Как найти степень диссоциации муравьиной кислоты

1) Пусть имеется 1 л раствора. Вычисляем количество вещества муравьиной кислоты и
суммарное количество вещества всех частиц в растворе:
n(частиц) = С(частиц) · V(раствора) = 0,11 · 1 = 0,11 моль.
m(раствора) = V(раствора) · r(раствора) = 1000 г.
m(НСООН) = m(раствора) · w(НСООН) = 1000 · 0,0046 = 4,6 г.
n(НСООН) = m(НСООН) / М(НСООН) = 4,6 / 46 = 0,1 моль.
2) Пусть продиссоциировало х моль НСООН, тогда непродиссоциировавшими оста-
лось 0,1 – х моль кислоты и образовалось х моль ионов НСОО – и х моль ионов Н +:
НСООН ->  НСОО – + Н + + (НСООН)
Продиссоциировало: х стало х х 0,1 – х
Общее количество вещества частиц в растворе = х + х + 0,1 – х = 0,1 + х
0,1 + х = 0,11; х = 0,11 – 0,1 = 0,01.
3) Определяем степень диссоциации:
a = n(продиссоциировавших молекул) / n(исходных молекул) = х / 0,1 = 0,01 / 0,1 = 0,1 (10 %)
Ответ: a(НСООН) = 10 %

Как правильно рассчитать константу диссоциации слабого электролита

Задача 94. 
Концентрация ионов Н+ в 0,1 М растворе СН3СООН равна  1,3 · 10–3 моль/дм3. Вычислите константу и степень диссоциации кислоты. 
Решение:
СМ(СН3СООН) = 0,1 моль/дм3;
[H+] = 1,3 · 10–3 моль/дм3;
KD(CH3COOH) = ?
α = ?

1. Вычисление степень диссоциации уксусной кислоты

Для расчета будем использовать формулу: [H+] = СМ · α

Тогда

α = [H+]/CM(CH3COOH) = (1,3 · 10–3)/0,1 = 1,3 · 10–2 или 1,3%.

2. Вычисление константы диссоциации уксусной кислоты

В случае слабых электролитов константа диссоциации определяется по формуле:

KD = (αCM · αCM)/CM(1 – α) = α2CM/(1 – α).

Тогда

KD(СН3СООН) = [(α)2 · СМ(СН3СООН)]/(1 – α) = [(1,3 · 10–2)2 · 0,1]/(1 – 1,3 · 10–2) =
= 0,0000169/0,987 = 0,0000171 = 1,71 · 10–5

Ответ: KD(СН3СООН) = 1,71 · 10–5; альфа = 1,3%. 
 


Задача 95. 
Вычислите константу диссоциации НСООН, если в растворе  w% = 0,46% и она диссоциирована на 4,2%. 
Решение:
М(НСООН) = 46 г/моль;
w% = 0,46%;
α = 4,2% или 0,042
KD(НСООН) = ?

1. Вычисление концентрацию муравьиной кислоты

Концентрацию кислоты находим из вычисления:

СМ(НСООН) = [(w% · 1000г)/100%]/M(НСООН); СМ(НСООН) = [(0,46% · 1000г)/100%]/46 г/моль = 0,1 моль/дм3.

2. Вычисление константы диссоциации НСООН

В случае слабых электролитов константа диссоциации определяется по формуле:

KD = (αCM · αCM)/CM(1 – α) = α2CM/(1 – α).

Тогда

KD(НСООН) = [(0,042)2 · 0,1]/(1 – 0,042) = 0,0001764/0,958 = 0,000184 или 1,84 · 10–4.

Ответ: KD(НСООН) = 1,84 · 10–4
 


Задача 96. 
Вычислите константу диссоциации диметиламина, если в 0,2 М растворе он диссоциирован на 7,42%. 
Решение:
M[(CH3)2NH] = 45,08 г/моль;
CM[(CH3)2NH] = 0,2 М;
α = 7,42% или 0,0742.

1. Вычисление константы диссоциации (CH3)2NH

В случае слабых электролитов константа диссоциации определяется по формуле:

KD = (αCM · αCM)/CM(1 – α) = α2CM/(1 – α).

Тогда

KD[(CH3)2NH] = [(0,0742)2 · 0,2]/(1 – 0,0742) = 0,0011/0,9258 = 0,0012 или 1,20 · 10–3.


Ответ: KD[(CH3)2NH] = 1,20 · 10–3

 


Задача 97. 
Концентрация ионов Н+ в 0,2 М растворе C2H5COOH равна  1,2 · 10–2 моль/дм3. Вычислите константу и степень диссоциации кислоты. 
Решение:
СМ(C2H5COOH) = 0,2 моль/дм3;
[H+] = 1,2 · 10–2 моль/дм3;
KD(C2H5COOH) = ?
α = ?

1. Вычисление степень диссоциации этановой кислоты

Для расчета будем использовать формулу: [H+] = СМ · α

Тогда

α = [H+]/CM(C2H5COOH) = (1,2 · 10–2)/0,2 = 6,0 · 10–2 или 6%.

2. Вычисление константы диссоциации этановой кислоты

В случае слабых электролитов константа диссоциации определяется по формуле:

KD = (αCM · αCM)/CM(1 – α) = α2CM/(1 – α).

Тогда

KD(C2H5COOH) = [(α)2 · СМ(СН3СООН)]/(1 – α) = [(6,0 · 10–2)2 · 0,2]/(1 – 6,0 · 10–2) = 0,00072/0,94 = 0,0000171 = 7,7 · 10-4

Ответ: KD(C2H5COOH) = 7,7 · 10-4; α = 0,06%. 


Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.

Степень диссоциации

Классификация электролитов

Диссоциация электролитов

Константа диссоциации

Примеры решения задач

Задачи для самостоятельного решения

Степень диссоциации

Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.

Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:

α = N′/N

Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.

Классификация электролитов

Согласно современным представлениям теории растворов все электролиты делятся на два класса: ассоциированные (слабые) и неассоциированные (сильные). Неассоциированные электролиты в разбавленных растворах практически полностью диссоциированы на ионы. Для этого класса электролитов a близко к единице (к 100 %). Неассоциированными электролитами являются, например, HCl, NaOH, K2SO4 в разбавленных водных растворах.

Ассоциированные электролиты подразделяются на три типа:

      1. Слабые электролиты существуют в растворах как в виде ионов, так и в виде недиссоциированных молекул. Примерами ассоциированных электролитов этой группы являются, в частности, Н2S, Н2SO3, СН3СOОН в водных растворах.
      2. Ионные ассоциатыобразуются в растворах путем ассоциации простых ионов за счет электростатического взаимодействия. Ионные ассоциаты возникают в концентрированных растворах хорошо растворимых электролитов. В результате в растворе находятся как простые ионы, так и ионные ассоциаты. Например, в концентрированном водном растворе КCl образуются простые ионы К+, Cl , а также возможно образование ионных пар (К+Cl ), ионных тройников (K2Cl+, KCl2 ) и ионных квадруполей (K2Cl2, KCl32- , K3Cl2+).
      3. Комплексные соединения(как ионные, так и молекулярные), внутренняя сфера которых ступенчато диссоциирует на ионные и (или) молекулярные частицы.
        Примеры комплексных ионов: [Cu(NH3)4]2+[Fe(CN)6]3+[Cr(H2O)3Cl2]+.

При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.

Таблица. Характеристика растворов KI в различных растворителях

Концентрация электролита, С, моль/л Температура

t,оС

Растворитель Тип электролита
0,01 25 Н2О Неассоциированный (сильный)
5 25 Н2О Ионный ассоциат
0,001 25 С6Н6 Ассоциированный (слабый)

Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α<<1.

Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.

Диссоциация электролитов

Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:

HCl → H+ + Cl 

Na2SO3 = 2Na+ + SO32- 

Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:

NaOH → Na+ + OH 

Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:

NaHSO3 → Na+ + HSO3— 

Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:

HSO3  → H+ + SO32- 

Аналогичным образом происходит диссоциация основных солей:

Mg(OH)Cl → MgOH+ + Cl 

Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:

MgOH+  → Mg2+ + OH 

Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:

KAl(SO4)2  → K+ + Al3+ + 2SO42- 

Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:

K3[Fe(CN)6]  → 3K+ + [Fe(CN)6]3- 

В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:

[Fe(CN)6]3-  → Fe3+ + 6CN 

Константа диссоциации

При растворении слабого электролита КА в растворе установится равновесие:

КА  ↔ К+ + А 

которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации:

Kд = [К+] · [А] /[КА]                             (2)

Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO2 ионов Н+ больше, чем в растворе синильной кислоты HCN, поскольку К(HNO2) = 4,6·10 4, а К(HCN) = 4,9·10 10.

Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α  и концентрацией электролита c уравнением Оствальда:

Кд = (αс)/(1-α)        (3)

Для практических расчетов при условии, что α<<1 используется приближенное уравнение:

Кд = αс                (4)

Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.

Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:

ΔGT0 = — RTlnKд                    (5)

Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.

Примеры решения задач

Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.

Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:

K3PO4 → 3К+ + РО43- 

Следовательно, концентрации ионов К+ и РО43- равны соответственно 0,075М и 0,025М.

Задача 2. Определите степень диссоциации αд и концентрацию ионов ОН (моль/л) в 0,03 М растворе NH3·H2О при 298 К, если при указанной температуре Кд(NH3·H2О) = 1,76× 10 5.

Решение. Уравнение диссоциации электролита:

NH3·H2О → NH4+ + OH

Концентрации ионов: [NH4+] = αС ; [OH] = αС , где С – исходная концентрация NH3·H2О моль/л. Следовательно:

Kд = αС · αС /(1 — αС)

Поскольку α << 1, то:

Кд α 2С

Константа диссоциации зависит от температуры и от природы растворителя, но не зависит от концентрации растворов NH3·H2О. Закон разбавления Оствальда выражает зависимость α слабого электролита от концентрации.

α = √(Кд / С) = √(1,76× 10 5 / 0,03) = 0,024 или 2,4 %

[OH] = αС, откуда [OH ] = 2,4·10— 2·0,03 = 7,2·10-4 моль/л.

Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.

Решение. Уравнение диссоциации кислоты:

CH3CОOH  → СН3СОО + Н+.

α = [Н+] / Сисх(CH3CОOH)

откуда [Н+] = 9,4·102·0,002 = 1,88·10-4 М.

Так как [CH3CОO] = [Н+] и [CH3CОOH] ≈ Сисх(CH3CОOH), то:

Kд = [Н+]2  / Сисх(CH3CОOH) 

Константу диссоциации можно также найти по формуле: Кд ≈ α 2С.

Задача 4. Константа диссоциации HNO2 при 298К равна 4,6× 10— 4. Найдите концентрацию азотистой кислоты, при которой степень диссоциации HNO2 равна 5 %.

Решение.

Кд =α 2С , откуда получаем Сисх(HNO2) = 4,6·10— 4/(5·10— 2)2 = 0,184 М.

Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.

Решение. Уравнение диссоциации муравьиной кислоты

НСООН →Н+ + СООН— 

В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н+ и СООН в водном растворе приведены ниже:

Вещество, ион НСООН Н+ СООН
ΔGT0, кДж/моль — 373,0 0 — 351,5

Изменение энергии Гиббса процесса диссоциации равно:

ΔGT0 = — 351,5- (- 373,0) = 21,5 кДж/моль.

Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:

lnKд = — Δ GT0/RT= — 21500/(8,31 298) = — 8,68

Откуда находим: Kд = 1,7× 10— 4.

Задачи для самостоятельного решения

1. К сильным электролитам в разбавленных водных растворах относятся:

  1. СН3СOOH
  2. Na3PO4
  3. NaCN
  4. NH3
  5. C2H5OH
  6. HNO2
  7. HNO3

13.2. К слабым электролитам в водных растворах относятся:

  1. KAl(SO4)2
  2. NaNO3
  3. HCN
  4. NH4Cl
  5. C2H5OH
  6. H2SO3
  7. H2SO4

3. Определите концентрацию ионов NH4+ в 0,03 М растворе (NH4)2Fe(SO4)2;

4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.

5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.

6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.

7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:

а) уменьшении концентрации HCOOH;

б) увеличении концентрации HCOOH;

в) добавлении в раствор муравьиной кислоты HCOONa;

г) добавлении в раствор муравьиной кислоты НCl.

8. Константа диссоциации хлорноватистой кислоты равна 5× 10— 8. Определите концентрацию HClO, при которой степень диссоциации HClO равна 0,5 %, и концентрацию ионов Н+ в этом растворе.

9. Вычислите объем воды, который необходимо добавить к 50 мл 0,02 М раствора NH3·H2О, чтобы степень диссоциации NH3·H2О увеличилась в 10 раз, если Кд(NH4OH) = 1,76·10— 5.

10. Определите степень диссоциации азотистой кислоты в 0,25 М растворе при 298 К, если при указанной температуре Кд(HNO2) = 4,6× 10— 4.

Вычислите степень диссоциации муравьиной кислоты в 0, 2 М растворе и рН этого раствора.

Вы перешли к вопросу Вычислите степень диссоциации муравьиной кислоты в 0, 2 М растворе и рН этого раствора?. Он относится к категории Химия,
для 10 – 11 классов. Здесь размещен ответ по заданным параметрам. Если этот
вариант ответа не полностью вас удовлетворяет, то с помощью автоматического
умного поиска можно найти другие вопросы по этой же теме, в категории
Химия. В случае если ответы на похожие вопросы не раскрывают в полном
объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части
сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете
ознакомиться с вариантами ответов пользователей.

Помогите решить задания по Химии.



Знаток

(307),
закрыт



8 лет назад

Geselle

Гений

(63461)


8 лет назад

1. Применяем закон разбавления Оствальда в упрощенной форме:
Кд = α^2*C => α = √(Кд/С) = √(0,0002/0,1) = 0,04 (округленно)
2. Решать здесь нечего. С гидролизом разберитесь (это же не школьное задание, писать уравнения гидролиза в школе учат).
Можно обсудить рН среды. Для гидросульфида натрия среда щелочная (несмотря на то, что она называется кислая соль) Это соль сильного основания и слабой кислоты, гидролиз по аниону
LiCl, если рассуждать по-школьному, соль сильного основания и сильной кислоты – гидролиза якобы не будет. Но сравнение констант диссоциации показывает, что у соляной кислоты эта величина около 10 миллионов, а у гидроксида лития – десятые доли. Гидроксид лития, пожалуй, наиболее слабое из сильных растворимых оснований. Полагаю, что здесь надо писать гидролиз по катиону и среда будет кислая.
Ацетат аммония гидролизуется нацело как соль слабого основания и слабой кислоты. Среда оказывается близкой к нейтральной, потому только, что «силы» уксусной кислоты и гидроксида аммония примерно равны.
3, рН = -lg[H+]
HBr – сильная кислота. Для нее [H+] = С (HBr) = 0,02 моль/л, рН = -lg0,02 = 1,7 (округленно)
Для слабой германиевой кислоты [H+] = α*С = √(Кд/С) *С = √(Кд*С),
рН = -lg√(Кд*С) = – lg√(7,9*10^-10*0,02) = 5,4
4. ПР = [Cu2+]*[OH-]^2
Растворимость (концентрация Cu(OH)2) будет равна концентрации ионов меди [Cu2+]Обозначим эту величину х. Т. е. х = [Cu2+], тогда [OH-] = 2х
и ПР= 4х^3. х = кубичный корень из ПР/4.
У меня получилось х = С= 3,8*10^-4 моль/л
Объяснять перевод молярной концентрации в массовые проценты я не буду – места здесь не хватит. Приведу формулу из справочника:
%масс. = С*М/10р, где р – плотность раствора, которую, конечно же, здесь надо принять 1 г/мл (как у воды). М – молярная масса гидроксида меди М = 98 г/моль. Получается 0,0037 % (Зачем нужен перевод в массовые проценты – непонятно).

Добавить комментарий