Как найти степень окисления основания

Степень окисления и валентность – понятия в чём-то близкие и взаимозаменяемые в ряде ситуаций. Но если валентность всегда положительна (поскольку по определение – способность атомов образовывать то или иное число химических связей. А число связей, очевидно, отрицательным быть не может), то степень окисления может иметь как положительные, так и отрицательные значения. А всё потому, что степень окисления – показывает, каким бы был заряд атома, если бы все электроны, образующие химическую связь сместились к нему (или полностью от него оторвались, сместившись к другому атому).

Фото: pixabay.com
Фото: pixabay.com

В бинарных соединениях степень окисления найти просто. Нужно помнить два момента:

1. Молекула всегда нейтральна, у неё нет заряда (или же он равен 0), поэтому число отрицательных зарядов равно числу зарядов положительных.

2. Произведения степени окисления атома и индекса, стоящего у атома в молекуле, у обоих составляющих молекулу атомов равны по модулю.

Также стоит запомнить, что

у многих элементов степени окисления почти всегда постоянны. Так, кислород имеет степень окисления -2, водород (очень часто, но не всегда!) и щелочные металлы +1, металлы второй группы +2 и т.д.

Но есть и элементы, которые могут иметь разную степень кисления, например, у серы она может быть -2, +4 или +6.

Для примера определим степени окисления меди в двух оксидах: Cu2O и CuO.

Известно, что у кислорода степень окисления -2. Напомню, что степень окисления указывается справа вверху от элемента. Таким образом, запишем для первого оксида:

Как определять степень окисления

Для кислорода произведение степени окисления и индекса -2*1=-2 или по модулю 2. Для меди произведение степени окисления и индекса тоже должно равняться 2. С учётом того, что у меди стоит индекс 2 получаем степень окисления 1. Очевидно, что это +1: поскольку в молекуле уже есть отрицательно заряженная составляющая, другая составляющая должна быть заряжена положительно. Таким образом, в оксиде меди Cu2O степень окисления меди +1.

С оксидом CuО дело обстоит ещё проще. Когда в молекуле атомы соединены 1 к 1, то степени окисления у них равны по модулю. Поскольку у кислорода степень окисления -2, то у меди здесь степень окисления +2.

Теперь разберём примеры посложнее и рассмотрим молекулы, состоящие из атомов трёх видов.

Пример 1.

Определите степень окисления серы в серной кислоте.

Серная кислота имеет формулу H2SO4. Чтобы понять, какая степень окисления у серы в этом соединении, нужно помнить, что заряд молекулы всегда равен 0, то есть число отрицательных зарядов всегда равно числу положительных. Теперь посмотрим на формулу и вспомним, что кислород имеет степень окисления -2, водород +1, то есть:

Как определять степень окисления

Что отсюда видно? Что пока у нас имеется два положительных заряда, это вклад водорода (+2 мы получаем, умножив степень окисления водорода на индекс: +1*2=+2) и восемь отрицательных, это вклад кислорода (-8 мы получаем, умножив степень окисления кислорода на индекс: -2*4=-8). Но нам нужно, чтобы число положительных зарядов было равно числу отрицательных, только при этом условии заряд молекулы будет 0. Следовательно, недостаёт 6 положительных зарядов. Это и есть степень окисления серы в серной кислоте: +6. То есть можно записать так:

Как определять степень окисления

Пример 2.

Найдём степень окисления азота в азотистой кислоте HNO2.

Рассуждать будет аналогично, исходя из известных степеней окисления (-2 у кислорода и +1 и водорода):

Как определять степень окисления

Перемножив степени окисления с индексами, получим, что у нас 1 положительный заряд (от водорода: +1*1=+1) и четыре отрицательных (от кислорода: -2*2=-4). Для общего нулевого заряда молекулы недостаёт трёх положительных зарядов, которые и даст азот. То есть в азотистой кислоте степень окисления азота +3:

Как определять степень окисления

Для тренировки попробуйте самостоятельно определить степень окисления хрома в бихромате калия K2CrO4.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.


Загрузить PDF


Загрузить PDF

В химии термины «окисление» и «восстановление» означает реакции, при которых атом или группа атомов теряют или, соответственно, приобретают электроны. Степень окисления — это приписываемая одному либо нескольким атомам численная величина, характеризующая количество перераспределяемых электронов и показывающая, каким образом эти электроны распределяются между атомами при реакции. Определение этой величины может быть как простой, так и довольно сложной процедурой, в зависимости от атомов и состоящих из них молекул. Более того, атомы некоторых элементов могут обладать несколькими степенями окисления. К счастью, для определения степени окисления существуют несложные однозначные правила, для уверенного пользования которыми достаточно знания основ химии и алгебры.

  1. Изображение с названием Find Oxidation Numbers Step 1

    1

    Определите, является ли рассматриваемое вещество элементарным. Степень окисления атомов вне химического соединения равна нулю. Это правило справедливо как для веществ, образованных из отдельных свободных атомов, так и для таких, которые состоят из двух, либо многоатомных молекул одного элемента.

    • Например, Al(s) и Cl2 имеют степень окисления 0, поскольку оба находятся в химически несвязанном элементарном состоянии.
    • Обратите внимание, что аллотропная форма серы S8, или октасера, несмотря на свое нетипичное строение, также характеризуется нулевой степенью окисления.
  2. Изображение с названием Find Oxidation Numbers Step 2

    2

    Определите, состоит ли рассматриваемое вещество из ионов. Степень окисления ионов равняется их заряду. Это справедливо как для свободных ионов, так и для тех, которые входят в состав химических соединений.

    • Например, степень окисления иона Cl равняется -1.
    • Степень окисления иона Cl в составе химического соединения NaCl также равна -1. Поскольку ион Na, по определению, имеет заряд +1, мы заключаем, что заряд иона Cl -1, и таким образом степень его окисления равна -1.
  3. Изображение с названием Find Oxidation Numbers Step 3

    3

    Учтите, что ионы металлов могут иметь несколько степеней окисления. Атомы многих металлических элементов могут ионизироваться на разные величины. Например, заряд ионов такого металла как железо (Fe) равняется +2, либо +3.[1]
    Заряд ионов металла (и их степень окисления) можно определить по зарядам ионов других элементов, с которыми данный металл входит в состав химического соединения; в тексте этот заряд обозначается римскими цифрами: так, железо (III) имеет степень окисления +3.

    • В качестве примера рассмотрим соединение, содержащее ион алюминия. Общий заряд соединения AlCl3 равен нулю. Поскольку нам известно, что ионы Cl имеют заряд -1, и в соединении содержится 3 таких иона, для общей нейтральности рассматриваемого вещества ион Al должен иметь заряд +3. Таким образом, в данном случае степень окисления алюминия равна +3.
  4. Изображение с названием Find Oxidation Numbers Step 4

    4

    Степень окисления кислорода равна -2 (за некоторыми исключениями). Почти во всех случаях атомы кислорода имеют степень окисления -2. Есть несколько исключений из этого правила:

    • Если кислород находится в элементарном состоянии (O2), его степень окисления равна 0, как и в случае других элементарных веществ.
    • Если кислород входит в состав перекиси, его степень окисления равна -1. Перекиси — это группа соединений, содержащих простую кислород-кислородную связь (то есть анион перекиси O2-2). К примеру, в составе молекулы H2O2 (перекись водорода) кислород имеет заряд и степень окисления -1.
    • В соединении с фтором кислород обладает степенью окисления +2, читайте правило для фтора ниже.
  5. Изображение с названием Find Oxidation Numbers Step 5

    5

    Водород характеризуется степенью окисления +1, за некоторыми исключениями. Как и для кислорода, здесь также существуют исключения. Как правило, степень окисления водорода равна +1 (если он не находится в элементарном состоянии H2). Однако в соединениях, называемых гидридами, степень окисления водорода составляет -1.

    • Например, в H2O степень окисления водорода равна +1, поскольку атом кислорода имеет заряд -2, и для общей нейтральности необходимы два заряда +1. Тем не менее, в составе гидрида натрия степень окисления водорода уже -1, так как ион Na несет заряд +1, и для общей электронейтральности заряд атома водорода (а тем самым и его степень окисления) должен равняться -1.
  6. Изображение с названием Find Oxidation Numbers Step 6

    6

    Фтор всегда имеет степень окисления -1. Как уже было отмечено, степень окисления некоторых элементов (ионы металлов, атомы кислорода в перекисях и так далее) может меняться в зависимости от ряда факторов. Степень окисления фтора, однако, неизменно составляет -1. Это объясняется тем, что данный элемент имеет наибольшую электроотрицательность — иначе говоря, атомы фтора наименее охотно расстаются с собственными электронами и наиболее активно притягивают чужие электроны. Таким образом, их заряд остается неизменным.

  7. Изображение с названием Find Oxidation Numbers Step 7

    7

    Сумма степеней окисления в соединении равна его заряду. Степени окисления всех атомов, входящих в химическое соединение, в сумме должны давать заряд этого соединения. Например, если соединение нейтрально, сумма степеней окисления всех его атомов должна равняться нулю; если соединение является многоатомным ионом с зарядом -1, сумма степеней окисления равна -1, и так далее.

    • Это хороший метод проверки — если сумма степеней окисления не равна общему заряду соединения, значит вы где-то ошиблись.

    Реклама

  1. Изображение с названием Find Oxidation Numbers Step 8

    1

    Найдите атомы, не имеющие строгих правил относительно степени окисления. По отношению к некоторым элементам нет твердо установленных правил нахождения степени окисления. Если атом не подпадает ни под одно правило из перечисленных выше, и вы не знаете его заряда (например, атом входит в состав комплекса, и его заряд не указан), вы можете установить степень окисления такого атома методом исключения. Вначале определите заряд всех остальных атомов соединения, а затем из известного общего заряда соединения вычислите степень окисления данного атома.

    • Например, в соединении Na2SO4 неизвестен заряд атома серы (S) — мы лишь знаем, что он не нулевой, поскольку сера находится не в элементарном состоянии. Это соединение служит хорошим примером для иллюстрации алгебраического метода определения степени окисления.
  2. Изображение с названием Find Oxidation Numbers Step 9

    2

    Найдите степени окисления остальных элементов, входящих в соединение. С помощью описанных выше правил определите степени окисления остальных атомов соединения. Не забывайте об исключениях из правил в случае атомов O, H и так далее.

    • Для Na2SO4, пользуясь нашими правилами, мы находим, что заряд (а значит и степень окисления) иона Na равен +1, а для каждого из атомов кислорода он составляет -2.
  3. Изображение с названием Find Oxidation Numbers Step 10

    3

    Умножьте количество атомов на их степень окисления. Теперь, когда нам известны степени окисления всех атомов за исключением одного, необходимо учесть, что атомов некоторых элементов может быть несколько. Умножьте число атомов каждого элемента (оно указано в химической формуле соединения в виде подстрочного числа, следующего за символом элемента) на его степень окисления.

    • В Na2SO4 мы имеем 2 атома Na и 4 атома O. Таким образом, умножая 2 × +1, получаем степень окисления всех атомов Na (2), а умножая 4 × -2 — степень окисления атомов O (-8).
  4. Изображение с названием Find Oxidation Numbers Step 11

    4

    Сложите предыдущие результаты. Суммируя результаты умножения, получаем степень окисления соединения без учета вклада искомого атома.

    • В нашем примере для Na2SO4 мы складываем 2 и -8 и получаем -6.
  5. Изображение с названием Find Oxidation Numbers Step 12

    5

    Найдите неизвестную степень окисления из заряда соединения. Теперь у вас есть все данные для простого расчета искомой степени окисления. Запишите уравнение, в левой части которого будет сумма числа, полученного на предыдущем шаге вычислений, и неизвестной степени окисления, а в правой — общий заряд соединения. Иными словами, (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения).

    • В нашем случае Na2SO4 решение выглядит следующим образом:
      • (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения)
      • -6 + S = 0
      • S = 0 + 6
      • S = 6. В Na2SO4 сера имеет степень окисления 6.

    Реклама

Советы

  • В соединениях сумма всех степеней окисления должна равняться заряду. Например, если соединение представляет собой двухатомный ион, сумма степеней окисления атомов должна быть равна общему ионному заряду.
  • Очень полезно уметь пользоваться периодической таблицей Менделеева и знать, где в ней располагаются металлические и неметаллические элементы.
  • Степень окисления атомов в элементарном виде всегда равна нулю. Степень окисления единичного иона равна его заряду. Элементы группы 1A таблицы Менделеева, такие как водород, литий, натрий, в элементарном виде имеют степень окисления +1; степень окисления металлов группы 2A, таких как магний и кальций, в элементарном виде равна +2. Кислород и водород, в зависимости от вида химической связи, могут иметь 2 различных значения степени окисления.

Реклама

Что вам понадобится

  • Периодическая таблица элементов
  • Доступ в интернет или справочники по химии
  • Лист бумаги, ручка или карандаш
  • Калькулятор

Об этой статье

Эту страницу просматривали 644 517 раз.

Была ли эта статья полезной?

Как определить степень окисления?

Автор – Александр Игоревич Новичков .

Степень окисления – это формальный заряд атома. Слово «формальный» означает, что этого заряда у атома в действительности может и не быть, вернее, он может оказаться немного другим. Однако по разным причинам эти условные заряды удобны и химики всего мира пользуются понятием «степень окисления».

Отметим, что степень окисления указывается в верхнем правом углу атома в формате +n или -n, где n – целое число. Например: rm K^+Mn^{+7}O_{mkern 13mu 4}^{-2},; Fe^{+3}Cl_{mkern 4mu3}^{-},; O_{mkern 0mu 2}^{0}.

Существуют определённые правила нахождения степени окисления.

    1. Степень окисления простых веществ равна нулю. Напомню, что простыми называют вещества, состоящие из одного вида атомов. Примеры: rm O_{mkern 0mu 2}^{0},;P_{mkern 0mu 4}^{0},;Na^0.
    2. Некоторые атомы в сложных соединениях проявляют только одну степень окисления. Такие степени окисления называются постоянными.

scriptstyle * – Исключения у водорода соединения rm MeH^-, в которых у водорода степень окисления -1.
scriptstyle ** – Исключения у кислорода rm H_{mkern 2mu 2}^+O_{mkern 2mu 2}^-,;Na_{mkern 2mu 2}^+O_{mkern 2mu 2}^-,;K^+O_{mkern 2mu 2}^{-frac{1}{2}}, ;K^+O_{mkern 2mu 3}^{-frac{1}{3}}, ;O^{+2}F_{mkern 2mu 2}^{-}, ;O_2^{mkern -3mu +}F_{mkern 2mu 2}^{-}.

    1. Сумма степеней окисления всех атомов сложного соединения должна быть равна нулю. Пользуясь именно эти правилом, мы будем расставлять степени окисления в сложных соединениях.
      Как именно?

Пример 1: расставьте степени окисления в соединении rm Al_4C_3.
Мы знаем степень окисления rm Al = + 3 тогда мы можем найти, что общее количество «плюсов» у четырех атомов 12. Чтобы в сумме был ноль, у трех атомов rm C заряд должен быть -12, значит у каждого атома rm ; C rightarrow -4 ;; Al_{mkern 13mu 4}^{+3}C_{mkern 14mu 3}^{-4}.

Пример 2: Найдите степени окисления всех атомов в соединении rm K_2Cr_2O_7.
Сначала подпишем постоянные степени окисления rm K_{mkern 3mu 2}^{+}Cr_2^{?}O_{mkern 14mu 7}^{-2}.

Посчитаем общее количество плюсов и минусов rm frac{displaystyle K_{mkern 3mu 2}^{+}}{displaystyle +2} ;frac{displaystyle Cr_2^{?}}{displaystyle ?} ;frac{displaystyle O_{mkern 14mu 7}^{-2}}{displaystyle -14}.

Для того, чтобы плюсов и минусов было одинаковое количество у двух хромов в сумме должно быть +12, а значит, у каждого атома rm +6, ; K_{mkern 3mu 2}^{+}Cr_2^{+6}O_{mkern 14mu 7}^{-2}.

Пример 3: Найдите степени окисления всех атомов в соединении rm Al(ClO_3)_3.
Для начала заметим, что для нахождения степени окисления удобно «раскрыть скобки» и представить соединение как rm AlCl_3O_9 и тогда задание выполняется аналогично заданию из примера 2.
Ответ: rm Al^{+3}(Cl^{+5}O_{mkern 14mu 3}^{-2})_3.

    1. В некоторых устоявшихся группах атомов в составе веществ (кислотные остатки и ион аммония) степени окисления атомов неизменны и их тоже стоит запомнить.

rm (S^{+6}O_{mkern 13mu 4}^{-2})^{2-},;(S^{+4}O_{mkern 14mu 3}^{-2})^{2-},;(C^{+4}O_{mkern 14mu 3}^{-2})^{2-},;(Si^{+4}O_{mkern 14mu 3}^{-2})^{2-},;(P^{+5}O_{mkern 13mu 4}^{-2})^{3-},
rm (N^{+5}O_{mkern 14mu 3}^{-2})^{-},;(N^{+3}O_{mkern 14mu 2}^{-2})^{-},;(N^{-3}H_{mkern 2mu 4}^{+})^{+}.

Пользуясь этими правилами, можно расставить степени окисления практически во всех соединений, встречающихся на ЕГЭ по химии.

Если вам понравился наш материал – записывайтесь на курсы подготовки к ЕГЭ по химии онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Как определить степень окисления?» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Определение степени окисления атомов в сложных соединениях и ионах

1.Алгебраическя
сумма степеней окисления атомов в
соединении всегда равна нулю, т.е.
молекула электронейтральна.

хлористая хлорная

+ х -2 + x -2

HСlO2 HClO4

1 + х + 2(-2) = 0 1 + х + 4(-2) = 0

1 + х – 4 = 0 1 + х – 8 = 0

х = + 3
х = + 7

2. Алгебраическая
сумма степеней окисления в сложном ионе
равна заряду этого иона.

NO2
(нитрид-ион) Cr2O72
(хромат-ион)

(NХO22) (Cr2ХO72)2

х + 2(2)
=  1 2х + 7(2)
= 2

х – 4 = 
1 2х – 14 = 2

х = + 3
х = + 6

Основные положения
теории окислительно-восстановительных
реакций

1. Окислением
называется процесс отдачи электронов
атомом, молекулой или ионом.

Ba0
– 2e = Ba+2

H2

2e = 2H+

Fe+2
– 2e = Fe+3

При окислении
степень окисления повышается.

2. Восстановлением
называется процесс присоединения
электронов атомом, молекулой или ионом.

S0
+ 2e = S –2

F2
+ 2e = 2F

Fe+3
+ е = Fe+2

Степень
окисления понижается при восстановлении.

3. Атомы,
молекулы или ионы, отдающие электроны,
называются восстановителями. Во
время реакции они окисляются.

Атомы,
молекулы или ионы, присоединяющие
электроны, называются окислителями.
Во время реакции они восстанавливаются.

4.
Окислительно-восстановительные реакции
представляют собой единство двух
противоположных процессов – процесса
окисления и процесса восстановления.

В общем виде:

восстановитель
– e

окисленная форма восстановителя ,

окислитель
+ e

восстановленная форма окислителя .

5. Число
электронов, отдаваемых восстановителем
равно числу электронов, присоединяемых
окислителем.
Следовательно окислитель
и восстановитель реагируют в соотношениях
эквивалентов, т.е. количеств веществ,
соответствующих одному присоединяемому
(или отдаваемому) электрону.

В основе
многих природных и технологических
процессов лежат ОВР: горение топлива,
выплавка металлов, взрывные работы,
дыхание и др.. Некоторые ОВР протекают
очень энергично, что может привести к
возгоранию и взрыву. Поэтому на
производстве и в быту необходимо
учитывать, что окислители и восстановители
необходимо хранить отдельно и не
допускать их смешивания. Сильным
окислителем является кислород воздуха.
Поскольку органические вещества и
углерод – восстановители, то угольная
и мучная пыль – взрывоопасные и
пожароопасные смеси. Вентили баллонов
с чистым кислородом нельзя смазывать
органической смазкой. Это может привести
к взрыву.

Поэтому
необходимо знать важнейшие окислители
и восстановители, используемые в
производствах

Основные окислители и восстановители

Восстановители Окислители

1.
Металлы (Al,Na,R,Zn,Mg) 1.
Галогены ( Cl2 , F2 , Br2
)

2.
Н2 2. KMnO4(перманганат калия
– «марганцовка»),

3. С , СО
(выплавка чугуна) 3. K2Cr2O7
(дихромат)

K2CrO4
(хромат)

4.
H2S ,
SO2 4.
O2 ,
O3 ,
H2O2

5.
HJ , HCl , HBr 5. HNO3
, H2SO4
(конц.)

6.
соли Fe+2
, Mn+2 6.
CuО , Ag2O
, PbO2

7.
HNO2 ,
NO , NH3 7.
Соли Fe+3

(азотистая кислота)
8.KClO3(бертолетова
соль),

KClO4

Составление уравнений
окислительно-восстановительных реакций

ОВР обычно протекают в растворах.
Вода, водные растворы кислот и оснований
являются средой – поставщиком
катионов и анионов и в ряде случаев
влияют на глубину процессов восстановления
и окисления. В отличие от РИО эти реакции
трудно уравнять. Для этого используются
следующие методы:

Соседние файлы в предмете Химия

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Темы кодификатора ЕГЭ: Электроотрицательность. Степень окисления и валентность химических элементов.

Когда атомы взаимодействуют и образуют химическую связь, электроны между ними в большинстве случаев распределяются неравномерно, поскольку свойства атомов различаются. Более электроотрицательный атом сильнее притягивает к себе электронную плотность. Атом, который притянул к себе электронную плотность, приобретает частичный отрицательный заряд δ, его «партнер» — частичный положительный заряд  δ+. Если разность электроотрицательностей атомов, образующих связь, не превышает 1,7, мы называем связь ковалентной полярной. Если разность электроотрицательностей, образующих  химическую связь, превышает 1,7, то такую связь мы называем ионной.

Степень окисления – это вспомогательный условный заряд атома элемента в соединении, вычисленный из предположения, что все соединения состоят из ионов (все полярные связи – ионные).

Что значит «условный заряд»? Мы просто-напросто договариваемся, что немного упростим ситуацию: будем считать любые полярные связи полностью ионными, и будем считать, что электрон полностью уходит или приходит от одного атома к другому, даже если на самом деле это не так. А уходит условно электрон от менее электроотрицательного атома к более электроотрицательному.

Например, в связи H-Cl мы считаем, что водород условно «отдал» электрон, и его заряд стал +1, а хлор «принял» электрон, и его заряд стал -1. На самом деле таких полных зарядов на этих атомах нет.

Наверняка, у вас возник вопрос — зачем же придумывать то, чего нет? Это не коварный замысел химиков, все просто: такая модель очень удобна. Представления о степени окисления элементов полезны при составлении классификации химических веществ, описании их свойств, составлении формул соединений и номенклатуры. Особенно часто степени окисления используются при работе с  окислительно-восстановительными реакциями.

Степени окисления бывают высшиенизшие и промежуточные.

Высшая степень окисления равна номеру группы со знаком «плюс».

Низшая определяется, как номер группы минус 8.

И промежуточная степень окисления — это почти любое целое число в интервале от низшей степени окисления до высшей.

Например, для азота характерны: высшая степень окисления +5, низшая 5 — 8 = -3, а промежуточные степени окисления от -3 до +5. Например, в гидразине N2H4 степень окисления азота промежуточная, -2.

Чаще всего степень окисления атомов в сложных веществах обозначается сначала знаком, потом цифрой, например +1, +2, -2 и т.д. Когда речь идет о заряде иона (предположим, что ион реально существует в соединении), то сначала указывают цифру, потом знак. Например: Ca2+, CO3 2-.

Для нахождения степеней окисления используют следующие правила:

  1. Степень окисления атомов в простых веществах равна нулю;
  2. В нейтральных молекулах алгебраическая сумма степеней окисления равна нулю, для ионов эта сумма равна заряду иона;
  3. Степень окисления щелочных металлов (элементы I группы главной подгруппы) в соединениях равна +1, степень окисления щелочноземельных металлов (элементы II группы главной подгруппы) в соединениях равна +2; степень окисления алюминия в соединениях равна +3;
  4. Степень окисления водорода в соединениях с металлами (солеобразные гидриды — NaH, CaH2 и др.) равна -1; в соединениях с неметаллами (летучие водородные соединения)  +1;
  5. Степень окисления кислорода равна -2. Исключение составляют пероксиды – соединения, содержащие группу –О-О-, где степень окисления кислорода равна -1, и некоторые другие соединения (супероксиды, озониды, фториды кислорода OF2 и др.);
  6. Степень окисления фтора во всех сложных веществах равна -1.

Выше перечислены ситуации, когда степень окисления мы считаем постоянной. У всех остальных химических элементов степень окисленияпеременная, и зависит от порядка и типа атомов в соединении.

Примеры:

Задание: определите степени окисления элементов в молекуле дихромата калия: K2Cr2O7.

Решение:  степень окисления калия равна +1, степень окисления хрома обозначим, как х,  степень окисления кислорода -2. Сумма всех степеней окисления всех атомов в молекуле равна 0. Получаем уравнение: +1*2+2*х-2*7=0. Решаем его, получаем степень окисления хрома +6.

В бинарных соединениях более электроотрицательный элемент характеризуется отрицательной степенью окисления, менее электроотрицательный – положительной.

Обратите внимание, что понятие степени окисления – очень условно! Степень окисления не показывает реальный заряд атома и не имеет реального физического смысла. Это упрощенная модель, которая эффективно работает, когда нам необходимо, например, уравнять коэффициенты в уравнении химической реакции, или для алгоритмизации классификации веществ.

Степень окисления – это не валентность! Степень окисления и валентность во многих случаях не совпадают. Например, валентность водорода в простом веществе Н2 равна I, а степень окисления, согласно правилу 1, равна 0.

Это базовые правила, которые помогут Вам определить степень окисления атомов в соединениях в большинстве случаев.

В некоторых ситуациях вы можете столкнуться с трудностями при определении степени окисления атома. Рассмотрим некоторые из этих ситуаций, и разберем способы их разрешения:

  1. В двойных (солеобразных) оксидах степень у атома, как правило, две степени окисления. Например, в железной окалине Fe3O4 у железа две степени окисления: +2 и +3. Какую из них указывать? Обе. Для упрощения можно представить это соединение, как соль: Fe(FeO2)2. При этом кислотный остаток образует атом со степенью окисления +3. Либо двойной оксид можно представить так: FeO*Fe2O3.
  2. В пероксосоединениях степень окисления атомов кислорода, соединенных ковалентными неполярными связями, как правило, изменяется. Например, в пероксиде водорода Н2О2, и пероксидах щелочных металлов степень окисления кислорода -1, т.к. одна из связей – ковалентная неполярная (Н-О-О-Н). Другой пример – пероксомоносерная кислота (кислота Каро)  H2SO5 (см. рис.) содержит в составе два атома кислорода со степенью окисления -1, остальные атомы со степенью окисления -2, поэтому более понятной будет такая запись: H2SO3(O2).  Известны также пероксосоединения хрома – например, пероксид хрома (VI) CrO(O2)2 или CrO5, и многие другие.
  3. Еще один пример соединений с неоднозначной степенью окисления – супероксиды (NaO2) и солеобразные озониды KO3. В этом случае уместнее говорить о молекулярном ионе O2 с зарядом -1 и и O3 с зарядом -1. Строение таких частиц описывается некоторыми моделями, которые в российской учебной программе проходят на первых курсах химических ВУЗов: МО ЛКАО, метод наложения валентных схем и др.
  4. В органических соединениях понятие степени окисления не очень удобно использовать, т.к. между атомами углерода существует большое число ковалентных неполярных связей. Тем не менее, если нарисовать структурную формулу молекулы, то степень окисления каждого атома также можно определить по типу и количеству атомов, с которыми данный атом непосредственно связан. Например, у первичных атомов углерода в углеводородах степень окисления равна -3, у вторичных -2, у третичных атомов -1, у четвертичных  — 0.

Потренируемся определять степень окисления атомов в органических соединениях. Для этого необходимо нарисовать полную структурную формулу атома, и выделить атом углерода с его ближайшим окружением — атомами, с которыми он непосредственно соединен.

Полезные советы:

  • Для упрощения расчетов можно использовать таблицу растворимости – там указаны заряды наиболее распространенных ионов. На большинстве российских экзаменов по химии (ЕГЭ, ГИА, ДВИ) использование таблицы растворимости разрешено. Это готовая шпаргалка, которая во многих случаях позволяет значительно сэкономить время.
  • При расчете степени окисления элементов в сложных веществах сначала указываем степени окисления элементов, которые мы точно знаем (элементы с постоянной степенью окисления), а степень окисления элементов с переменной степенью окисления обозначаем, как х. Сумма всех зарядов всех частиц равна нулю в молекуле или равна заряду иона в ионе. Из этих данных легко составить и решить уравнение.

Тренировочный тест по теме «Степени окисления и валентность» 10 вопросов, при каждом прохождении новые.

190

Создан на
07 января, 2022 От Admin

Тренировочный тест “Степени окисления”

1 / 10

1) Be    2) Li    3) K    4) N    5) Cs

Из числа указанных в ряду элементов выберите два элемента, каждый из которых может образовать оксид с общей формулой ЭО.

Запишите в поле ответа номера выбранных элементов.

2 / 10

1) P   2) Se   3) Si   4) Cr   5) S

Из числа указанных в ряду элементов выберите два элемента, степень окисления которых в оксидах может принимать значение +3.

3 / 10

1) V   2) Br   3) S   4) As   5) I

Из указанных в ряду элементов выберите два элемента, которые в соединениях проявляют валентность I.

4 / 10

1) Sr   2) Br   3) Rb   4) As   5) Se

Из указанных в ряду элементов выберите два элемента, которые в соединениях проявляют постоянную степень окисления.

5 / 10

1) Na   2) Al   3) Br   4) Cu   5) Se

Из указанных в ряду элементов выберите два элемента, которые в соединениях проявляют постоянную степень окисления.

6 / 10

1) Na   2) K   3) Al   4) N   5) Rb

Из указанных в ряду элементов выберите два элемента, которые в соединениях могут проявлять степень окисления +3.

7 / 10

1) Al   2) Na   3) C   4) Mg   5) S

Из указанных в ряду элементов выберите два элемента, которые в соединении с водородом проявляют отрицательную степень окисления.

8 / 10

1) As   2) P   3) Al   4) B   5) Na

Из числа указанных в ряду элементов выберите два элемента, степень окисления которых в высших гидроксидах равна +3.

9 / 10

1) Zn   2) C   3) Al   4) Сl   5) Ti

Из числа указанных в ряду элементов выберите два элемента, которые в составе образованных ими анионов с общей формулой ЭОх могут иметь одинаковую степень окисления.

10 / 10

1) C   2) Mg   3) Mn   4) P   5) Cl

Из числа указанных в ряду элементов выберите два элемента, которые в высших оксидах проявляют одинаковую степень окисления.

Ваша оценка

The average score is 56%

Добавить комментарий