостающие моменты (например, отрицательные степени числа 10 и действия с ними) изучить пораньше. Да и все прочие нюансы данной темы хорошо бы повторить и доработать, если они слегка подзабылись.

Важно видеть цель: мы должны дать ученику в руки надежный математический инструмент для расчетов по сложным физическим и химическим формулам. Это именно математический аппарат. Но нужен он в основном как раз в физике и в химии.

В данной статье я кратко перечислю то, что хорошо бы знать про степени числа 10 к самому началу изучения физики.

Разумеется, моя цель – лишь показать общую схему. Если вам понадобится более подробная информация, то ее легко найти в любых школьных учебниках.

sila-stepeney-3

Попадая в стихию физики (а затем и химии), школьники вынуждены оперировать с числами в огромном диапазоне величин: от крошечных размеров атомов до межзвездных расстояний, от массы электрона до массы Юпитера или Солнца… Это очень отличается от привычных масштабов, на которых обычно в основном строится изучение математики.

И вот тут-то и пригождаются положительные и отрицательные степени числа 10. В науке о природе без них просто никак.

Запись чисел в стандартном виде – великолепное изобретение человечества! Но оно, разумеется, используется преимущественно в науке и в технике, а не в обычной нашей жизни. Поэтому надо специально приучить школьника к такому стилю математических вычислений. К нему необходимо привыкнуть.

sila-stepeney-4

Для начала как следует разберитесь с положительными степенями числа 10. Это проще и понятнее. Это уже знакомо с начальных классов. Какова положительная степень числа 10 – столько ноликов и приписываем к единичке. Умножение и деление таких чисел не вызывает труда.

Существуют простые правила действий со степенями. Я их нарисовал здесь на картинке конкретно для случая, когда основание степени – число 10. Разумеется, для любого другого основания степени правила будут точно те же самые. Но в физике нас интересует обычно именно 10.

sila-stepeney-5

Когда мы сталкиваемся с физическими расчетами, где числа записаны с использованием степеней числа 10, то можно использовать все правила действий со степенями и правило сокращения дробей.

Фактически, обычно удобнее отдельно разбираться со степенями числа 10, а отдельно – со всеми другими числами в выражении. И лишь в конце соединить это в один ответ.

Вот я захотел вычислить плотность объекта. Исходно мне известны его масса и объем. Посмотрите, как просто получилось посчитать по формуле!

sila-stepeney-6

Теперь добавим и отрицательные степени числа 10.

Надо хорошо понять определение: что такое отрицательная степень.

Посмотрите на картинку ниже.

Я проиллюстрировал там общий принцип: число в отрицательной степени – это единица делить на то же самое число в такой же степени, но только показатель степени уже без знака “минус”.

Так просто договорились – что такое отрицательная степень. И это потрясающе удобно!

Конечно, само понятие отрицательной степени поначалу может вызвать некоторое недоумение… Возможно, потребуется поразмышлять и посмотреть, как такая штука работает – на самых простых примерах…

sila-stepeney-7

Возвращаемся к формулам по физике.

Теперь будем использовать и отрицательные степени числа 10.

Все правила действий со степенями остались те же самые. Мы так же складываем или вычитаем показатели степени при умножении или делении. И все остальные правила сохраняются.

Требуется некоторая практика, конечно. Но если понимать принцип, то сложностей особых нет.

Складывая положительные и отрицательные показатели степени, мы действуем точно так же, как и при сложении положительных и отрицательных чисел.

Поглядите, как легко вычисляется масса объекта, если известны его плотность и объем.

sila-stepeney-8

Особенная практическая фишка: “перебрасывать” 10 в какой-то степени через дробную черту – снизу вверх или сверху вниз.

Посмотрите на картинке, как 10 в отрицательной степени “перебирается” из-под дробной черты вверх. И после этого считать делается уже совсем просто.

Важно уловить принцип: при таком “перебросе” через дробную черту знак показателя степени у числа 10 меняется на противоположный. Для практических расчетов по формулам очень удобный прием!

sila-stepeney-9

Кстати об удобстве расчетов… Не всегда имеет смысл переводить числа именно в стандартный вид. Иногда проще использовать более свободное сочетание степеней числа 10 и обычных чисел.

Важно приучиться действовать именно так, как наиболее индивидуально удобно, как меньше шансов запутаться и ошибиться.

В физике и в химии вообще главное – получить правильный ответ. А как конкретно мы вычисляли – это наше дело.

sila-stepeney-10

Здесь еще надо уверенно владеть навыком переноса десятичной запятой.

Казалось бы, такая простая штука…

Скажем, расстояние в 6300 метров мы хотим записать в километрах почему-то. Ясно, что это будет 6,3 км. А наоборот? Снова получим 6300 м.

Или, к примеру, напряжение 0,00065 В – это сколько будет в милливольтах? Надо перенести запятую на три знака вправо. Получится 0,65 мВ.

Такие переходы используются в физике на каждом шагу. И у школьника не должно быть ну абсолютно никаких проблем с тем, чтобы перемещать запятую вправо или влево на нужное количество знаков.

sila-stepeney-11

Само собой, когда мы встречаем числа типа 0,0001 или 10000000, то их сразу же удобнее представить в виде степеней числа 10. И далее во всех расчетах действовать по стандартной процедуре со степенями.

Все эти мучительные размышления, куда и на сколько знаков надо перенести запятую при умножении или делении на 0,0000001… Они нам теперь не нужны! Мы умеем представлять все степени числа 10 именно в виде степеней, а не десятичных дробей. Почти всегда это значительно удобнее!

sila-stepeney-12

Отдельный вопрос состоит в том, когда надо вообще начинать говорить с детьми о степенях числа 10…

Мне кажется, что уже в начальной школе сие вполне уместно.

Ведь, по сути, это просто еще один способ записи чисел. Особенно легко его понять для положительных степеней числа 10. Скажем, умножить миллиметр на миллион! Сколько это будет?

С другой стороны, можно попробовать разделить километр на миллион равных частей… Почему бы не представить такую процедуру? Так что и отрицательные степени числа 10 тоже легко вводить на самом элементарном уровне.

Мой личный опыт преподавания показывает, что маленькие дети с удовольствием разбираются с большими числами. Это даже интереснее, чем возиться со сложением и вычитанием в пределах 100. Представляете: целый миллиард разделить пополам! И узнать, сколько это будет!

sila-stepeney-13

Но самое главное – к началу изучения физики в 7 классе разобраться со всеми нюансами данной темы!

Тогда изучение физики и химии будет значительно более удобным.

Хотя бы вот даже взять перевод единиц измерения физических величин друг в друга… Насколько проще это делать, используя степени числа 10!

Немного практики – и ученик получает ключ ко всему диапазону масштабов: от ангстремов и нанометров до световых лет и парсеков, от постоянной Планка до числа Авогадро…

Посмотрите, например, как изящно происходит для льда переход от одних единиц плотности к другим.

sila-stepeney-14

Итак, овладение почти магической математической силой степеней числа 10 – это надежное подспорье для изучения физики и химии. Данный навык пригодится с 7 класса и до 11 класса включительно.

Удобно, что вся эта тема – проста по сути. Ее легко понимать и осваивать. Важно лишь довести знания до устойчивого системного уровня. Чтобы применять при необходимости, не задумываясь особо и не путаясь по мелочам. Как таблицу умножения и действия столбиком.

И просто по жизни весьма полезно ориентироваться в данном вопросе. Сила степеней числа 10 – один из краеугольных камней нашей интеллектуальной культуры.

sila-stepeney-15

Содержание книги

Предыдующая страница

§1. Описание положения тела в пространстве

1.6 Число степеней свободы тела

Теперь, после того как мы изучили несколько моделей тел, можно окончательно и корректно сформулировать ответ на вопрос: «Что означает задать, определить положение тела?» – Указать численной значение координат некоторых точек тела так, чтобы положение всего тела (любой его части) было определено однозначно.

Число независимых координат, которые однозначно определяют положение тела или системы тел в пространстве называется числом степеней свободы.

Число степеней свободы очень важная характеристика описываемой системы, хотя бы потому, что определяет число независимых уравнений, описывающих движение системы.

Подсчитаем число степеней свободы некоторых простых систем.

Материальная точка, по определению, не имеет размеров, поэтому ее положение в пространстве определяется однозначно тремя координатами. Следовательно, число степеней свободы свободно материальной точки равно трем. Если на движение материальной точки накладываются дополнительные условия, то число ее степеней свободы может уменьшиться. Так если точка движется по заданной поверхности, то ее положение определяется двумя независимыми координатами, следовательно, число степеней свободы равно двум; при движении по заданной линии число степеней свободы уменьшается до одной. Подчеркнем, это не значит, что при движении по заданной линии может изменяться только одна и – могут изменяться все три, но положение точки на заданной линии определяется одной координатой, и если она известна, то могут быть определены и две других. Тем не менее, описание положения точки на заданной линии с помощью одной координаты оказывается не всегда удобным. Ценность рассмотренных нами декартовых координат в том, что они позволяют установить физические законы, описывающее движение вдоль всех прямых (все прямые одинаковы!). В то же время, для описания изменения координат на произвольной линии пришлось бы записывать свои законы для каждой линии – окружности, параболы, синусоиды и т.д. Поэтому часто одномерное движение вдоль известной линии описывают с помощью двух или трех координат. Однако и в этом случае число степеней свободы остается равным единице.

Если механическая система может быть промоделирована как N материальных точек, движущихся в пространстве, то, очевидно, полное число ее степеней свободы равняется 3N. Но если на движение этих материальных точек накладываются дополнительные ограничения, то число степеней свободы уменьшается.

Рассмотрим, как можно описать положение в пространстве двух материальных точек жестко связанных между собой (что-то похожее на гантели). Две точки имеют шесть степеней свободы, которые могут быть описаны шестью координатами – x1, y1, z1, x2, y2, z2, но так как расстояние между точками неизменно, то на эти координаты накладывается условие

(~(x_1 – x_2)^2 + (y_1 – y_2)^2 + (z_1 – z_2)^2 = l^2) ,

где l – расстояние между точками, поэтому число независимых координат, или число степеней свободы равно пяти.

Таким образом, число степеней свободы системы, состоящей из N материальных точек равно 3N минус число дополнительных условий (связей), накладываемых на движение этих точек.

Число степеней свободы может быть подсчитано и другим способом. Обратим внимание, что точное определение координат уменьшает «подвижность» точки (или системы точек). Так, например, если для материальной точки задана координата z, то точка может двигаться только в плоскости перпендикулярной оси Z, задание еще одно координаты (скажем y), приводит к тому, что точка может двигаться только вдоль прямой параллельной оси X. Поэтому число степеней свободы можно находить, подсчитывая, сколько независимых координат необходимо определить, чтобы жестко «закрепить» тело. С помощью такого подхода найдем число степеней свободы системы, состоящей из двух жестко связанных точек. Задавая три координаты одной точки, мы ее как бы закрепляем, тогда вторая точка сможет двигаться так, что бы ее расстояние до первой оставалось неизменным, то есть по поверхности сферы радиуса l. Понятно, что если определено положение двух точек твердого тонкого стержня, то задано и положение всего стержня, поэтому тонкий стержень имеет пять степеней свободы.

Посчитаем число степеней свободы свободно движущегося абсолютно твердого тела. Выберем внутри тела три произвольных точки A, B, C, не лежащих на одной прямой. (рис 5). Положение одной точки A, определяется тремя координатами, если задано положение точки A, то положение точки B может быть описано двумя координатами. Наконец, при «закрепленных» точках A и B, тело может только вращаться вокруг оси, проходящей через эти точки. Следовательно, точка C имеет одну степень свободы. Таким образом, абсолютно твердое тело имеет шесть степеней свободы.

Как мы уже отмечали, для описания положения точки можно использовать разные системы координат, аналогично, положение твердого тела также может быть описано различными способами, только число независимых координат во всех способах описания будет одним и тем же равным числу степеней свободы. Так во многих случаях, положение твердого тела, описывают, задавая три декартовые координаты одной из его точек (чаще центра), и три угла, определяющие его ориентацию.

Следующая страница

Добавить комментарий