Как найти сторону грани прямой призмы

На этой странице вы узнаете

  • Чем упаковка стикеров похожа на призму?
  • Как можно попасть в призму в реальной жизни?
  • Как сложить игральные кости из листа бумаги?
  • Как найти объем воды в аквариуме? 

Слышали такое выражение «смотреть сквозь призму чего-либо»? Оно значит ситуацию, в которой мы воспринимаем что-либо под влиянием каких-то убеждений или представлений. Замысловато, конечно… Возможно, потому что и сама призма — непростое понятие. Давайте разберемся с ней с точки зрения математики.

Определение призмы

Многие из нас пользуются стикерами. Для записи своих дел, для закладок, для пометок при ведении конспектов. Даже если мы ими не пользуемся, то наверняка видели их в магазинах или у родственников и друзей. 

Один такой стикер можно принять за плоскость. Теперь вспомним, как выглядит упаковка с ними. Много-много стикеров накладываются друг на друга и получается небольшая объемная фигура, сверху и снизу которой лежат два абсолютно одинаковых листа. При этом сразу заметим, что нижний и верхний стикеры будут параллельны друг другу. 

На самом деле, упаковка со стикерами является не чем иным, как призмой! 

Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. 

Чем упаковка стикеров похожа на призму?

Упаковка стикеров является объемной фигурой, в основаниях которой лежат равные прямоугольники. А боковые  стороны упаковки являются параллелограммом. Таким образом, упаковка стикеров полностью соответствует определению призмы. 

Определение может показаться немного запутанным, но в нем нет ничего страшного. Разберемся, поближе взглянув на составные призмы. 

Строение призмы

Представим себе обычную коробку. Ее дно и крышка равны между собой и лежат в параллельных плоскостях. Это и есть равные многоугольники. Также их называют основаниями призмы. 

Посмотрим на стенки коробки. Они являются параллелограммами, просто с прямыми углами. Подробнее про параллелограммы можно прочитать в статье «Параллелограмм». Эти параллелограммы называются боковыми гранями призмы. 

Возьмем линейку и измерим расстояние между основаниями призмы. Для этого из любой точки одного основания проведем перпендикуляр к другому. 

Подробнее про расстояния между плоскостями можно узнать в статьях «Углы в пространстве» и «Расстояния между фигурами». 

Может возникнуть вопрос, что мы сейчас нашли? Мы нашли высоту призмы. 

Высота призмы — перпендикуляр, опущенный из любой точки одного основания на другое основание призмы. 

В задачах намного удобнее опускать перпендикуляр не из произвольной точки, а из вершины призмы. 

Рассмотрим элементы призмы

Ребро — это линия пересечения двух плоскостей. 

Представим, что вместо картонных стенок в нашей коробке ткань, которую нам нужно натянуть на каркас так, чтобы коробка не изменилась. В этом случае все прямые этого каркаса и будут ребрами.

Ребра бывают двух видов

  • ребра оснований,
  • боковые ребра. 

Отличить их также легко: ребра основания являются стороной многоугольника, который в нем лежит, в то время как боковые ребра не принадлежат основаниям. 

У боковых ребер есть одно очень важное свойство: они равны между собой и параллельны. 

Диагональ призмы — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. 

Например, мы можем взять клетку попугая и от угла до угла сделать ему жердочку, чтобы птичке было весело жить. Эта жердочка и будет диагональю призмы. 

Виды призм

Вернемся к рассуждениям о том, чем упаковка стикеров похожа на призму. Например, куб и параллелепипед будут отличаться. А если в основании призмы будет лежать треугольник или шестиугольник? Или двадцатиугольник? Разделим призмы на несколько видов.

Мы рассмотрим две классификации. 

В первом случае будем рассматривать призмы по фигурам, которые лежат в основании. В многоугольнике может быть множество сторон, а значит, и в основании призмы может быть треугольник, четырехугольник, шестиугольник, десятиугольник и так далее. 

В зависимости от фигуры в основании призмы могут называться по-разному. Вот три основных, которые чаще всего встречаются при решении заданий:

  • треугольная призма,
  • четырехугольная призма,
  • шестиугольная призма. 

Аналогичным образом можно дать название любой призме, например, десятиугольная призма или стоугольная призма. 

В определении призмы сказано, что в боковых гранях лежат параллелограммы. До этого мы чертили только прямоугольники, но в боковых гранях могут лежать не только они. 

С этим связана вторая классификация призм. По этому признаку призмы делятся всего на два вида:

  • прямые,
  • наклонные. 

Разберемся в них чуть подробнее. 

Прямая призма — призма, боковые ребра которой перпендикулярны основаниям. 

В этом случае боковые ребра и ребра оснований действительно образовывают прямоугольник. 

Наклонная призма — призма, боковые ребра которой находятся под углом к основаниям. 

Где мы можем найти прямые и наклонные призмы? Оказывается, в архитектуре. Обычный жилой дом типовой застройки будет прямой призмой. А вот примером наклонной призмы может служить комплекс зданий “Ворота Европы” в Мадриде. 

Чуть подробнее остановимся на прямых призмах. Они встречаются достаточно часто и обладают несколькими важными свойствами. 

Посмотрите на свою комнату. Если по плану квартиры она будет многоугольником, то вы как бы сидите в призме. Теперь ответим на вопрос: как найти высоту комнаты? 

Простой ответ: померить по стене. А если посмотреть на угол, то можно заметить, что ребро призмы совпадает с высотой. Таким образом, мы получаем первое свойство прямых призм. 

Свойство 1. Высота прямой призмы совпадает с её боковым ребром. 

Посмотрим на стены комнаты, на их форму. Они все являются прямоугольниками, верно? 

Свойство 2. Все боковые грани прямой призмы — прямоугольники. 

Как можно попасть в призму в реальной жизни?

Многие комнаты и помещения, особенно в типовой застройке, обладают формой призмы. Сидя в комнате, в классе, в столовой, даже в автобусе — мы как бы находимся  внутри большой призмы.

Если мы в основании прямой призмы разместим правильный многоугольник, у нас получится правильная призма.

Правильная призма — прямая призма, в основании которой лежит правильный многоугольник. 

Например,  в правильной треугольной призме будет лежать равносторонний треугольник, а в правильной шестиугольной призме — правильный шестиугольник. 

Определение параллелепипеда

Еще одной разновидностью прямоугольной призмы является параллелепипед. 

Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. 

Параллелепипеды встречаются повсюду: коробки, мебель, комнаты, здания, склады, магазины. Поэтому изучить их не составит труда. 

Свойство параллелепипеда, видимое невооруженным глазом: противоположные грани параллелепипеда равны. Как пример, вспомним ту же комнату: потолок и пол равны, так же как и стены, находящиеся напротив друг друга. 

Нельзя не упомянуть про одно очень важное свойство параллелепипеда

  • Все его диагонали пересекаются в одной точке и этой точкой делятся пополам. Это свойство справедливо для всех видов параллелепипеда. 

Какие бывают параллелепипеды? 

Параллелепипеды также бывают прямыми и наклонными. В этих случаях все определения такие же, как и для всех остальных призм. 

Прямой параллелепипед

Рассмотрим несколько интересных свойств прямого параллелепипеда. 

1 свойство. Боковые ребра прямого параллелепипеда перпендикулярны основаниям. 

2 свойство. Высота прямоугольного параллелепипеда равна длине его бокового ребра. 

3 свойство. Боковые грани, которые лежат напротив друг друга, равны между собой и являются прямоугольниками. 

Прямые параллелепипеды можно разделить еще на два вида:

  • Прямой параллелепипед: в основании лежит параллелограмм;
  • Прямоугольный параллелепипед: в основании лежит прямоугольник. 

Рассмотрим свойства прямоугольного параллелепипеда. 

1 свойство. Все грани прямоугольного параллелепипеда являются прямоугольниками. 

2 свойство. Все углы в прямоугольном параллелепипеде, образованные двумя гранями, равны 90°. 

3 свойство. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин его ширины, длины и высоты. 

Таким образом, мы получаем важную формулу для параллелепипеда. 

d2 = a2 + b2 + c2

Пример 1. Дан прямоугольный параллелепипед. Два ребра, выходящие из одной его вершины, равны (sqrt{35}) и (sqrt{46}). Диагональ параллелепипеда равна 15. Найдите третье ребро параллелепипеда. 

Решение. Пусть третье ребро параллелепипеда равняется х. Получаем уравнение:

(15^2 = (sqrt{35})^2 + (sqrt{46})^2 + x^2)
225 = 35 + 46 + x2
x2 = 144
x = 12

Ответ: 12. 

У прямоугольного параллелепипеда существует еще несколько видов. Прямоугольные параллелепипеды делятся на:

  • Произвольный прямоугольный параллелепипед. В основании может лежать прямоугольник. 
  • Правильный прямоугольный параллелепипед. В основании лежит правильный четырехугольник, то есть квадрат. 
    При этом боковые ребра не равны ребрам основания. Следовательно, в основаниях будут лежать квадраты, а в боковых гранях прямоугольники. 
  • Куб. В основании лежит квадрат, а боковые ребра равны ребрам основания. 
    В кубе все ребра равны, а все его грани будут квадратом. 

Таким образом, мы рассмотрели все виды параллелепипеда. 

Формулы для призмы

Однако ни одна задача не может быть решена без формул. Поэтому необходимо рассмотреть несколько основных формул, которые могут встретиться не только в задачах, но и в жизни. 

Немного вспомним моделирование, а именно развертку кубика. Мы знаем, что из листа бумаги без труда можно сложить кубик, если правильно его вычертить. 

Как сложить игральные кости из листа бумаги?

Задумали вы вечером сыграть с семьей или друзьями в настольную игру. Но вот незадача: игральные кости опять куда-то запропастились. Не беда.Достаточно вычертить на листе бумаги несколько квадратов, вырезать получившуюся фигуру, согнуть по ребрам и склеить между собой с помощью клея. В итоге получатся кубики для игры.

На рисунке оранжевым показаны основания, а желтым боковые грани нашего будущего кубика. А теперь представим, что нам нужно найти площадь боковой поверхности. Как это сделать?

Нужно найти площади желтых квадратиков и сложить их. 

Площадь боковой поверхности призмы — сумма площадей всех боковых ее граней. 

Единой формулы тут нет, поскольку призмы могут очень сильно отличаться друг от друга. В произвольных призмах придется считать площадь каждой боковой грани, а уже после их складывать. 

Но есть один фокус! Правда, он работает только для прямой призмы. Если по условию дана прямая призма, то можно воспользоваться формулой 

Sбок. = P * h

В этой формуле Р — периметр основания, h — высота призмы, которая совпадает с высотой боковой грани. 

Пример 1. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равняется 2, а высота 10. 

Решение

Шаг 1. Поскольку правильная призма по определению прямая, мы можем воспользоваться формулой S = Ph. 

Шаг 2. В основании правильной призмы лежит правильный шестиугольник, следовательно, периметр основания будет равен 6 * 2 = 12. 

Шаг 3. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 12 * 10 = 120. 

Ответ: 120. 

Пример 2. Дана прямая треугольная призма, в основании которой лежит прямоугольный треугольник с катетами 12 и 5. Высота призмы равна 13. Найдите площадь ее боковой поверхности. 

Решение. 

Шаг 1. Поскольку призма прямая, можно воспользоваться формулой S = Ph. 

Шаг 2. Найдем периметр основания. Для этого необходимо найти гипотенузу треугольника. Воспользуемся теоремой Пифагора: (sqrt{12^2 + 5^2} = sqrt{144 + 25} = sqrt{169} = 13). 

Шаг 3. Найдем периметр основания: P = 12 + 5 + 13 = 30. 

Шаг 4. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 30 * 13 = 390. 

Ответ: 390. 

Мы научились находить площадь боковой поверхности. А как найти всю площадь призмы? Вспомним нашу развертку с кубиком. Чтобы найти всю площадь кубика, нужно найти площадь всех квадратов, из которых он состоит. То есть и площадь боковой поверхности, и площадь оснований. 

Площадь полной поверхности призмы — сумма площадей всех граней. 

Следовательно, нам нужно сложить площади всех боковых граней и дважды площадь основания. Получаем следующую формулу. 

S = Sбок + 2Sосн

Вспомним обычный хлеб, черный или белый. Его форма очень приближена к параллелепипеду. Тогда его корочка будет площадью полной поверхности параллелепипеда. А все что внутри, то есть мякиш, можно принять за объем. 

Пример 3. Дана прямая призма, в основании которой лежит ромб с диагоналями 12 и 16. Боковое ребро призмы равно 25. Найдите площадь поверхности призмы. 

Решение. 

Шаг 1. Найдем площадь основания. Площадь ромба можно найти по формуле (frac{1}{2} * D_1 * D_2). Следовательно, площадь ромба равна (frac{1}{2} * 12 * 16 = 96). 

Шаг 2. Заметим, что диагонали ромба образуют четыре равных прямоугольных треугольника. Следовательно, чтобы найти сторону ромба, достаточно рассмотреть прямоугольный треугольник с катетами 6 и 8. По теореме Пифагора сторона ромба будет равна (sqrt{6^2 + 8^2} = sqrt{36 + 64} = sqrt{100} = 10).

Шаг 3. Периметр ромба будет равен 4 * 10 = 40. Тогда площадь боковой поверхности равна 40 * 25 = 1000. 

Шаг 4. Площадь полной поверхности будет равняться 1000 + 2 * 96 = 1000 + 192 = 1192.

Ответ: 1192

Пример 4. Площадь поверхности правильной четырехугольной призмы равняется 1980. Сторона основания равна 5. Найдите боковое ребро этой призмы. 

Решение. 

Шаг 1. Воспользуемся формулой S = Sбок + 2Sосн. Площадь основания будет равняться площади квадрата, то есть 5 * 5 = 25. 

Шаг 2. Подставим известные величины в формулу: 

1980 = Sбок + 2 * 25
Sбок = 1930

Шаг 3. Площадь боковой поверхности равна произведению периметра основания на высоту призмы. Периметр равен 5 * 4 = 20. Тогда получаем уравнение:

20h = 1930
h = 96,5

Шаг 4. Поскольку по условию дана правильная призма, то высота совпадает с боковым ребром. Следовательно, боковое ребро равняется 96,5.

Ответ: 96,5. 

Теперь рассмотрим, как найти объем призмы. Допустим, мы налили в прямоугольный аквариум немного воды. Как определить, сколько воды мы налили?

Для этого достаточно воспользоваться формулой объема призмы. 

V = Sосн. * h

Эта формула общая, однако для каждой призмы она может принять свой вид в зависимости от того, какую формулу нужно использовать для поиска площади основания или высоты. 

Например, чтобы найти объем воды в аквариуме, необходимо длину умножить на ширину и на высоту, а значит формула принимает вид V = abh. 

Как найти объем воды в аквариуме? 

Для этого достаточно перемножить ширину, длину аквариума и высоту воды. Тем самым мы найдем объем призмы, форму которой принимает вода в аквариуме. 

Пример 5. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 12 и 15. Боковое ребро призмы равно 4. Найдите объем этой призмы. 

Решение. 

Шаг 1. Для начала найдем площадь основания. В этом случае мы можем воспользоваться формулой (frac{1}{2}ab). Площадь равна (frac{1}{2} * 12 * 15 = 90).

Шаг 2. Воспользуемся формулой объема призмы и подставим известные величины: 

V = 90 * 4 = 360.

Ответ: 360. 

Пример 6. Дан сосуд, в основании которого лежит правильный треугольник. В этот сосуд налили 3000 см3 воды. Высота жидкости оказалась равной 10 см. После этого в сосуд опустили шарик и высота изменилась с 10 см на 14 см. Найдите объем шарика. 

Решение. Немного вспомним физику, а именно тот факт, что объем вытесненной жидкости равен объему тела. Значит, чтобы найти объем шарика, необходимо найти насколько изменился объем воды. 

Шаг 1. Найдем площадь основания сосуда. Для этого немного преобразуем формулу объема: 
(S = frac{V}{h})
Тогда:
(S = frac{3000}{10} = 300)

Шаг 2. А теперь найдем объем после того, как в воду погрузили шарик. Он будет равен 300 * 14 = 4200. 

Шаг 3. Объем вытесненной жидкости равен 4200 — 3000 = 1200.

Ответ: 1200. 

Мы рассмотрели основные формулы, которые применяются для решения задач. Стоит заметить, что они универсальны, и в каждой задаче их рационально преобразовывать под ситуацию. 

Фактчек 

  • Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. Равные многоугольники называются основаниями призмы, а остальные стороны — боковыми гранями. В призме есть ребра — линии пересечения двух ее граней. Ребра как бы образуют каркас призмы. 
  • Призмы можно разделить на несколько видов по тому, какая фигура лежит в основании: треугольник, четырехугольник, шестиугольник или любой другой многоугольник. Призмы бывают прямые и наклонные. В прямых призмах боковые ребра перпендикулярны основанию, а в наклонных — нет. Правильная призма — прямая призма, в основании которой лежит правильный многоугольник. 
  • Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. Параллелепипеды бывают наклонными и прямыми. Прямые параллелепипеды включают в себя прямоугольные параллелепипеды, которые, в свою очередь, делятся на произвольные, правильные и кубы. 
  • В призме можно найти площадь боковой поверхности, площадь полной поверхности и объем. Для каждого из этих случаев необходимо пользоваться формулами. 

Проверь себя

Задание 1.
Что такое диагональ призмы?

  1. Отрезок, соединяющий две соседние вершины в призме.
  2. Отрезок, соединяющий противоположные углы в боковой грани призмы.
  3. Отрезок, соединяющий противоположные углы в основании призмы.
  4. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.  

Задание 2.
Что такое прямая призма?

  1. Призма, боковые ребра которой перпендикулярны основаниям.
  2. Призма, боковые ребра которой расположены под острым углом относительно основания.
  3. Призма, боковые ребра которой расположены под тупым углом относительно основания.
  4. Призма, в основании которой лежит прямоугольник.

Задание 3.
Как найти высоту прямой призмы?

  1. Высоту нужно найти с помощью оснований.
  2. Высота совпадает с боковым ребром.
  3. Необходимо найти расстояние между двумя вершинами, не принадлежащими одной грани.
  4. В прямой призме невозможно найти высоту. 

Задание 4.
Какая фигура лежит в основании прямоугольного параллелепипеда?

  1. Параллелограмм с острыми углами.
  2. Ромб с острыми углами.
  3. Трапеция.
  4. Прямоугольник. 

Задание 5. 
Как найти площадь полной поверхности призмы?

  1. Нужно найти сумму площадей всех боковых граней.
  2. Нужно сложить площадь боковой поверхности и площадь основания.
  3. Нужно сложить площадь боковой поверхности и удвоенную площадь основания.
  4. Нужно сложить площади оснований. 

Ответы: 1. — 4 2. — 1 3. — 2 4. — 4 5. — 3

Геометрия, 10 класс

Урок № 14. Призма

Перечень вопросов, рассматриваемых в теме:

  • Понятие призмы и виды призм;
  • Элементы призмы: вершины, ребра, грани;
  • Понятие площади боковой поверхности и площади полной поверхности призмы, формулы для вычисления;
  • Призма как модель реальных объектов;
  • Пространственная теорема Пифагора.

Глоссарий по теме

Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

Боковые грани – все грани, кроме оснований.

Боковые ребра – общие стороны боковых граней.

Основания призмы – равные многоугольники, расположенные в параллельных плоскостях.

Прямая призма – призма, боковые ребра которой перпендикулярны основаниям.

Правильная призма – прямая призма, в основании которой лежит правильный многоугольник.

Площадь полной поверхности призмы – сумма площадей всех ее граней.

Площадь боковой поверхности призмы – сумма площадей ее боковых граней.

Параллелепипед – призма, все грани которой – параллелограммы.

Прямоугольный параллелепипед – параллелепипед в основании которого лежит прямоугольник.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа,

геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. Уровни – М. : Просвещение, 2014. – 255 с.

Открытые электронные ресурсы:

Открытый банк заданий ФИПИ http://ege.fipi.ru/

Теоретический материал для самостоятельного изучения

Определение призмы. Элементы призмы.

Рассмотрим два равных многоугольника А1А2…Аn и В1В2…Вn, расположенных в параллельных плоскостях α и β соответственно так, что отрезки А1В1, А2В2…АnВn, соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Рисунок 1 – Призма

Заметим, что каждый из n четырехугольников (A1A2B1B2, …AnA1B1Bn) является параллелограммом. Убедимся в этом на примере четырехугольника A1A2B1B2. A1A2 и B1B2 параллельны по свойству параллельных плоскостей, пересеченных третьей плоскостью. А1В1 и А2В2 по условию. Таким образом, в четырехугольнике A1A2B1B2 противоположные стороны попарно параллельны, значит этот четырехугольник — параллелограмм по определению.

Дадим определение призмы. Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

При этом равные многоугольники, расположенные в параллельных плоскостях, называются основаниями призмы, а параллелограммы – боковыми гранями призмы. Общие стороны боковых граней будем называть боковыми ребрами призмы.

На рисунке 1 основаниями призмы являются многоугольники А1А2…Аn и В1В2…Вn. Боковые грани – параллелограммы A1A2B1B2, …, AnA1B1Bn, а боковые ребра – отрезки А1В1, А2В2, …, АnВn.

Отметим, что все боковые ребра призмы равны и параллельны (как противоположные стороны параллелограммов).

Призму с основаниями А1А2…Аn и В1В2…Вn обозначают А1А2…АnВ1В2…Вn и называют n-угольной призмой.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Обратите внимание, что все высоты призмы равны между собой, так как основания расположены на параллельных плоскостях. Также высота призмы может лежать вне призмы (рис. 2).

Рисунок 2 – Наклонная призма

Виды призм

Если боковые ребра призмы перпендикулярны основаниям, то призма называется прямой. В противном случае, призма называется наклонной.

Высота прямой призмы равна ее боковому ребру.

На рисунке 3 приведены примеры прямых призм

Рисунок 3 – Виды призм.

Прямая призма называется правильной, если ее основание – правильный многоугольник. В правильной призме все боковые грани – равные прямоугольники.

Иногда четырехугольную призму, грани которой параллелограммы называют параллелепипедом. Известный вам правильный параллелепипед – это куб.

Площадь полной поверхности призмы. Площадь боковой поверхности призмы.

Площадью полной поверхности призмы (Sполн) называется сумма площадей всех ее граней, а площадью боковой поверхности (Sбок) призмы – сумма площадей ее боковых граней.

Таким образом, верно следующее равенство: Sполн= Sбок+2Sосн, то есть площадь полной поверхности есть сумма площади боковой поверхности и удвоенной площади основания.

Чему равна площадь боковой поверхности прямой призмы?

Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство

Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте призмы – h. Площадь боковой поверхности призмы равна сумме площадей боковых граней, то есть прямоугольников. Площадь каждого прямоугольника есть произведение высоты h и стороны основания. Просуммируем эти площади и вынесем множитель h за скобки. В скобках получим сумму всех сторон основания, то есть периметр основания P. Таким образом Sбок=Pоснh.

Пространственная теорема Пифагора

Прямой параллелепипед, основание которого – прямоугольник называется прямоугольным.

Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, исходящих из одной вершины.

Рисунок 4 – Прямоугольный параллелепипед

Доказательство

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 и найдем квадрат длины его диагонали А1С.

Для этого рассмотрим треугольник А1АС:

Ребро АА1 перпендикулярно плоскости основания (ABC) (т.к. параллелепипед прямой), значит АА1 перпендикулярна любой прямой, лежащей в плоскости основания, в том числе АС. Таким образом, ΔА1АС – прямоугольный.

По теореме Пифагора получаем: А1С2=АА12+АС2 (1).

Выразим теперь АС. По условию в основании лежит прямоугольник, значит ΔАВС – прямоугольный. По тереме Пифагора получаем: АС2=ВС2+АВ2.

Подставив результат в (1), получим: А1С2=АА12+ВС2+АВ2.

Так как в основании прямоугольник, то ВС=АD.

Таким образом, А1С2=АА12+АD2+АВ2.

Что и требовалось доказать

Доказанная теорема является аналогом теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.

Примеры и разбор решения заданий тренировочного модуля

Задание 1.

Найдите для каждой картинки пару

1)2) 3)

4)5)

6)

Решение

Все изображения можно разделить на две группы: призмы и многоугольники. Вспомним, что основанием призмы является многоугольник. Теперь необходимо посчитать количество вершин многоугольников в основаниях призм и сопоставить их с нужным изображением. Таким образом, получаем следующий ответ: 1 и 3, 2 и 4, 5 и 6.

Задание 2

Какие из перечисленных объектов могут быть элементами призмы?

1) параллельные плоскости

2) отрезок

3) точка

4) четырехугольник

Решение:

Вспомним сначала, какие элементы есть у призмы. Это ребра, грани, вершины, основания, высота, диагональ.

Ребра, высота и диагональ призмы представляют собой отрезок. Грани и основания – это многоугольники, то есть части плоскостей. Вершины – точки. Таким образом, подходят варианты 2, 3,4.

Ответ: 2,3,4

На чтение 4 мин Просмотров 60.9к. Опубликовано 13 февраля, 2019

Здесь вы найдёте: Объем правильной треугольной призмы понятие, Объем призмы треугольной формула нахождения, Площадь треугольной призмы

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Содержание

  1. Призма треугольная — определение
  2. Элементы треугольной призмы
  3. Виды треугольных призм
  4. Прямая треугольная призма
  5. Наклонная треугольная призма
  6. Основные формулы для расчета треугольной призмы
  7. Объем треугольной призмы
  8. Площадь боковой поверхности призмы
  9. Площадь полной поверхности призмы
  10. Правильная призма — прямая призма, основанием которой является правильный многоугольник.
  11. Пример призмы
  12. Задачи на расчет треугольной призмы

Призма треугольная — определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Призма треугольная

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы.

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Треугольная призма - высота и сечение

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

 Объем призмы = площадь основания х высота

или

V=Sосн . h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

или

Sбок=Pосн.

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

формула определения полной поверхности призмы

так как Sбок=Pосн.h, то получим:

Sполн.пов.=Pосн.h+2Sосн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.

Пример призмы

Прямая треугольная призма

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2  · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Наклонная треугольная призма с сечением

Решение: 

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ – высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$h$ – высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ – радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ – смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба

$S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны.

2. Квадрат

$S=a^2$, где $а$ – сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ – сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр – это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$

$V=S_{осн}·h=πR^2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ – средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ – радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

Содержание:

Ранее вы уже знакомились с призмой, т. е. многогранником, две грани которого — равные Призма в геометрии - определение, формулы и примеры

Что такое призма

Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.

Призмы разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Призма, изображенная на рисунке 1, — шестиугольная, а на рисунке 2, — девятиугольная.

Отличают прямые и наклонные призмы в зависимости от того, перпендикулярны или не перпендикулярны боковые ребра призмы ее основаниям. Обычно при изображении прямой призмы ее боковые ребра проводят вертикально.

Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Прямая призма, основаниями которой являются правильные многоугольники, называется правильной призмой. В прямой призме все боковые грани — прямоугольники, а в правильной — равные прямоугольники.

Перпендикуляр, проведенный из какой-либо точки одного основания призмы к плоскости другого основания, называется высотой призмы. На рисунке 3 показаны две высоты Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры призмы Призма в геометрии - определение, формулы и примеры. У прямой призмы ее высота равна боковому ребру.

Боковые грани составляют боковую поверхность призмы, а боковые грани вместе с основаниями — полную поверхность призмы.

Теорема 1.

Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра:

Призма в геометрии - определение, формулы и примеры

Доказательство:

Пусть имеется Призма в геометрии - определение, формулы и примеры-угольная призма Призма в геометрии - определение, формулы и примеры. Пересечем ее плоскостью Призма в геометрии - определение, формулы и примеры, перпендикулярной боковому ребру. Получим перпендикулярное сечение Призма в геометрии - определение, формулы и примеры, стороны которого перпендикулярны сторонам параллелограммов, составляющим боковую поверхность призмы. Поэтому для боковой поверхности Призма в геометрии - определение, формулы и примеры получим:

Призма в геометрии - определение, формулы и примеры

При переходе (1) мы учли, что все боковые ребра призмы равны друг другу, при переходе (2) — то, что сумма Призма в геометрии - определение, формулы и примеры выражает периметр Призма в геометрии - определение, формулы и примеры перпендикулярного сечения призмы, а множитель Призма в геометрии - определение, формулы и примеры — длину Призма в геометрии - определение, формулы и примеры бокового ребра.

Следствие 1.

Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты.

Действительно, перпендикулярное сечение прямой призмы равно ее основанию, а боковое ребро является высотой.

Частным видом призмы является параллелепипед, т. е. призма, основанием которой является параллелограмм. Параллелепипед, как и призма, может быть прямым или наклонным. Прямой параллелепипед, основаниями которого являются прямоугольники, называется прямоугольным параллелепипедом. Прямоугольный параллелепипед, у которого три ребра, выходящие из одной вершины, равны друг другу, называется кубом.

У параллелепипеда все грани — параллелограммы, из которых у прямого параллелепипеда прямоугольниками являются боковые грани, а у прямоугольного параллелепипеда — все грани.

12 ребер параллелепипеда разделяются на три четверки равных ребер (рис. 5), его 6 граней — на три пары равных граней (рис. 6), а 4 диагонали пересекаются в одной точке, являющейся центром симметрии параллелепипеда (рис. 7).

Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Прямой параллелепипед еще имеет ось симметрии (рис. 8) и плоскость симметрии (рис. 9). Прямоугольный параллелепипед имеет три оси симметрии (рис. 10) и три плоскости симметрии (рис. 11).

Ребра прямоугольного параллелепипеда, выходящие из одной вершины, называют измерениями прямоугольного параллелепипеда. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (рис. 12), и все его диагонали равны друг другу.

Важной характеристикой плоской фигуры является ее площадь. Подобной характеристикой тела является его объем. Будем считать, что изучаемые нами тела имеют объем.

За единицу объема принимают объем куба с ребром 1. На практике пользуются разными единицами объема: как метрическими — кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр, кубический километр, так и неметрическими — галлон, барель, бушель, кварта.

Для объема тела выполняются его основные свойства:

  • равные тела имеют равные объемы;
  • если тело разделено на части, то его объем равен сумме объемов этих частей.

При этом равными фигурами называют фигуры, которые преобразуются друг в друга определенным движением. Например, равными являются две шестиугольные правильные призмы, у которых соответственно равны стороны оснований и высоты (рис. 13), или два цилиндра с соответственно равными радиусами оснований и образующими (рис. 14). Тело, изображенное на рисунке 15, можно разделить на цилиндр и конус, и его объем равен сумме объемов этих цилиндра и конуса.

Два тела с равными объемами называют равновеликими телами. Равные тела являются равновеликими, но не наоборот.

Вы знаете, что объем Призма в геометрии - определение, формулы и примеры прямоугольного параллелепипеда равен произведению трех его измерений Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры (рис. 16): Призма в геометрии - определение, формулы и примеры.

Учитывая, что в формуле Призма в геометрии - определение, формулы и примеры произведение Призма в геометрии - определение, формулы и примеры выражает площадь Призма в геометрии - определение, формулы и примеры основания прямоугольного параллелепипеда, а число Призма в геометрии - определение, формулы и примеры — его высоту Призма в геометрии - определение, формулы и примеры, получим, что объем Призма в геометрии - определение, формулы и примеры прямоугольного параллелепипеда равен произведению площади его основания и высоты: Призма в геометрии - определение, формулы и примеры.

Призма в геометрии - определение, формулы и примеры

Теорема 2.

Объем произвольного параллелепипеда равен произведению площади его основания и высоты:

Призма в геометрии - определение, формулы и примеры

Доказательство:

Пусть имеется произвольный параллелепипед Призма в геометрии - определение, формулы и примеры (рис. 17). Через ребро Призма в геометрии - определение, формулы и примеры проведем плоскость, перпендикулярную ребру Призма в геометрии - определение, формулы и примеры, она отсечет от параллелепипеда треугольную призму Призма в геометрии - определение, формулы и примеры (рис. 18). После параллельного сдвига этой призмы в направлении отрезка Призма в геометрии - определение, формулы и примеры получим призму Призма в геометрии - определение, формулы и примеры. Параллелепипед Призма в геометрии - определение, формулы и примеры равновелик с данным параллелепипедом Призма в геометрии - определение, формулы и примеры. Выполненное преобразование параллелепипеда также сохраняет объем параллелепипеда, площадь его основания и высоту.

У параллелепипеда Призма в геометрии - определение, формулы и примеры его боковые грани Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры перпендикулярны плоскости основания. К граням Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры, которые не перпендикулярны плоскости основания, применим такое же преобразование, в результате которого получим прямой параллелепипед Призма в геометрии - определение, формулы и примеры (рис. 19), в котором сохраняются объем, площадь основания и высота.

Наконец, применив еще раз такое преобразование к граням Призма в геометрии - определение, формулы и примеры и Призма в геометрии - определение, формулы и примеры прямого параллелепипеда Призма в геометрии - определение, формулы и примеры, получим прямоугольный параллелепипед Призма в геометрии - определение, формулы и примеры (рис. 20), сохранив объем параллелепипеда, площадь его основания и высоту.

Призма в геометрии - определение, формулы и примеры

Значит,

Призма в геометрии - определение, формулы и примеры

Множитель Призма в геометрии - определение, формулы и примеры есть площадь основания параллелепипеда Призма в геометрии - определение, формулы и примеры, а множительПризма в геометрии - определение, формулы и примеры выражает его высоту, так как Призма в геометрии - определение, формулы и примеры есть перпендикуляр, возведенный из точки Призма в геометрии - определение, формулы и примеры основания Призма в геометрии - определение, формулы и примеры к другому основанию Призма в геометрии - определение, формулы и примеры. Значит, объем произвольного параллелепипеда равен произведению площади его основания и высоты.

Теорема 3.

Объем призмы равен произведению площади ее основания и высоты:

Призма в геометрии - определение, формулы и примеры

Доказательство:

Рассмотрим сначала треугольную призму Призма в геометрии - определение, формулы и примеры (рис. 21). Дополним ее до параллелепипеда Призма в геометрии - определение, формулы и примеры (рис. 22). Точка Призма в геометрии - определение, формулы и примеры пересечения диагоналей диагонального сечения Призма в геометрии - определение, формулы и примеры этого параллелепипеда является его центром симметрии. Это означает, что достроенная призма Призма в геометрии - определение, формулы и примеры симметрична данной призме Призма в геометрии - определение, формулы и примеры относительно центра Призма в геометрии - определение, формулы и примеры, а потому эти призмы равны друг другу. Значит, объем параллелепипеда Призма в геометрии - определение, формулы и примеры равен удвоенному объему данной призмы.

Объем параллелепипеда Призма в геометрии - определение, формулы и примеры равен произведению площади его основания Призма в геометрии - определение, формулы и примеры и высоты. Но площадь его основания Призма в геометрии - определение, формулы и примеры равна удвоенной площади основания Призма в геометрии - определение, формулы и примеры данной призмы, а высота параллелепипеда равна высоте призмы.

Призма в геометрии - определение, формулы и примеры

Отсюда следует, что объем призмы Призма в геометрии - определение, формулы и примеры равен площади ее основания Призма в геометрии - определение, формулы и примеры и высоты. Теперь рассмотрим произвольную призму Призма в геометрии - определение, формулы и примеры (рис. 23).

Призма в геометрии - определение, формулы и примеры

Диагональными сечениями, проходящими через вершину Призма в геометрии - определение, формулы и примеры, разобьем ее на треугольные призмы-части Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры, …, Призма в геометрии - определение, формулы и примеры, Призма в геометрии - определение, формулы и примеры, которые все имеют одну и ту же высоту, равную высоте Призма в геометрии - определение, формулы и примеры данной призмы. Объем данной призмы равен сумме объемов призм-частей. По уже доказанному для объема Призма в геометрии - определение, формулы и примеры данной призмы получим:

Призма в геометрии - определение, формулы и примеры

Учитывая, что сумма в скобках выражает площадь S основания данной призмы, получим:

Призма в геометрии - определение, формулы и примеры

Следствие 2.

Объем прямой призмы равен произведению площади ее основания и бокового ребра.

Призма и её сечения

С призмой вы уже знакомы. Несмотря на это, мы напомним определение призмы и её свойства.

Призма -это многогранник, две грани которого равные n-угольники (основания), лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (рис. 22).

Призма в геометрии - определение, формулы и примеры

В зависимости от того перпендикулярны ли боковые грани призмы его основаниям или нет, призмы делят на прямые или наклонные. На рисунке 23.а изображена прямая призма, а на рисунке 23.b – наклонная. Очевидно, что боковые грани прямой призмы – прямоугольники.

Призма в геометрии - определение, формулы и примеры

Если основания прямой призмы являются правильными многоугольниками, то её называют правильной (рис. 24). Боковые грани правильной призмы это равные между собой прямоугольники.

Перпендикуляр, опущенный из некоторой точки одного основания к другому, называют его перпендикуляром (рис. 23.b).

Сечение призмы, проходящее через соответствующие диагонали его оснований, называют диагональным сечением (рис. 24.а) и их число равно числу диагоналей одного из оснований.

Перпендикулярным сечением призмы называют сечение перпендикулярное всем его боковым рёбрам (рис. 25). так как Призма в геометрии - определение, формулы и примеры число диагоналси выпуклого n-угольника, то число диагональных сeчeний n-угольной призмы также равно Призма в геометрии - определение, формулы и примеры .

В каждом диагональном сечении призмы можно провести две диагонали. Следовательно, n-угольная призма имеет Призма в геометрии - определение, формулы и примеры диагоналей.

Пример:

В наклонной треугольной призме расстояния между боковыми ребрами соответственно равны 7 см, 15 см и 20 см. Найдите расстояние между большей боковой гранью и противолежащим боковым ребром.

Решение:

Известно, что расстояние между параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки одной прямой на другую. Тогда длины сторон перпендикулярного сечения ABC (рис. 26). Наибольшая грань призмы проходит через наибольшую сторону АС= 20 см этого сечения. Расстояние от рёбра призмы В2В1 до плоскости грани Призма в геометрии - определение, формулы и примеры равно высоте BD треугольника ABC.

Призма в геометрии - определение, формулы и примеры

Тогда по формуле Герона получаем:

Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры,

Призма в геометрии - определение, формулы и примеры.

С другой стороны, Призма в геометрии - определение, формулы и примеры.

Отсюда Призма в геометрии - определение, формулы и примерыили Призма в геометрии - определение, формулы и примерысм.

Ответ: 4,2 см.

Параллелепипед и куб

Призма, основаниями которой являются параллелограммы, называют параллелепипедом (рис. 27). Параллелепипеды также как и призмы могут быть прямыми (рис. 27.а) и наклонными (рис. 27.b). Призма в геометрии - определение, формулы и примеры

Грани параллелепипеда, не имеющие общую вершину, называют противоположными гранями.

У параллелепипеда:

  • —12 рёбер, каждые четыре из которых равны (рис. 28.а),
  • —6 граней, которые попарно параллельны и равны (рис. 28.b),
  • —4 диагонали, которые пересекаются и точкой пересечения делятся пополам (рис. 28.с),
  • —точка пересечения диагоналей – центр его симметрии (рис. 28.с). Прямой параллелепипед имеет ось симметрии (рис. 28.d) и плоскость симметрии (рис. 28.e).

Призма в геометрии - определение, формулы и примеры

Прямой параллелепипед, основания которого являются прямоугольники, называют прямоугольным параллелепипедом (рис. 29). Очевидно, что все грани прямоугольного параллелепипеда являются прямоугольниками.

Призма в геометрии - определение, формулы и примеры

Прямоугольный параллелепипед имеет три оси симметрии (рис. 30) и три плоскости симметрии (рис. 31).

Длины трех рёбер, исходящих из одной вершины прямоугольного параллелепипеда называют его измерениями.

Свойство: В прямоугольном параллелепипеде квадрат любой диагонали d равен сумме квадратов его измерений: а, b и с (рис.32):

Призма в геометрии - определение, формулы и примеры.

Прямоугольный параллелепипед, все измерения которого равны, называют кубом. Очевидно, что все грани куба являются равными квадратами. Куб имеет один центр симметрии, 9 осей симметрии и 9 плоскостей симметрии.

Выше были перечислены свойства призмы. Некоторые из них были показаны в 10 классе. Доказательства остальных свойств проще, поэтому их доказательства вы можете провести самостоятельно.

Площади боковой и полной поверхности призмы

На рисунке 33 проведены высоты НН1 DD1 призмы

АВСDЕА1В1С1D1Е1. Очевидно, что высоты правильной призмы будут равны её боковому рёбру. Призма в геометрии - определение, формулы и примеры

Боковая поверхность призмы (точнее, площадь боковой поверхности)равна сумме боковых поверхностей ее граней, а полная поверхнасть равна сумме боковой поверхности и площадей двух ее оснований. Призма в геометрии - определение, формулы и примеры

Теорема. Боковая поверхность прямой призмы равна произведению периметра ее основания на высоту: Призма в геометрии - определение, формулы и примеры

Доказательство. Пусть высота данной прямой призмы равна Призма в геометрии - определение, формулы и примеры, а периметр основания Призма в геометрии - определение, формулы и примеры(рис. 34). Известно, что каждая грань прямой призмы является прямоугольником. Основания прямоугольников равны соответствующим сторонам основания призмы, а высоты равны высоте призмы.

Тогда Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Теорема. Боковая поверхность произвольной призмы равна произведению периметра перпендикулярного сечения призмы на ее боковое ребро:Призма в геометрии - определение, формулы и примеры

Доказательство. Пусть периметр перпендикулярного сечения призмы равен Р (рис. 35). Сечение делит призму на две части (рис. 36.а). Совершим параллельный перенос одной из этих частей так, чтобы основания нашей призмы совпали. В результате мы получим новую прямую призму (рис. 36.b). Очевидно, что, боковая поверхность этой призмы равна боковой поверхности данной. Её основанием является перпендикулярное сечение, а боковое ребро равно Призма в геометрии - определение, формулы и примеры.

Тогда по доказанной выше теореме:Призма в геометрии - определение, формулы и примеры

Призма в геометрии - определение, формулы и примеры

Объем призмы

Одним из свойств, характеризующих геометрические тела в пространстве, является понятие объема. Каждый предмет (тело) занимает некоторую часть пространства. Например, кирпич по сравнению со спичечным коробком занимает большую часть пространства. Для сравнения этих частей между собой вводится понятие объёма.

Объём – это величина, численное значение которой обладает следующими свойствами:

  1. Любое тело имеет определённый объём, выраженный положительным числом.
  2. Равные тела имеют равные объёмы.
  3. Если тело разбито на несколько частей, то его объём равен сумме объёмов этих частей.
  4. Объём куба, ребро которого равно единице, равен единице.

Объём – также как длина и площадь, является величиной. В зависимости от выбора единицы длины, объём единого куба измеряют в кубических единицах:

1 см3, 1 дм3, 1 м3 и т. д.

Объёмы тел измеряют различными способами или вычисляют. Например, объёмы маленьких предметов можно измерить с помощью сосудов (мензурки) с мелкими делениями (шкалами) (рис. 46). А объём ведра можно измерить с помощью сосуда, имеющего единичный объём, наполнив его водой (рис. 47). Но таким способом мы не можем измерить объёмы всех тел. В таких случаях объём вычисляют различными способами. Ниже рассмотрим их без доказательств. Призма в геометрии - определение, формулы и примеры

Объём параллелепипеда

Теорема. Объём прямоугольного параллелепипеда равен произведению трех его измерeний (рис.48): Призма в геометрии - определение, формулы и примеры.

Следствие. Объём прямоугольного параллелепипеда равен произведению площади его основания на высоту (рис. 49): Призма в геометрии - определение, формулы и примеры.

Теорема. Объём произвольного параллелепипеда равен произведению площади его основания на высоту (рис. 50): Призма в геометрии - определение, формулы и примеры.

Это свойство вытекает из вышеупомянутого следствия. На рисунке 50 показано как данный параллелепипед преобразовать в прямоугольный параллелепипед. Воспользовавшись этим самостоятельно обоснуйте свойство. Призма в геометрии - определение, формулы и примеры

Нахождение объёма призмы

Теорема. Объём прямой призмы равен произведению площади его основания на высоту (рис. 51): Призма в геометрии - определение, формулы и примеры.

Доказательство. 1 случай. Пусть основанием призмы будет прямоугольный треугольник (рис 51.а). Эту призму можно дополнить равной ей призмой до прямоугольного параллелепипеда (рис. 51 .b).

Если объём данной призмы, площадь её основания и высота V, S и h, то объём полученного прямоугольного параллелепипеда, площадь его основания и высота будут соответственно равны 2V, 2S и h.

Призма в геометрии - определение, формулы и примеры

Следовательно Призма в геометрии - определение, формулы и примеры или Призма в геометрии - определение, формулы и примеры

2 случай. Пусть Sплощадь произвольной n – угольной прямой призмы и h – её высота. Основание призмы – n-угольник делится диагоналями на треугольники, каждый из которых можно разделить на прямоугольные треугольники (рис. 52). В результате данная призма разделится на конечное число прямых призм, основания которых являются прямоугольными треугольниками. Высоты этих призм равны h , а сумма площадей оснований этих призм равна площади основания данной призмы: Призма в геометрии - определение, формулы и примеры

Объём данной призмы равен сумме объёмов составляющих её треугольных призм:

Призма в геометрии - определение, формулы и примеры

или Призма в геометрии - определение, формулы и примеры

Теорема. Объём произвольной призмы равен произведению площади его основания на высоту: Призма в геометрии - определение, формулы и примеры

По рисунку 5.3 докажите эту теорему самостоятельно, сначала для треугольной призмы (рис. 5.3.а), затем для любой призмы (рис. 5.3.b).

Призма в геометрии - определение, формулы и примеры

Пример:

Стороны основания прямого параллелепипеда равны а и b, а угол между ними 30°. Найдите его объём, если площадь его боковой поверхности равна S.

Решение:

Обозначим высоту параллелепипеда h(рис. 54).

Призма в геометрии - определение, формулы и примеры

Тогда по условию задачи:

Призма в геометрии - определение, формулы и примеры

  • Цилиндр в геометрии
  • Пирамида в геометрии
  • Конус в геометрии
  • Сфера в геометрии
  • Возникновение геометрии
  • Геометрические преобразования в геометрии
  • Планиметрия – формулы, определение и вычисление
  • Стереометрия – формулы, определение и вычисление

Добавить комментарий