Как найти степень многочлена в скобках


Download Article


Download Article

Polynomial means “many terms,” and it can refer to a variety of expressions that can include constants, variables, and exponents. For example, x – 2 is a polynomial; so is 25. To find the degree of a polynomial, all you have to do is find the largest exponent in the polynomial.[1]
If you want to find the degree of a polynomial in a variety of situations, just follow these steps.

  1. Image titled Find the Degree of a Polynomial Step 1

    1

    Combine like terms. Combine all of the like terms in the expression so you can simplify it, if they are not combined already. Let’s say you’re working with the following expression: 3x2 – 3x4 – 5 + 2x + 2x2 – x. Just combine all of the x2, x, and constant terms of the expression to get 5x2 – 3x4 – 5 + x.[2]

  2. Image titled Find the Degree of a Polynomial Step 2

    2

    Drop all of the constants and coefficients. The constant terms are all of the terms that are not attached to a variable, such as 3 or 5. The coefficients are the terms that are attached to the variable. When you’re looking for the degree of a polynomial, you can either just actively ignore these terms or cross them off. For instance, the coefficient of the term 5x2 would be 5. The degree is independent of the coefficients, so you don’t need them.

    • Working with the equation 5x2 – 3x4 – 5 + x, you would drop the constants and coefficients to get x2 – x4 + x.

    Advertisement

  3. Image titled Find the Degree of a Polynomial Step 3

    3

    Put the terms in decreasing order of their exponents. This is also called putting the polynomial in standard form.[3]
    . The term with the highest exponent should be first, and the term with the lowest exponent should be last. This will help you see which term has the exponent with the largest value. In the previous example, you would be left with
    -x4 + x2 + x.

  4. Image titled Find the Degree of a Polynomial Step 4

    4

    Find the power of the largest term. The power is simply number in the exponent. In the example, -x4 + x2 + x, the power of the first term is 4. Since you’ve arranged the polynomial to put the largest exponent first, that will be where you will find the largest term.

  5. Image titled Find the Degree of a Polynomial Step 5

    5

    Identify this number as the degree of the polynomial. You can just write that the degree of the polynomial = 4, or you can write the answer in a more appropriate form: deg (3x2 – 3x4 – 5 + 2x + 2x2 – x) = 4. You’re all done.[4]

  6. Image titled Find the Degree of a Polynomial Step 6

    6

    Know that the degree of a constant is zero. If your polynomial is only a constant, such as 15 or 55, then the degree of that polynomial is really zero. You can think of the constant term as being attached to a variable to the degree of 0, which is really 1. For example, if you have the constant 15, you can think of it as 15x0, which is really 15 x 1, or 15. This proves that the degree of a constant is 0.

  7. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 7

    1

    Write the expression. Finding the degree of a polynomial with multiple variables is only a little bit trickier than finding the degree of a polynomial with one variable. Let’s say you’re working with the following expression:

    • x5y3z + 2xy3 + 4x2yz2
  2. Image titled Find the Degree of a Polynomial Step 8

    2

    Add the degree of variables in each term. Just add up the degrees of the variables in each of the terms; it does not matter that they are different variables. Remember that the degree of a variable without a written degree, such as x or y, is just one. Here’s how you do it for all three terms:[5]

    • deg(x5y3z) = 5 + 3 + 1 = 9
    • deg(2xy3) = 1 + 3 = 4
    • deg(4x2yz2) = 2 + 1 + 2 = 5
  3. Image titled Find the Degree of a Polynomial Step 9

    3

    Identify the largest degree of these terms. The largest degree of these three terms is 9, the value of the added degree values of the first term.[6]

  4. Image titled Find the Degree of a Polynomial Step 10

    4

    Identify this number as the degree of the polynomial. 9 is the degree of the entire polynomial. You can write the final answer like this: deg (x5y3z + 2xy3 + 4x2yz2) = 9.

  5. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 11

    1

    Write down the expression. Let’s say you’re working with the following expression: (x2 + 1)/(6x -2).[7]

  2. Image titled Find the Degree of a Polynomial Step 12

    2

    Eliminate all coefficients and constants. You won’t need the coefficients or constant terms to find the degree of a polynomial with fractions. So, eliminate the 1 from the numerator and the 6 and -2 from the denominator. You’re left with x2/x.

  3. Image titled Find the Degree of a Polynomial Step 13

    3

    Subtract the degree of the variable in the denominator from the degree of the variable in the numerator. The degree of the variable in the numerator is 2 and the degree of the variable in the denominator is 1. So, subtract 1 from 2. 2-1 = 1.

  4. Image titled Find the Degree of a Polynomial Step 14

    4

    Write the result as your answer. The degree of this rational expression is 1. You can write it like this: deg [(x2 + 1)/(6x -2)] = 1.

  5. Advertisement

Add New Question

  • Question

    What is the degree of a polynomial?

    Community Answer

    In the case of a polynomial with only one variable (such as 2x³ + 5x² – 4x +3, where x is the only variable),the degree is the same as the highest exponent appearing in the polynomial (in this case 3). In the case of a polynomial with more than one variable, the degree is found by looking at each monomial within the polynomial, adding together all the exponents within a monomial, and choosing the largest sum of exponents. That sum is the degree of the polynomial. For example, in the expression 2x²y³ + 4xy² – 3xy, the first monomial has an exponent total of 5 (2+3), which is the largest exponent total in the polynomial, so that’s the degree of the polynomial.

  • Question

    What is degree of 1/x^4 + x^2?

    Donagan

    1 / (x^4) is equivalent to x^(-4). So the highest (most positive) exponent in the polynomial is 2, meaning that 2 is the degree of the polynomial.

  • Question

    What about a polynomial with multiple variables that has one or more negative exponents in it?

    Donagan

    Combine the exponents found within a given monomial as you would if all the exponents were positive, but you would subtract the negative exponents.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This just shows the steps you would go through in your mind. You don’t have to do this on paper, though it might help the first time. If you do it on paper, however, you won’t make a mistake.

  • By convention, the degree of the zero polynomial is generally considered to be negative infinity.

  • For the third step, linear terms like x can be written as x1 and non-zero constant terms like 7 can be written as 7x0

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To find the degree of a polynomial with one variable, combine the like terms in the expression so you can simplify it. Next, drop all of the constants and coefficients from the expression. Then, put the terms in decreasing order of their exponents and find the power of the largest term. The power of the largest term is the degree of the polynomial. To find the degree of a polynomial with multiple variables, write out the expression, then add the degree of variables in each term. The power of the largest term is your answer! If you want to learn how to find the degree of a polynomial in a rational expression, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 873,134 times.

Did this article help you?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 ноября 2022 года; проверки требуют 2 правки.

Степенью многочлена одной комплексной переменной называется количество всех его корней с учётом их кратности. Из основной теоремы алгебры и из следствия теоремы Безу следует, что любой многочлен p(x) степени n возможно представить в виде a(x − x1)…(x − xn), где x1, …, xn — это все комплексные корни многочлена с учётом кратности, а константа a ≠ 0 — старший коэффициент многочлена. Раскрыв скобки в выражении a(x − x1)…(x − xn), можно получить эквивалентное определение: степень многочлена одной переменной — это максимальная из степеней всех его слагаемых-одночленов, тождественно не равных нулю.

Это определение имеет обобщение: полная степень многочлена с несколькими переменными — это максимальная из степеней всех его одночленов, тождественно не равных нулю, относительно всех переменных, участвующих в них, одновременно.

Многочленное уравнение d переменных, которое с помощью равносильных преобразований можно привести к виду p(x1,…,xd) = 0, где полином p(x1, …, xd) имеет степень n, называется (многочленным) уравнением степени n.

Степень полинома обозначается deg (англ. degree, фр. degré, от лат. gradus + de-).[1]

Названия определённых степеней[править | править код]

  • Степень многочлена, тождественно равного нулю, не определена, но в некоторых случаях её принимают равной −1 или −∞ (ниже).[2]
  • Степень константы, не равной нулю, — 0.
  • Степень линейного многочлена — 1. Уравнение, в котором линейная функция приравнивается нулю, — уравнение 1-й степени.
  • Степень квадратного многочлена — 2. Соответствующее уравнение — уравнение 2-й степени.
  • Степень кубического многочлена — 3. Ему соответствует уравнение 3-й степени.

В d-мерном евклидовом пространстве (d − 1)-мерная поверхность, являющаяся решением уравнения p(x1,…,xd) = 0 степени n с декартовыми координатами x1, …, xd, называется (d − 1)-мерной поверхностью n-го порядка. Термин порядок фактически означает степень уравнения. Отдельные названия гиперповерхностей:

  • квадрика — гиперповерхность второго порядка. В одномерном случае квадрика представляет собой конику — плоскую кривую, один из эквивалентных способов получить которую — пересечь прямой круговой конус плоскостью;
  • кубика — гиперповерхность третьего порядка. Примеры плоских кубик: кубика Чирнгауза, полукубическая парабола;
  • квартика — гиперповерхность 4-го порядка: например, квартика Люрота.

Примеры[править | править код]

  1. Многочлен x(x − 2) имеет вторую степень, так как он состоит из двух линейных сомножителей.
  2. У многочлена (2x − 1)(3x − 2) коэффициенты 2 и 3 можно вынести за скобки: 2 × 3(x12)(x23), — так что он имеет степень 2.
  3. У многочлена 16x5 + (−20)x3 + 5x + (−1) одночлен с наибольшей степенью — это 16x5, а значит, степень многочлена равна 5.
  4. Многочлены могут быть записаны в неканоническом виде: например, полином (x2 + 1)2 − (−x2 + 1)2 имеет степень 2, так как он представляет собой одночлен 4x2.
  5. Многочлен 2(2x − y)xy является третьей степени.
  6. Многочлен x2 + y имеет вторую степень, поскольку одночлен с наибольшей степенью равен x2, причём этот многочлен уже нельзя разложить на линейные множители от x и y.
  7. Степень многочлена xy + y + x равна 2.

Степень многочлена при операциях над ними[править | править код]

Умножение[править | править код]

При умножении ненулевого многочлена p(x) на ненулевую константу c степень не изменяется:

{displaystyle deg {big (}cp(x){big )}=deg p(x).}

Например, степень полинома 6(x12)(x23) = 6x2 − 5x + 2, как и (x12)(x23) = x2 + −56x + 13, равна 2. В более общем случае степень произведения полиномов p(x) и q(x) равна сумме степеней этих полиномов:[3][4]

{displaystyle deg {big (}p(x)q(x){big )}=deg p(x)+deg q(x).}

К примеру, степень многочлена (x2 + 1)(x3 − x − 1) = x5 − x2 − x − 1 равна 2 + 3 = 5.

Сложение, вычитание[править | править код]

Степень суммы ненулевых многочленов не может быть больше максимальной из их степеней:[5][6]

{displaystyle deg {big (}p(x)+q(x){big )}leqslant max {big (}{deg }~p(x),deg q(x){big )}.}

То же самое неравенство верно и для разности:

{displaystyle deg {big (}p(x)-q(x){big )}leqslant max {big (}{deg }~p(x),deg(-1cdot q(x)){big )}=max {big (}{deg }~p(x),deg q(x){big )}.}

При этом если степени многочленов-слагаемых различаются, то вышенаписанные соотношения обращаются в равенства. Например, многочлен (x2 + 1)2 имеет четвёртую степень, (x + 1)2 — вторую, а многочлены (x2 + 1)2 ± (x + 1)2 — 4-ю.

Композиция[править | править код]

Пусть p(x) и q(x) — ненулевые многочлены. Тогда:[7]

{displaystyle deg[qcirc p(x)]=deg[pcirc q(x)]=deg p(x)deg q(x).}

Например, если p(x) = x2 + 1, q(x) = x3 + 1, то степени многочленов p ∘ q(x) = x6 + 2x3 + 2 и q ∘ p(x) = x6 + 3x4 + 3x2 + 2 равны 2 × 3 = 6.

Степень многочлена нескольких переменных[править | править код]

Как и в случае с одной переменной, (полная) степень одночлена нескольких переменных — сумма всех показателей степеней всех переменных в одночлене. К примеру, полная степень одночлена x1y2x3 относительно x и y равна 1 + 2 + 3 = 6.

В свою очередь, (полная) степень многочлена нескольких переменных — это максимальная из степеней всех его одночленов. Пример: многочлен xy + y + x имеет степень 2, так как одночлен с наибольшей степенью — xy.

Помимо этого, степень многочлена нескольких переменных может также рассматриваться относительно одной из переменных. Например, полином x2 + y2 + xy + x + y имеет 2-ю степень относительно x и ту же степень относительно y. Причём относительно x этот полином раскладывается на комплексные линейные множители так:

{displaystyle x^{2}+y^{2}+xy+x+y=left(x-{tfrac {-y-1-{sqrt {(y+1)(-3y+1)}}}{2}}right)left(x-{tfrac {-y-1+{sqrt {(y+1)(-3y+1)}}}{2}}right),}

а относительно y:

{displaystyle x^{2}+y^{2}+xy+x+y=left(y-{tfrac {-x-1-{sqrt {(x+1)(-3x+1)}}}{2}}right)left(y-{tfrac {-x-1+{sqrt {(x+1)(-3x+1)}}}{2}}right).}

Иногда на степень полинома относительно конкретной переменной могут влиять другие переменные: например, полином (x2 + 1)y2 + (x + 1)y + 1 четвёртой степени является квадратным относительно y, только если x не равняется ±i, — в противном случае одночлен (x2 + 1)y2 обратится в нуль и многочлен станет линейным: его нельзя будет разложить на два линейных множителя (относительно y).

Степень нулевого многочлена[править | править код]

Степень многочлена, равного 0 при любом значении переменной(-ых), считается либо неопределённой[8], либо отрицательной — как правило, −1[9] или −∞.[2][10]

В случае, когда степень такого многочлена не определена, полагают, что нулевой многочлен, строго говоря, вообще не имеет никаких одночленов-слагаемых, которые тождественно не равнялись бы нулю. Соответственно, для нулевого многочлена совсем не вводятся никакие вышенаписанные свойства степеней при преобразовании многочленов.

При этом в случае, когда степень нулевого полинома принимают равной −∞, сохраняются все свойства, приведённые выше, исключая, быть может, композицию. Для любого вещественного числа n по определению выполняются следующие свойства (свойства аффинно расширенной числовой прямой):

Соответственно, сами степени многочленов «ведут себя» следующим образом: если p(x) — ненулевой многочлен степени n, то

Примечания[править | править код]

  1. Eric W. Weisstein. Polynomial Degree (англ.). mathworld.wolfram.com. Дата обращения: 28 мая 2021. Архивировано 3 июня 2021 года.
  2. 1 2 Eric W. Weisstein. Zero Polynomial (англ.). mathworld.wolfram.com. Дата обращения: 28 мая 2021. Архивировано 1 мая 2021 года.
  3. Serge Lang. Algebra. — 3. — New York: Springer-Verlag, 2002. — (Graduate Texts in Mathematics). — ISBN 978-0-387-95385-4.
  4. Серж Ленг. Алгебра. — Springer, 2005. — С. 100. — ISBN 978-0-387-95385-4.
  5. abstract algebra – The degree of a sum of two polynomials (proof question). Mathematics Stack Exchange. Дата обращения: 28 мая 2021.
  6. Degree of sum of polynomials – TheoremDep. sharmaeklavya2.github.io. Дата обращения: 28 мая 2021. Архивировано 20 января 2021 года.
  7. algebra precalculus – What’s polynomial composition useful for? Mathematics Stack Exchange. Дата обращения: 28 мая 2021.
  8. Шафаревич, Игорь Ростиславович. Лекции по алгебре. — С. 25. Архивная копия от 2 июня 2021 на Wayback Machine
  9. Чайлдс, Линдсей. Конкретное введение в высшую алгебру. — 1995. — С. 233. Архивная копия от 2 июня 2021 на Wayback Machine
  10. 1 2 Чайлдс, Линдсей. Конкретное введение в высшую алгебру.. — 2009. Архивная копия от 2 июня 2021 на Wayback Machine

Ссылки[править | править код]

  • https://mathworld.wolfram.com/PolynomialDegree.html
  • https://www.mathsisfun.com/algebra/degree-expression.html

Тема многочленов одна из ключевых тем программы 7 класса по алгебре. В статье разбираемся, что такое многочлен, как приводить подобные слагаемые и как определять степень многочлена.

Время чтения: 6 минут.

Обложка
Обложка

Многочлен – что это?

В предыдущей статье мы разобрались, что такое одночлен👇Давай теперь дадим определение многочлену.

Многочлен – это сумма нескольких одночленов.

Все просто “много”-“член” – то есть в одном выражении у нас есть много одночленов.

В многочлене может быть большое количество различных одночленов, поэтому появляется новое понятие – подобные слагаемые.

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Многочлен и подобные слагаемые
Многочлен и подобные слагаемые

Подобные слагаемые принято подчеркивать одинаковым количеством линий.

Как приводить подобные слагаемые?

Привести подобные слагаемые – значит выполнить все возможные действия с ними (сложение/вычитание).

Ниже представлен алгоритм приведения подобных слагаемых👇

Приведение подобных слагаемых
Приведение подобных слагаемых

Стандартный вид многочлена

Стандартный вид многочлена очень похож на стандартный вид одночлена.

Многочлен стандартного вида – это многочлен, который состоит из одночленов стандартного вида и не имеет подобных слагаемых.

То есть, чтобы привести многочлен в стандартный вид, нужно:

  • Все одночлены в этом многочлене привести в стандартный вид;
  • Выполнить приведение подобных слагаемых.
Многочлен стандартного вида
Многочлен стандартного вида

Степень многочлена

Степенью многочлена называется наибольшая степень входящих в него одночленов.

Проще говоря, чтобы определить степень многочлена, нужно найти одночлен с наибольшей степенью.

Степень многочлена
Степень многочлена

Важно: степень многочлена можно определять только тогда, когда он приведен к стандартному виду.

Пример:

Давай рассмотрим приведение многочлена к стандартному виду на конкретном примере:

Многочлен и подобные слагаемые

На этом все! Остались вопросы? Напиши о них в комментариях!👇

Обязательно подпишись на канал, чтобы не пропустить больше полезных статей!🧠

#математика #огэ #егэ #репетитор #алгебра #геометрия #одночлен #многочлен #стандартныйвидмногочлена #7класс #школа #образование

Как определить степень многочлена

Многочлен (или полином) от одной переменной – это выражение вида c0 * x^0 + c1 * x^1 + c2 * x^2 + … + cn * x^n, где c0, c1, … , cn – коэффициенты, x – переменная, 0, 1, … , n – степени, в которые возводится переменная x. Степень многочлена – это максимальная степень переменной x, встречающаяся в многочлене. Как ее определить?

Как определить степень многочлена

Инструкция

Внимательно посмотрите на заданный многочлен. Если он представлен в стандартном виде, просто найдите максимальную степень у переменной.

К примеру, степень многочлена (5 * x^7 + 3 * x + 6) равна 7, т.к. максимальное число, в которое возводится x, – 7.

Частный случай многочлена – одночлен – выглядит как (c * x^n), где c – коэффициент, x – переменная, n – некоторая степень переменной x. Степень одночлена определена однозначно: та степень, в которую возводится переменная x, и является степенью одночлена.

Например, степень одночлена (6 * x^2) равна 2, т.к. x в этом одночлене возводится именно в квадрат.

Обычное число также может рассматриваться в качестве частного случая одночлена и даже многочлена. Тогда степень такого одночлена (многочлена) равна 0, ибо только возведение в нулевую степень дает единицу.

К примеру, 9 = 9 * 1 = 9 * x^0. Степень одночлена (9) – 0.

Многочлен задан неявно

Многочлен может быть задан не в каноническом виде, а представлен, к примеру, некоторым выражением в скобке, возводимой в какую-то степень. Тут есть два способа определить степень многочлена:

1. Раскрыть скобку, привести многочлен к стандартному виду, найти наибольшую степень при переменной.

Пример.

Пусть задан многочлен (x – 1)^2

(x – 1)^2 = x^2 – 2 * x + 1. Как видно из разложения, степень этого многочлена равна 2.

2. Рассмотреть отдельно степень каждого слагаемого в скобке с учетом той степени, в которую возводится сама скобка.

Пример.

Пусть задан многочлен (50 * x^9 – 13 * x^5 + 6 * x)^121

Пытаться раскрывать такую скобку, очевидно, не имеет смысла. Но вот предугадать максимальную степень многочлена, который при этом получится, можно: достаточно лишь взять максимальную степень переменной из скобки и домножить ее на степень скобки.

В данном конкретном примере надо домножить 9 на 121:

9 * 121 = 1089 – это и есть степень рассматриваемого изначально многочлена.

Степень многочлена определяется по наивысшей степени переменной в этом многочлене. Для определения степени многочлена можно выполнить следующие шаги:

1. Распишите многочлен в стандартном виде, где переменные упорядочены по убыванию степеней.

2. Определите степень каждого члена многочлена путем суммирования показателей степени каждой переменной в этом члене. Например, в многочлене 3x^2y^3 + 5x^4 + 2, наибольшая степень переменной x равна 4, а наибольшая степень переменной y равна 3.

3. Выберите наибольшую степень из всех степеней переменных в многочлене. Эта степень и будет степенью всего многочлена.

Например, если в многочлене наибольшая степень переменной x равна 4, а наибольшая степень переменной y равна 3, то степень всего многочлена будет 4, так как это наибольшая из этих степеней.

Обратите внимание, что для определения степени многочлена необходимо учитывать только переменные, а не коэффициенты перед ними.

Добавить комментарий