В данной публикации мы рассмотрим определение системы линейных алгебраических уравнений (СЛАУ), как она выглядит, какие виды бывают, а также как ее представить в матричной форме, в том числе расширенной.
- Определение системы линейных уравнений
- Виды СЛАУ
- Матричная форма записи системы
-
Расширенная матрица СЛАУ
Определение системы линейных уравнений
Система линейных алгебраических уравнений (или сокращенно “СЛАУ”) – это система, которая в общем виде выглядит так:
- m – количество уравнений;
- n – количество переменных.
- x1, x2,…, xn – неизвестные;
- a11, a12,…, amn – коэффициенты при неизвестных;
- b1, b2,…, bm – свободные члены.
Индексы коэффициентов (aij) формируются следующим образом:
- i – номер линейного уравнения;
- j – номер переменной, к которой относится коэффициент.
Решение СЛАУ – такие числа c1, c2,…, cn , при постановке которых вместо x1, x2,…, xn, все уравнения системы превратятся в тождества.
Виды СЛАУ
- Однородная – все свободные члены системы равны нулю (b1 = b2 = … = bm = 0).
- Неоднородная – если не выполняется условие выше.
- Квадратная – количество уравнений равно числу неизвестных, т.е. m = n.
- Недоопределенная – число неизвестных больше количества уравнений.
- Переопределенная – уравнений больше, чем переменных.
В зависимости от количества решений, СЛАУ может быть:
- Совместная – имеет хотя бы одно решение. При этом если оно единственное, система называется определенной, если решений несколько – неопределенной.
СЛАУ выше является совместной, т.к. есть хотя бы одно решение: x = 2, y = 3. - Несовместная – система не имеет решений.
Правые части уравнений одинаковые, а левые – нет. Таким образом, решений нет.
Матричная форма записи системы
СЛАУ можно представить в матричной форме:
AX = B
Пример
Представим систему уравнений ниже в матричном виде:
Пользуясь формами выше, составляем основную матрицу с коэффициентами, столбцы с неизвестными и свободными членами.
Полная запись заданной системы уравнений в матричном виде:
Расширенная матрица СЛАУ
Если к матрице системы A добавить справа столбец свободных членов B, разделив данные вертикальной чертой, то получится расширенная матрица СЛАУ.
Для примера выше получается так:
– обозначение расширенной матрицы.
Задача 1.
Решить систему по правилу Крамера:
.
Указание
Найдите главный определитель системы (поскольку он не равен нулю, система имеет единственное решение). Затем вычислите ΔХ, ΔУ и ΔZ.
Решение
Главный определитель
Следовательно, система имеет единственное решение.
Найдем ΔХ, ΔУ и ΔZ:
Напоминаем: определители ΔХ, ΔУ И ΔZ получены из определителя Δ заменой столбца коэффициентов при соответствующем неизвестном на столбец свободных членов.
Отсюда
Ответ: Х = 1, У = 4, Z = 2.
Задача 2.
Используя правило Крамера, выяснить, при каких значениях А система
Имеет бесконечно много решений.
Указание
Для того, чтобы система была совместна, но не определена, должно выполняться условие
Решение
Главный определитель
Разложением по первой строке получим:
Следовательно, Δ = 0 при А = 1 или А = -2.
Значит, при А ≠ 1 и при А ≠ -2 система имеет единственное решение.
Определим число решений при А = 1 и А = -2.
1) При А = 1 система имеет вид:
Очевидно, что при этом система имеет бесконечно много решений, так как она фактически состоит из одного уравнения, и ее решениями будут любые три числа, сумма которых равна 1.
2) При А = -2 получаем систему
Для которой
Следовательно, этом случае решений нет.
Ответ: А = 1.
Задача 3.
Решить систему с помощью обратной матрицы:
.
Указание
Убедитесь, что матрица системы невырождена, то есть ее определитель не равен нулю. Затем найдите для нее обратную матрицу и умножьте эту матрицу на столбец свободных членов.
Решение
Составим матрицу системы:
ΔА = -51 ≠ 0, следовательно, система имеет единственное решение.
Найдем матрицу А-1:
Тогда
Если
То исходная система превращается в матричное уравнение АХ = В, решение которого Х = А-1В. Следовательно,
То есть Х = 3, У = 1, Z = 1.
Ответ: Х = 3, У = 1, Z = 1.
Задача 4.
Решить систему по правилу Крамера и с помощью обратной матрицы:
Указание
Для решения по правилу Крамера найдите определители D, DX, DY, DZ.
Для решения с помощью обратной матрицы составьте матрицу, обратную к матрице системы, и умножьте ее на столбец свободных членов.
Решение
1. Правило Крамера
Найдем главный определитель системы:
Система имеет единственное решение.
2. Решение с помощью обратной матрицы
Найдем алгебраические дополнения к элементам матрицы системы:
Составим матрицу, обратную к матрице системы:
Столбец решений системы получим, умножив А-1 на столбец свободных членов:
Ответ: Х = 1, У = 2, Z = 3.
< Предыдущая | Следующая > |
---|
Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.
Что означает фраза “ранг матрицы равен $r$”? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.
Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.
Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde$.
Решить СЛАУ $ left < begin& 3x_1-6x_2+9x_3+13x_4=9\ & -x_1+2x_2+x_3+x_4=-11;\ & x_1-2x_2+2x_3+3x_4=5. end right.$. Если система является неопределённой, указать базисное решение.
Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:
$$ left( begin 3 & -6 & 9 & 13 & 9 \ -1 & 2 & 1 & 1 & -11 \ 1 & -2 & 2 & 3 & 5 end right) rightarrow left|begin & text<поменяем местами первую и третью>\ & text<строки, чтобы первым элементом>\ & text <первой строки стала единица.>endright| rightarrow \ rightarrowleft( begin 1 & -2 & 2 & 3 & 5\ -1 & 2 & 1 & 1 & -11 \ 3 & -6 & 9 & 13 & 9 end right) begin phantom <0>\ II+I\ III-3cdot Iend rightarrow left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 \ 0 & 0 & 3 & 4 & -6 endright) begin phantom <0>\ phantom<0>\ III-IIend rightarrow \ rightarrowleft( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 \ 0 & 0 & 0 & 0 & 0 endright) $$
Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.
И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde = 2$.
Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).
Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на “ступеньках”. Что это за “ступеньки” показано на рисунке:
На “ступеньках” стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.
В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.
Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $left( begin 3 & -6 & 9 & 13 \ -1 & 2 & 1 & 1 \ 1 & -2 & 2 & 3 end right)$, так и в преобразованной матрице системы, т.е. в $left( begin 1 & -2 & 2 & 3 \ 0 & 0 & 3 & 4 \ 0 & 0 & 0 & 0 endright)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.
Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:
$$ M_<2>^<(1)>=left| begin 1 & -2 \ 0 & 0 endright|=1cdot 0-(-2)cdot 0=0. $$
Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.
Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №3 и №4:
$$ M_<2>^<(2)>=left| begin 2 & 3\ 3 & 4 endright|=2cdot 4-3cdot 3=-1. $$
Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №3 (он соответствует переменной $x_3$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_3$ и $x_4$ можно принять в качестве базисных.
Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:
Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.
Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.
В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.
Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.
Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 \ 0 & 0 & 0 & 0 & 0 endright)$ от нулевой строки:
$$ left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 endright) $$
Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:
Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть
Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 endright)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=5$, а вторая строка соответствует уравнению $3x_3+4x_4=-6$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.
Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.
А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:
$$ left( begin 1 & 2 & 5 & 2 & -3\ 0 & 3 & -6 & 0 & -4 endright) begin phantom <0>\ II:3 end rightarrow left( begin 1 & 2 & 5 & 2 & -3\ 0 & 1 & -2 & 0 & -4/3 endright) begin I-2cdot II \ phantom <0>end rightarrow \ rightarrow left(begin 1 & 0 & 9 & 2 & -1/3\ 0 & 1 & -2 & 0 & -4/3 endright). $$
Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:
Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:
Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $left <begin& x_1=frac<2><3>;\ & x_2=-4;\ & x_3=-frac<10><3>;\ & x_4=1. endright.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.
Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-frac<1><3>x_4$ и $x_3=-2-frac<4><3>x_4$ в левую часть первого уравнения, получим:
$$ 3x_1-6x_2+9x_3+13x_4=3cdot left(9+2x_2-frac<1><3>x_4right)-6x_2+9cdot left(-2-frac<4><3>x_4right)+13x_4=9. $$
Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.
Если система является неопределённой, указать базисное решение.
Похожий пример уже был решен в теме “метод Крамера” (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.
$$ left( begin 1 & -2 & 4 & 0 & 2 & 0\ 4 & -11 & 21 & -2 & 3 & -1\ -3 & 5 & -13 & -4 & 1 & -2 end right) begin phantom <0>\ II-4cdot I\ III+3cdot Iend rightarrow left( begin 1 & -2 & 4 & 0 & 2 & 0\ 0 & -3 & 5 & -2 & -5 & -1\ 0 & -1 & -1 & -4 & 7 & -2 end right) rightarrow \ rightarrow left|begin & text<поменяем местами вторую и третью>\ & text<строки, чтобы диагональным элементом>\ & text <второй строки стало число (-1).>endright|rightarrow left( begin 1 & -2 & 4 & 0 & 2 & 0\ 0 & -1 & -1 & -4 & 7 & -2\ 0 & -3 & 5 & -2 & -5 & -1 end right) begin phantom <0>\ phantom<0>\ III-3cdot Iend rightarrow \ rightarrow left( begin 1 & -2 & 4 & 0 & 2 & 0\ 0 & -1 & -1 & -4 & 7 & -2\ 0 & 0 & 8 & 10 & -26 & 5 end right). $$
Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $rang A=rangwidetilde = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.
Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод “ступенек”, что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.
Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:
$$ left( begin 1 & -2 & 4 & 0 & 0 & -2\ 0 & -1 & -1 & -2 & 4 & -7\ 0 & 0 & 8 & 5 & -10 & 26 end right) begin phantom <0>\ phantom<0>\ III:8end rightarrow left( begin 1 & -2 & 4 & 0 & 0 & -2\ 0 & -1 & -1 & -2 & 4 & -7\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) begin I-4cdot III \ II+III\ phantom<0>end rightarrow \ left( begin 1 & -2 & 0 & -5/2 & 5 & -15\ 0 & -1 & 0 & -11/8 & 11/4 & -15/4\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) begin phantom <0>\ IIcdot (-1)\ phantom<0>end rightarrow left( begin 1 & -2 & 0 & -5/2 & 5 & -15\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) begin I+2cdot II \ phantom<0>\ phantom<0>end rightarrow\ rightarrowleft( begin 1 & 0 & 0 & 1/4 & -1/2 & -15/2\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) $$
Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.
Решение систем линейных уравнений. Несовместные системы.
Системы с общим решением. Частные решения
Продолжаем разбираться с системами линейных уравнений. До сих пор я рассматривал системы, которые совместны и имеют единственное решение. Такие системы можно решить любым способом: методом подстановки («школьным»), по формулам Крамера, матричным методом, методом Гаусса. Однако на практике широко распространены еще два случая:
– Система несовместна (не имеет решений);
– Система совместна и имеет бесконечно много решений.
Примечание: термин «совместность» подразумевает, что у системы существует хоть какое-то решение. В ряде задач требуется предварительно исследовать систему на совместность, как это сделать – см. статью о ранге матриц.
Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса. На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса для чайников.
Сами элементарные преобразования матрицы – точно такие же, разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).
Решить систему линейных уравнений
Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Если количество уравнений меньше, чем количество переменных, то сразу можно сказать, что система либо несовместна, либо имеет бесконечно много решений. И это осталось только выяснить.
Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
(1) На левой верхней ступеньке нам нужно получить +1 или –1. Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Я поступил так: К первой строке прибавляем третью строку, умноженную на –1.
(2) Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую строку, умноженную на 5.
(3) После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную –1 на второй ступеньке. Третью строку делим на –3.
(4) К третьей строке прибавляем вторую строку.
Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований: . Ясно, что так быть не может. Действительно, перепишем полученную матрицу обратно в систему линейных уравнений:
Если в результате элементарных преобразований получена строка вида , где – число, отличное от нуля, то система несовместна (не имеет решений).
Как записать концовку задания? Нарисуем белым мелом: «в результате элементарных преобразований получена строка вида , где » и дадим ответ: система не имеет решений (несовместна).
Если же по условию требуется ИССЛЕДОВАТЬ систему на совместность, тогда необходимо оформить решение в более солидном стиле с привлечением понятия ранга матрицы и теоремы Кронекера-Капелли.
Обратите внимание, что здесь нет никакого обратного хода алгоритма Гаусса – решений нет и находить попросту нечего.
Решить систему линейных уравнений
Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Снова напоминаю, что ваш ход решения может отличаться от моего хода решения, у алгоритма Гаусса нет сильной «жёсткости».
Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же, как только появилась строка вида , где . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица . Матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет никакой необходимости, так как появилась строка вида , где . Следует сразу дать ответ, что система несовместна.
Когда система линейных уравнений не имеет решений – это почти подарок, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия.
Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.
Решить систему линейных уравнений
Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом его и универсальность.
Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
Вот и всё, а вы боялись.
(1) Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на –4. К третьей строке прибавляем первую строку, умноженную на –2. К четвертой строке прибавляем первую строку, умноженную на –1.
Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: К четвертой строке прибавляем первую строку, умноженную на –1 – именно так!
(2) Последние три строки пропорциональны, две из них можно удалить.
Здесь опять нужно проявить повышенное внимание, а действительно ли строки пропорциональны? Для перестраховки (особенно, чайнику) не лишним будет вторую строку умножить на –1, а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них.
В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:
При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.
Перепишем соответствующую систему уравнений:
«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки тоже нет. Значит, это третий оставшийся случай – система имеет бесконечно много решений. Иногда по условию нужно исследовать совместность системы (т.е. доказать, что решение вообще существует), об этом можно прочитать в последнем параграфе статьи Как найти ранг матрицы? Но пока разбираем азы:
Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы.
Общее решение системы найдем с помощью обратного хода метода Гаусса.
Сначала нужно определить, какие переменные у нас являются базисными, а какие переменные свободными. Не обязательно заморачиваться терминами линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные.
Базисные переменные всегда «сидят» строго на ступеньках матрицы.
В данном примере базисными переменными являются и
Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: – свободные переменные.
Теперь нужно все базисные переменные выразить только через свободные переменные.
Обратный ход алгоритма Гаусса традиционно работает снизу вверх.
Из второго уравнения системы выражаем базисную переменную :
Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :
Осталось выразить базисную переменную через свободные переменные :
В итоге получилось то, что нужно – все базисные переменные ( и ) выражены только через свободные переменные :
Собственно, общее решение готово:
Как правильно записать общее решение?
Свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные следует записать на второй и четвертой позиции:
.
Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:
Придавая свободным переменным произвольные значения, можно найти бесконечно много частных решений. Самыми популярными значениями являются нули, поскольку частное решение получается проще всего. Подставим в общее решение:
– частное решение.
Другой сладкой парочкой являются единицы, подставим в общее решение:
– еще одно частное решение.
Легко заметить, что система уравнений имеет бесконечно много решений (так как свободным переменным мы можем придать любые значения)
Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение и подставьте его в левую часть каждого уравнения исходной системы:
Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.
Но, строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно.
Поэтому более основательна и надёжна проверка общего решения. Как проверить полученное общее решение ?
Это несложно, но довольно муторно. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.
В левую часть первого уравнения системы:
Получена правая часть исходного уравнения.
В левую часть второго уравнения системы:
Получена правая часть исходного уравнения.
И далее – в левые части третьего и четвертого уравнение системы. Это дольше, но зато гарантирует стопроцентную правильность общего решения. Кроме того, в некоторых заданиях требуют проверку общего решения.
Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.
Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений. Что важно в самом процессе решения? Внимание, и еще раз внимание. Полное решение и ответ в конце урока.
И еще пара примеров для закрепления материала
Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения
Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
(1) Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.
(2) К третьей строке прибавляем вторую строку, умноженную на –5. К четвертой строке прибавляем вторую строку, умноженную на –7.
(3) Третья и четвертая строки одинаковы, одну из них удаляем.
Вот такая красота:
Базисные переменные сидят на ступеньках, поэтому – базисные переменные.
Свободная переменная, которой не досталось ступеньки здесь всего одна:
Обратный ход:
Выразим базисные переменные через свободную переменную:
Из третьего уравнения:
Рассмотрим второе уравнение и подставим в него найденное выражение :
Рассмотрим первое уравнение и подставим в него найденные выражения и :
Таким образом, общее решение:
Еще раз, как оно получилось? Свободная переменная одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , тоже заняли свои порядковые места.
Сразу выполним проверку общего решения. Работа для негров, но она у меня уже выполнена, поэтому ловите =)
Подставляем трех богатырей , , в левую часть каждого уравнения системы:
Получены соответствующие правые части уравнений, таким образом, общее решение найдено верно.
Теперь из найденного общего решения получим два частных решения. Шеф-поваром здесь выступает единственная свободная переменная . Ломать голову не нужно.
Пусть , тогда – частное решение.
Пусть , тогда – еще одно частное решение.
Ответ: Общее решение: , частные решения: , .
Зря я тут про негров вспомнил. . потому что в голову полезли всякие садистские мотивы и вспомнилась известная фотожаба, на которой куклуксклановцы в белых балахонах бегут по полю за чернокожим футболистом. Сижу, тихо улыбаюсь. Знаете, как отвлекает….
Много математики вредно, поэтому похожий заключительный пример для самостоятельного решения.
Найти общее решение системы линейных уравнений.
Проверка общего решения у меня уже сделана, ответу можно доверять. Ваш ход решения может отличаться от моего хода решения, главное, чтобы совпали общие решения.
Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.
Остановлюсь на некоторых особенностях решения, которые не встретились в прорешанных примерах.
В общее решение системы иногда может входить константа (или константы), например: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.
Редко, но встречаются системы, в которых количество уравнений больше количества переменных. Метод Гаусса работает в самых суровых условиях, следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.
И, конечно, повторюсь в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.
Решения и ответы:
Пример 2: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.
Выполненные элементарные преобразования:
(1) Первую и третью строки поменяли местами.
(2) Ко второй строке прибавили первую строку, умноженную на –6. К третьей строке прибавили первую строку, умноженную на –7.
(3) К третьей строке прибавили вторую строку, умноженную на –1.
В результате элементарных преобразований получена строка вида , где , значит, система несовместна.
Ответ: решений нет.
Пример 4: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
Выполненные преобразования:
(1) Ко второй строке прибавили первую строку, умноженную на 2. К третьей строке прибавили первую строку, умноженную на 3.
Для второй ступеньке нет единицы, и преобразование (2) направлено на её получение.
(2) К третьей строке прибавили вторую строку, умноженную на –3.
(3) Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)
(4) К третьей строке прибавили вторую строку, умноженную на 3.
(5)У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.
Обратный ход.
– базисные переменные (те, которые на ступеньках), – свободные переменные (те, кому не досталось ступеньки).
Выразим базисные переменные через свободные переменные:
Из третьего уравнения:
Рассмотрим второе уравнение:
Подставим в него найденное выражение :
Рассмотрим первое уравнение:
Подставим в него найденные выражения: , :
Общее решение:
Найдем два частных решения
Если , то
Если , то
Ответ: Общее решение: , частные решения: , .
Проверка: подставим найденное решение (выражения базисных переменных , и ) в левую часть каждого уравнения системы:
Получены соответствующие правые части, таким образом, общее решение найдено верно.
Пример 6: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
(1) Ко второй строке прибавляем первую строку, умноженную на 2. К третьей строке прибавляем первую строку, умноженную на –2. К четвертой строке прибавляем первую строку, умноженную на –3.
(2) К третьей строке прибавляем вторую строку. К четвертой строке прибавляем вторую строку.
(3) Третья и четвертая строки пропорциональны, одну из них удаляем.
– базисные переменные, – свободная переменная. Выразим базисные переменные через свободную переменную:
Ответ: Общее решение:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
Как определить свободные переменные в системе уравнений
Решение произвольных систем
Пусть дана система m линейных уравнений с n неизвестными:
(1)
В матричной форме система (1) имеет вид
где А = – матрица коэффициентов системы;
Х = – матрица-столбец переменных;
В = – матрица-столбец свободных членов.
Решением системы (1) называется всякий вектор , координаты которого обращают каждое уравнение системы в верное равенство.
Система уравнений, имеющая хотя бы одно решение, называется совместной. Система уравнений называется несовместной, если она не имеет ни одного решения.
Система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.
Две системы называются эквивалентными, если множества их решений совпадают.
Теорема 1. (теорема Кронекера – Капелли ). Система (1) совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы:
.
Теорема 2 . Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение. Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесконечно много решений.
Пусть ранг матрицы r ( A )= r n . Переменные называются базисными (основными), если определитель матрицы коэффициентов при них (базисный минор) отличен от нуля. Количество базисных переменных равно r . Другие n – r переменных называются свободными ( неосновными ). Выражение базисных переменных через свободные называется общим решением системы. Из него можно получить бесконечное множество частных решений, придавая свободным переменным произвольные значения.
Решение системы (1), в котором свободные переменные имеют нулевые значения, называется базисным решением. Число различных базисных решений не превосходит .
Метод последовательного исключения неизвестных
Метод Гаусса – это универсальный метод исследования и решения произвольных систем линейных уравнений. Он состоит в приведении системы к диагональному виду путем последовательного исключения неизвестных с помощью элементарных преобразований, не нарушающих эквивалентности систем. Переменная считается исключенной, если она содержится только в одном уравнении системы с коэффициентом 1.
Элементарными преобразованиями системы являются:
– умножение уравнения на число, отличное от нуля;
– сложение уравнения, умноженного на любое число, с другим уравнением;
– отбрасывание уравнения 0 = 0.
Если при выполнении элементарных преобразований получено уравнение вида 0 = k (где k 0), то система несовместна.
Перейдем теперь к решению систем с различным количеством неизвестных и уравнений. Пусть дана система m линейных уравнений с n неизвестными. Если такая система совместна, то при r n она имеет бесконечное множество решений, каждое из которых может быть получено из общего решения системы.
Для нахождения общего решения нам необходимо выбрать, какие неизвестные мы будем считать основными (базисными). Это могут быть любые r переменных, коэффициенты при которых составляют определитель, отличный от нуля. Затем выбранные основные переменные нужно выразить через свободные. Для этого с помощью элементарных преобразований необходимо расширенную матрицу системы привести к такому виду, чтобы коэффициенты при базисных переменных образовали так называемые базисные столбцы – столбцы, состоящие из нулей и одной единицы.
Решение систем линейных уравнений методом последовательного исключения неизвестных можно оформлять в виде таблицы.
Левый столбец таблицы содержит информацию об исключенных (базисных) переменных. Остальные столбцы содержат коэффициенты при неизвестных и свободные члены уравнений.
В исходную таблицу записывают расширенную матрицу системы. Далее приступают к выполнению очередной итерации:
1. Выбирают переменную , которая войдет в число базисных , и уравнение, в котором эта переменная останется. Соответствующие столбец и строку таблицы называют ключевыми. Коэффициент , стоящий на пересечении ключевой строки и ключевого столбца, называют ключевым.
2. Элементы ключевой строки делят на ключевой элемент.
3. Ключевой столбец заполняют нулями.
4. Остальные элементы вычисляют по правилу прямоугольника: составляют прямоугольник, в противоположных вершинах которого находятся ключевой элемент и пересчитываемый элемент; из произведения элементов, стоящих на диагонали прямоугольника с ключевым элементом, вычитают произведение элементов другой диагонали и полученную разность делят на ключевой элемент.
Переход к другому базису
Перейти от одного базиса системы к другому позволяет преобразование однократного замещения: вместо одной из основных переменных в базис вводят одну из свободных переменных. Для этого в столбце свободной переменной выбирают ключевой элемент и выполняют преобразования по указанному выше алгоритму, начиная с п. 2.
Нахождение опорных решений
Опорным решением системы линейных уравнений называется базисное решение, не содержащее отрицательных компонент.
Опорные решения системы находят методом Гаусса при выполнении следующих условий.
1. В исходной системе все свободные члены должны быть неотрицательны: .
2. В число базисных может быть введена только та переменная, в столбце коэффициентов при которой есть хотя бы один положительный элемент.
3. Если при переменной, вводимой в базис, имеются положительные коэффициенты в нескольких уравнениях, то переменная вводится в базис в то уравнение, которому соответствует наименьшее в столбце отношение свободных членов к этим положительным коэффициентам.
Замечание 1 . Если в процессе исключения неизвестных появится уравнение, в котором все коэффициенты неположительны , а свободный член , то система не имеет неотрицательных решений.
Замечание 2 . Если в столбцах коэффициентов при свободных переменных нет ни одного положительного элемента, то переход к новому опорному решению невозможен.
[spoiler title=”источники:”]
http://mathprofi.net/slu_nesovmestnye_sistemy_i_sistemy_s_obshim_resheniem.html
http://lms2.sseu.ru/courses/eresmat/course1/prakt1/razdpr1_9/teo1_9_4.htm
[/spoiler]
Раздел 5. ЭЛЕМЕНТЫ
ЛИНЕЙНОЙ АЛГЕБРЫ
Системы линейных
уравнений
Основные понятия
Системой линейных
алгебраических уравнений, содержащей
т
уравнений и п
неизвестных, называется система вида
где числа аij,
i=,
j=
называются коэффициентами
системы, числа bi
– свободными членами.
Подлежат нахождению числа хп.
Такую систему
удобно записывать в компактной матричной
форме
.
Здесь А – матрица
коэффициентов системы, называемая
основной
матрицей:
,
– вектор-столбец
из неизвестных хj,
– вектор-столбец из свободных членов
bi.
Расширенной
матрицей системы называется матрица
системы, дополненная столбцом свободных
членов
.
Решением системы
называется п
значений неизвестных х1=с1,
х2=с2,
…, хп=сп,
при подстановке которых все уравнения
системы обращаются в верные равенства.
Всякое решение системы можно записать
в виде матрицы-столбца
.
Система уравнений
называется совместной,
если она имеет хотя бы одно решение, и
несовместной,
если она не имеет ни одного решения.
Совместная система
называется определенной,
если она имеет единственное решение, и
неопределенной,
если она имеет более одного решения. В
последнем случае каждое ее решение
называется частным
решением
системы. Совокупность всех частных
решений называется общим
решением.
Решить систему
– это значит
выяснить, совместна она или не совместна.
Если система совместна, то найти ее
общее решение.
Две системы
называются эквивалентными
(равносильными), если они имеют одно и
то же общее решение. Другими словами,
системы эквивалентны, если каждое
решение одной из них является решением
другой, и наоборот.
Эквивалентные
системы получаются, в частности, при
элементарных
преобразованиях системы
при условии, что преобразования
выполняются лишь над строками матрицы.
Система линейных
уравнений называется однородной,
если все свободные члены равны нулю:
Однородная система
всегда совместна, так как х1=х2=…=хп=0
является
решением системы. Это решение называется
нулевым или
тривиальным.
Решение систем
линейных уравнений
Пусть дана
произвольная система т
линейных уравнений с п
неизвестными
Теорема 1
(Кронекера-Капелли).
Система линейных алгебраических
уравнений совместна тогда и только
тогда, когда ранг расширенной матрицы
равен рангу основной матрицы.
Теорема 2.
Если ранг совместной системы равен
числу неизвестных, то система имеет
единственное решение.
Теорема 3. Если
ранг совместной системы меньше числа
неизвестных, то система имеет бесконечное
множество решений.
П р и м е р. Исследовать
на совместность систему
Решение.
,
r(A)=1;
,
r()=2,
.
Таким образом,
r(A)
r(),
следовательно, система несовместна.
Решение
невырожденных систем линейных уравнений.
Формулы Крамера
Пусть дана система
п
линейных уравнений с п
неизвестными
или в матричной
форме А∙Х=В.
Основная матрица
А такой системы – квадратная. Определитель
этой матрицы называется определителем
системы.
Если определитель системы отличен от
нуля, то система называется невырожденной.
Найдем решение
данной системы уравнений в случае ∆0.
умножив обе части уравнения А∙Х=В слева
на матрицу А1,
получим А1∙
А∙Х= А1∙В.
Поскольку А1∙
А=Е и Е∙Х=Х, то Х=
А1∙
В. Данный
способ решения системы называют
матричным.
Из матричного
способа вытекают формулы
Крамера
,
где ∆ – определитель основной матрицы
системы, а ∆i
– определитель, полученный из определителя
∆ путем замены i-го
столбца коэффициентов столбцом из
свободных членов.
П р и м е р. Решить
систему
Решение.
,
70,
,
.
Значит, х1=,
х2=.
Решение систем
линейных уравнений методом Гаусса
Метод Гаусса
состоит в последовательном исключении
неизвестных.
Пусть дана система
уравнений
Процесс решения
по методу Гаусса состоит из двух этапов.
На первом этапе (прямой ход) система
приводится к ступенчатому
(в частности, треугольному)
виду.
где k
≤ п, аii
0, i=.
Коэффициенты
аii
называются главными
элементами системы.
На втором этапе
(обратный ход) идет последовательное
определение неизвестных из этой
ступенчатой системы.
Замечания:
-
Если ступенчатая
система оказывается треугольной, т.е.
k=n,
то исходная система имеет единственное
решение. Из последнего уравнения находим
хп,
из предпоследнего уравнения находим
хп1,
далее поднимаясь по системе вверх,
найдем все остальные неизвестные. -
На практике удобнее
работать с расширенной матрицей системы,
выполняя все элементарные преобразования
над ее строками. Удобно, чтобы коэффициент
а11
был равен
1(уравнения переставить местами, либо
разделить на а111).
П р и м е р. Решить
систему методом Гаусса
Решение. В результате
элементарных преобразований над
расширенной матрицей системы
~~~
~
исходная система
свелась к ступенчатой:
Поэтому общее
решение системы: x2=5x4
13x3
3;
x1=5x4
8x3
1.
Если положить,
например, х3=х4=0,
то найдем
одно из частных решений этой системы
х1=1,
х2=3,
х3=0,
х4=0.
Систем однородных
линейных уравнений
Пусть дана система
линейных однородных уравнений
Очевидно, что
однородная система всегда совместна,
она имеет нулевое (тривиальное) решение.
Теорема 4.
Для того, чтобы система однородных
уравнений имела ненулевое решение,
необходимо и достаточно, чтобы ранг ее
основной матрицы был меньше числа
неизвестных, т.е. r<n.
Теорема 5.
Для того, чтобы однородная система п
линейных уравнений с п
неизвестными имела ненулевое решение,
необходимо и достаточно, чтобы определитель
ее основной матрицы был равен нулю, т.е.
∆=0.
Если система имеет
ненулевые решения, то ∆=0.
П р и м е р. Решить
систему
Решение.
,
r(A)=2
,
п=3.
Так как r<n,
то система
имеет бесконечное множество решений.
,
.
Стало быть, х1==2х3,
х2==3х3
– общее решение.
Положив х3=0,
получим одно
частное решение: х1=0,
х2=0,
х3=0.
Положив х3=1,
получим
второе частное решение: х1=2,
х2=3,
х3=1
и т.д.
Вопросы для
контроля
-
Что такое система
линейных алгебраических уравнений? -
Поясните следующие
понятия: коэффициент, свободный член,
основная и расширенная матрицы. -
Какими бывают
системы линейных уравнений? Сформулируйте
теорему Кронкера-Капелли (о совместности
системы линейных уравнений). -
Перечислите и
поясните методы решения систем линейных
уравнений.
5
Соседние файлы в папке теория 1 курс
- #
- #
- #
- #
- #
- #
- #
- #
Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли),
определение количества решений, нахождение нормальной фундаментальной системы решений.
С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Правила ввода чисел
Числа можно вводить целые и дробные.
Дробные числа можно вводить в 3-х различных видах:
- в виде десятичных дробей,
- в виде обыкновенных дробей,
- в виде периодических десятичных дробей.
Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: ( -2{,}34 )
Ввод: -1,15
Результат: ( -1{,}15 )
Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -frac{2}{3} $$
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5frac{8}{3} $$
Помните, что на ноль делить нельзя!
Ввод дробного числа в виде периодической десятичной дроби.
В периодических десятичных дробях период заключается в скобки.
Ввод: 0,(72)
Результат: $$ frac{8}{11} $$
Ввод: -2,3(4)
Результат: $$ -2frac{31}{90} $$
Наши игры, головоломки, эмуляторы:
Немного теории.
Системы линейных алгебраических уравнений
Основные определения
Система (m) линейных алгебраических уравнений с (n) неизвестными (сокращенно СЛАУ) представляет собой систему вида
( left{ begin{array}{l}
a_{11}x_1 + a_{12}x_2 + cdots + a_{1n}x_n = b_1 \
a_{21}x_1 + a_{22}x_2 + cdots + a_{2n}x_n = b_2 \
cdots \
a_{m1}x_1 + a_{m2}x_2 + cdots + a_{mn}x_n = b_m
end{array} right. tag{1} )
Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от (n) переменных
( x_1 , ldots x_n ), а линейными потому, что эти многочлены имеют первую степень.
Числа (a_{ij} in mathbb{R} ) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения (i) и номером
неизвестного (j). Действительные числа ( b_1 , ldots b_m ) называют свободными членами уравнений.
СЛАУ называют однородной, если ( b_1 = b_2 = ldots = b_m = 0 ). Иначе её называют неоднородной.
Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных ( x_1^circ, ldots , x_n^circ ),
при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.
Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.
СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ
всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.
Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной.
При (m=n), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.
Формы записи СЛАУ
Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.
Рассматривая коэффициенты (a_{ij}) СЛАУ при одном неизвестном (x_j) как элементы столбца, а (x_j) как коэффициент, на который умножается
столбец, из (1) получаем новую форму записи СЛАУ:
( begin{pmatrix}
a_{11} \
a_{21} \
vdots \
a_{m1}
end{pmatrix} x_1 + begin{pmatrix}
a_{12} \
a_{22} \
vdots \
a_{m2}
end{pmatrix} x_2 + ldots + begin{pmatrix}
a_{1n} \
a_{2n} \
vdots \
a_{mn}
end{pmatrix} x_n = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )
или, обозначая столбцы соответственно ( a_1 , ldots , a_n , b ),
( x_1 a_1 + x_2 a_2 + ldots + x_n a_n = b tag{2} )
Таким образом, решение СЛАУ (1) можно трактовать как представление столбца (b) в виде линейной комбинации столбцов ( a_1, ldots, a_n ).
Соотношение (2) называют векторной записью СЛАУ.
Обратим внимание на то, что слева в каждом уравнении системы (1) стоит сумма попарных произведений — так же, как и в произведении двух матриц.
Если взять за основу произведение матриц, то СЛАУ (1) можно записать так :
( begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} begin{pmatrix}
x_1 \
x_2 \
vdots \
x_n
end{pmatrix} = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )
или (Ax=b), где (A) — матрица размера (m times n); (x) — столбец неизвестных; (b) — столбец свободных членов:
( A = begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} ,; )
( X = begin{pmatrix}
x_1 \
x_2 \
vdots\
x_n
end{pmatrix} ,; )
( B = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )
Поскольку (A ;,; X) и (B) являются матрицами, то запись СЛАУ (1) в виде (AX=B) называют матричной. Если (B=0), то СЛАУ
является однородной и в матричной записи имеет вид (AX=0).
Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида (AX=B)
являются просто различной формой записи одной и той же задачи.
Критерий совместности СЛАУ
“Триединство” форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет
для неоднородных СЛАУ (однородные СЛАУ всегда совместны).
Матрицу
( A = begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} )
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
( (A|B) = left( begin{array}{cccc|c}
a_{11} & a_{12} & cdots & a_{1n} & b_1 \
a_{21} & a_{22} & cdots & a_{2n} & b_2 \
vdots & vdots & ddots & vdots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn} & b_m
end{array} right) )
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно
(если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.
Теорема Кронекера-Капелли. Для совместности СЛАУ (AX=B) необходимо и достаточно, чтобы ранг её матрицы (A) был равен рангу
её расширенной матрицы ( (A|B) ).
Формулы Крамера
Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по
формулам Крамера :
$$ x_i = frac{Delta_i}{|A|} ;,quad i=overline{1,n} tag{3} $$
где (Delta_i) — определитель матрицы, получающейся из матрицы (A) заменой (i)-го столбца на столбец свободных членов.
Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.
Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы
нахождения решений.
Однородные системы
Следующая теорема описывает важнейшее свойство множества решений однородной системы (m) линейных алгебраических уравнений с (n) неизвестными.
Теорема. Если столбцы ( X^{(1)}, X^{(2)}, ldots , X^{(s)} ) — решения однородной СЛАУ (AX=0), то любая их линейная комбинация
также является решением этой системы.
Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.
Естественно попытаться найти такие решения ( X^{(1)}, ldots , X^{(s)} ) системы (AX=0), чтобы любое другое решение этой системы
представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.
Определение. Любой набор из (k=n-r) линейно независимых столбцов, являющихся решениями однородной СЛАУ (AX=0), где
(n) — количество неизвестных в системе, а (r) — ранг её матрицы (A), называют фундаментальной системой решений этой однородной СЛАУ.
При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице
(A) однородной СЛАУ (AX=0) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих
этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или
независимыми.
Теорема. Пусть дана однородная СЛАУ (AX=0) с (n) неизвестными и ( text{rang}A = r ). Тогда существует набор из (k=n-r)
решений ( X^{(1)}, ldots , X^{(k)} ) этой СЛАУ, образующих фундаментальную систему решений.
Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений
называют фундаментальной нормальной системой решений.
Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^{(1)} + ldots + c_kX^{(k)} $$
где постоянные ( c_i ;, quad i=overline{1,k} ), принимают произвольные значения.
Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.
Неоднородные системы
Рассмотрим произвольную СЛАУ (AX=B). Заменив столбец (B) свободных членов нулевым, получим однородную СЛАУ (AX=0), соответствующую
неоднородной СЛАУ (AX=B). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.
Теорема. Пусть столбец (X^circ) — некоторое решение СЛАУ (AX=B). Произвольный столбец (X) является решением этой СЛАУ тогда и
только тогда, когда он имеет представление (X = X^circ + Y ), где (Y) — решение соответствующей однородной СЛАУ (AY=0).
Следствие. Пусть (X’) и (X”) — решения неоднородной системы (AX=B). Тогда их разность ( Y = X’ – X” ) является
решением соответствующей однородной системы (AY=0).
Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно
её решение (частное решение) и все решения соответствующей однородной СЛАУ.
Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых,
найти частное решение (X^circ) этой системы, чтобы свести её к однородной системе.
Теорема о структуре общего решения СЛАУ. Пусть (X^circ) — частное решение СЛАУ (AX=B) и известна фундаментальная система
решений ( X^{(1)}, ldots , X^{(k)} ) соответствующей однородной системы (AX=0). Тогда любое решение СЛАУ (AX=B) можно представить в виде
$$ X = X^circ + c_1 X^{(1)} + c_2 X^{(2)} + ldots + c_k X^{(k)} $$
где ( c_i in mathbb{R} ;, quad i=overline{1,k} ).
Эту формулу называют общим решением СЛАУ.