Как найти сторону используя косинус


Загрузить PDF


Загрузить PDF

Теорема косинусов широко применяется в тригонометрии. Ее используют при работе с неправильными треугольниками, чтобы находить неизвестные величины, например стороны и углы. Теорема схожа с теорема Пифагора, и ее довольно легко запомнить. Теорема косинусов гласит, что в любом треугольнике c^{{2}}=a^{{2}}+b^{{2}}-2abcos {C}.

  1. Изображение с названием Use the Cosine Rule Step 1

    1

    Запишите известные величины. Чтобы найти неизвестную сторону треугольника, нужно знать две другие стороны и угол между ними.[1]

    • Например, дан треугольник XYZ. Сторона YX равна 5 см, сторона YZ равна 9 см, а угол Y равен 89°. Чему равна сторона XZ?
  2. Изображение с названием Use the Cosine Rule Step 2

    2

    Запишите формулу теоремы косинусов. Формула: c^{{2}}=a^{{2}}+b^{{2}}-2abcos {C}, где c — неизвестная сторона, cos {C} — косинус угла, противоположного неизвестной стороне, a и b — две известные стороны.[2]

  3. Изображение с названием Use the Cosine Rule Step 3

    3

  4. Изображение с названием Use the Cosine Rule Step 4

    4

    Найдите косинус известного угла. Сделайте это с помощью калькулятора. Введите значение угла, а затем нажмите кнопку COS. Если у вас нет научного калькулятора, найдите онлайн-таблицу значений косинусов, например, здесь.[4]
    Также в Яндексе можно ввести «косинус Х градусов» (вместо X подставьте значение угла), и поисковая система отобразит косинус угла.

    • Например, косинус 89° ≈ 0,01745. Итак: c^{{2}}=5^{{2}}+9^{{2}}-2(5)(9)(0,01745).
  5. Изображение с названием Use the Cosine Rule Step 5

    5

    Перемножьте числа. Умножьте 2ab на косинус известного угла.

  6. Изображение с названием Use the Cosine Rule Step 6

    6

    Сложите квадраты известных сторон. Помните, чтобы возвести число в квадрат, его нужно умножить на само себя. Сначала возведите в квадрат соответствующие числа, а затем сложите полученные значения.

  7. Изображение с названием Use the Cosine Rule Step 7

    7

    Вычтите два числа. Вы найдете c^{{2}}.

  8. Изображение с названием Use the Cosine Rule Step 8

    8

    Извлеките квадратный корень из полученного значения. Для этого воспользуйтесь калькулятором. Так вы найдете неизвестную сторону.[5]

    Реклама

  1. Изображение с названием Use the Cosine Rule Step 9

    1

    Запишите известные величины. Чтобы найти неизвестный угол треугольника, нужно знать все три стороны треугольника.[6]

    • Например, дан треугольник RST. Сторона СР = 8 см, ST = 10 см, РТ = 12 см. Найдите значение угла S.
  2. Изображение с названием Use the Cosine Rule Step 10

    2

    Запишите формулу теоремы косинусов. Формула: c^{{2}}=a^{{2}}+b^{{2}}-2abcos {C}, где cos {C} — косинус неизвестного угла, c — известная сторона, противолежащая неизвестному углу, a и b — две другие известные стороны. [7]

  3. Изображение с названием Use the Cosine Rule Step 11

    3

  4. Изображение с названием Use the Cosine Rule Step 12

    4

    Перемножьте числа. Умножьте 2ab на косинус неизвестного угла.

    • Например, 12^{{2}}=8^{{2}}+10^{{2}}-160cos {C}.
  5. Изображение с названием Use the Cosine Rule Step 13

    5

    Возведите c в квадрат. То есть умножьте число само себя.

    • Например, 144=8^{{2}}+10^{{2}}-160cos {C}
  6. Изображение с названием Use the Cosine Rule Step 14

    6

    Сложите квадраты a и b. Но сначала возведите соответствующие числа в квадрат.

  7. Изображение с названием Use the Cosine Rule Step 15

    7

    Изолируйте косинус неизвестного угла. Для этого вычтите сумму a^{{2}} и b^{{2}} из обеих частей уравнения. Затем разделите каждую часть уравнения на коэффициент (множитель) при косинусе неизвестного угла.

  8. Изображение с названием Use the Cosine Rule Step 16

    8

    Вычислите арккосинус. Так вы найдете значение неизвестного угла.[9]
    На калькуляторе функция арккосинуса обозначается COS^{{-1}}.

    • Например, арккосинус 0,0125 равен 82,8192. Итак, угол S равен 82,8192°.

    Реклама

  1. Изображение с названием Use the Cosine Rule Step 17

    1

    Найдите неизвестную сторону треугольника. Известные стороны равны 20 см и 17 см, а угол между ними равен 68°.

  2. Изображение с названием Use the Cosine Rule Step 18

    2

    Найдите угол H в треугольнике GHI. Две стороны, прилегающие к углу Н, равны 22 и 16 см. Сторона, противоположная углу H, равна 13 см.

  3. Изображение с названием Use the Cosine Rule Step 19

    3

    Найдите длину тропы. Речная, Холмистая и Болотная тропы образуют треугольник. Длина Речной тропы — 3 км, длина Холмистой тропы — 5 км; эти тропы пересекаются друг с другом под углом 135°. Болотная тропа соединяет два конца других троп. Найдите длину Болотной тропы.

    Реклама

Советы

  • Проще пользоваться теоремой синусов. Поэтому сначала выясните, можно ли применить ее к данной задаче.

Реклама

Об этой статье

Эту страницу просматривали 5394 раза.

Была ли эта статья полезной?

Содержание:

Теорема синусов, теорема косинусов:

Теорема синусов

Вы уже знаете, что в треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона. Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу окружности, описан­ной около треугольника, т. е.
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть дан треугольник АВС, ВС = Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения — радиус его описанной окружности. Угол а может быть острым, тупым или прямым. Рассмотрим эти случаи отдельно.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

1) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения острый (рис. 152, а). Проведя диаметр BD и отрезок DC, получим прямоугольный треугольник BCD, в котором Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр. Заметим, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанные углы, опирающиеся на одну и ту же дугу ВС. Из прямоугольного треугольника BCD находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решеният. е. Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой (рис. 152, б). Проведем диаметр BD и отрезок DC. В четырехугольнике ABDC по свойству вписанного четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из прямоугольного треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр) Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

3) Для Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения справедливость равенства Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения докажите самостоятельно, В силу доказанного Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема доказана.

Теорема синусов дает возможность решать широкий круг задач.
Так, пропорция Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения позволяет решить две следующие задачи:

  • зная две стороны треугольника и угол, противолежащий одной из них, найти синус угла, противолежащего другой стороне;
  • зная два угла треугольника и сторону, противолежащую одному из этих углов, найти сторону, противолежащую другому углу.

С помощью формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияможно решить еще три задачи (рис. 153): 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

  • зная сторону треугольника и противолежащий ей угол, найти радиус окружности, описанной около треугольника;
  • зная угол треугольника и радиус описанной окружности, найти сторону треугольника, противолежащую данному углу;
  • зная сторону треугольника и радиус его описанной окружности, найти синус угла, противолежащего данной стороне.

Повторение

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример:

В остроугольном треугольнике известны стороны Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти два других угла Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения округлив их значения до 1°, и третью сторону треугольника, округлив ее длину до 0,1.

Решение:

По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения При помощи калькулятора (таблиц). находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание. Если бы по условию треугольник был тупоугольным с тупым углом Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то, зная Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения вначале мы нашли бы острый угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения А за­тем, используя формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получили бы, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример:

Доказать справедливость формулы площади треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — его стороны, R — радиус описанной окружности.

Доказательство:

Воспользуемся известной формулой площади треугольника: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Что и требовалось доказать.

Замечание. Выведенная формула позволяет найти радиус описанной окружности треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример:

Найти радиус R окружности, описанной около равнобедренного треугольника АВС с основанием АС = 10 и боковой стороной ВС =13 (рис. 154).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Способ 1. Из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найдем Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения. Для этого в треугольнике АВС проведем высоту ВК, которая будет и медианой, откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияпо теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Способ 2. Используем формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения из которой Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТак как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениято Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание*. Напомним, что в главе II мы находили радиус R описанной окружности равнобедренного треугольника, проводя серединные перпендикуляры к его сторонам и используя подобие полученных прямоугольных треугольников. Также мы могли использовать формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — боковая сторона, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — высота, проведенная к основанию Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения 

Заменив Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения в формуле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — формулу радиуса описанной окружности для произвольного треугольника. Итак, мы имеем четыре формулы для нахождения радиуса R описанной окружности треугольника:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема косинусов

Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения треугольника АВС (рис. 165) через длины сторон Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения). Теорему косинусов можно назвать самой «работающей» в геометрии. Она имеет многочисленные следствия, которые часто используются при решении задач.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема косинусов. Квадрат любой стороны треугольника равен сум­ме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е. 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166).
Проведем высоту ВН к стороне АС. Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По основному тригонометрическому тождеству Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Справедливость теоремы для случаев, когда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения или Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой или прямой, докажите самостоятельно. Теорема доказана.
Для сторон Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения теорема косинусов запишется так:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то по теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Таким образом, теорема Пифагора — частный случай теоремы косинусов.
С помощью теоремы косинусов можно решить следующие задачи:

• зная две стороны и угол между ними, найти третью сторону треугольника;

• зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.

Следствие:

Теорема косинусов позволяет, зная три стороны треугольника, най­ти его углы (косинусы углов). Из равенства Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует формула

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Для углов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияполучим:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример:

В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По теореме косинусов

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Используя записанную выше формулу, можно сра­зу получить: 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Следствие:

С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.
 

Так, из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения с учетом того, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует:

  1. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения острый;
  2. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой;
  3. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения прямой.

При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.
 

Пример:

Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой и данный треугольник тупоугольный.

Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:

  1. остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  2. тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  3. прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Следствие:

Сумма квадратов диагоналей параллелограмма равна сумме квадра­тов всех его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть в параллелограмме ABCD Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения— острый, откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — тупой (рис. 169). По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                     (1)
Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку cos Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                   (2)

Сложив почленно равенство (1) и равенство (2), получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения что и требовалось доказать.

Данная формула дает возможность:

  • • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
  • • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.

Следствие:

Медиану Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения треугольника со сторонами а, b и с можно найти по фор­муле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Рассмотрим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения — медиана треугольника (рис. 170). Продлим медиану AM за точку М на ее длину: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Утверждение доказано.

Аналогично: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Формула медианы позволяет:

  • зная три стороны треугольника, найти любую из его медиан;
  • зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
  • зная три медианы, найти любую из сторон треугольника.

Пример:

а) Дан треугольник АВС, а = 5, 5 = 3, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти сторону с. б) Дан треугольник АВС, а = 7, с = 8, а = 60°. Найти сторону Ь.

Решение:

а) По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения б) Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то есть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения или Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения так как для наборов длин отрезков 7, 3, 8 и 7, 5, 8 выполняется неравенство треугольника.
Ответ: а) 7; б) 3 или 5.

Пример:

Две стороны треугольника равны 6 и 10, его площадь — Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Найти третью сторону треугольника при условии, что противолежащий ей угол — тупой.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть в Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениястороны АВ = 6, ВС = 10 и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 171).
Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и по условию Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — тупой, то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения. Для нахождения стороны АС применим теорему косинусов:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: 14.

Пример:

Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Обозначим стороны треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — медиана (рис. 172).
По формуле медианы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения По обратной теореме Пифагора данный треугольник со сторонами 6, 8 и 10 — прямоугольный, его площадь равна половине произведения катетов:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: 24.

Формула Герона

Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения а также по двум сторонам и углу между ними: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теперь мы выведем формулу нахождения площади треугольника по трем сторонам.

Теорема (формула Герона).

Площадь треугольника со сторонами Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения можно найти по формуле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения— полупериметр треугольника.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 183). Из основ­ного тригонометрического тождества Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Для Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения синус положительный. Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияИз теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Так какТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема доказана.

Решение треугольников

Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.

Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.

Рассмотрим алгоритмы решения трех задач.
 

Пример №1 (решение треугольника по двум сторонам и углу между ними). 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(рис. 184).

Найти : Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Решение:

Рис. 184
1) По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) По следствию из теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

3) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц.

4) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Нахождение угла Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениятребует выяснения того, острый или тупой угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №2 (решение треугольника по стороне и двум  прилежащим к ней углам).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(рис. 185).

Найти: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

1) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц).

3) Сторону с можно найти с помощью теоремы косинусов или теоре­мы синусов: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияили Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(cos Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениянаходим при помощи калькулятора или таблиц).

Пример №3 (решение треугольника по трем сторонам).

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 186).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Найти: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияи радиус R описанной окружности.

Решение:

1) По следствию из теоремы косинусов

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) Зная Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц.

3) Аналогично находим угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 4) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 5) Радиус R описанной окружности треугольника можно найти по фор­муле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения затем нахождение по косинусу угла его синуса Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и, наконец, использование теоремы синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениядля нахождения R.

Пример №4

Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.

Решение:

Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Радиус R описанной окруж­ности найдем из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Имеем: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Способ 2. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияпоскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то треугольник — прямоугольный по обратной теореме Пифагора. Его площадь равна половине произведения катетов: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения а радиус описанной окружности равен половине гипотенузы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №5

Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Проведем Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 187). Так как АВСК — параллелограмм, то СК = АВ = 10, АК = ВС = 5, откуда KD = AD – АК = 9. Найдем высоту СН треугольника KCD, которая равна высоте трапеции. Площадь треугольника KCD найдем по формуле Герона, обозначив его стороны а = 10, b = 17, с = 9. Получим:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияСН = 8. Площадь трапеции Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: 76.
 

Примеры решения задач с использованием теоремы синусов и теоремы косинусов

Пример:

Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найдем
длину отрезка AM. Сумма углов четырехугольника АВМС равна 360°.
Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как в четырехугольнике АВМС Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то около него можно описать окружность по признаку вписанного четырехугольника (рис. 189, б). Поскольку прямой вписанный угол опирается на диаметр, то отрезок AM — диаметр этой окружности, т. е. Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где R — радиус. Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Вторым способом решения будет продление отрезка ВМ до пересечения с лучом АС и использование свойств полученных прямоугольных треуголь­ников. Рассмотрите этот способ самостоятельно.

Пример №6

В прямоугольном треугольнике АВС известно: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения высота СН = 2 (рис. 190). Найти гипотенузу АВ.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Построим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения симметричный Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения относительно прямой АВ (см. рис. 190).
Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то вокруг четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения можно описать окруж­ность, где АВ — диаметр этой окружности (прямой вписанный угол опирается на диаметр). Треугольник Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения вписан в эту окруж­ность, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: 8.

Пример №7

Дан прямоугольный треугольник АВС с катетами ВС = а и АС = Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения На гипотенузе АВ как на стороне построен квадрат ADFB (рис. 191). Найти расстояние от центра О этого квадрата до вершины С прямого угла, т. е. отрезок СО.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Способ 1. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (диагона­ли квадрата ADFB взаимно перпендикулярны), то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения поэтому четырехугольник АОВС является вписанным в окружность, ее диа­метр Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пусть СО = х. По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По свойству вписанного четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияоткуда находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения.

 Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Способ 3. Достроим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения до квадрата CMNK, как показано на рисунке 192. Можно показать, что центр квадрата CMNK совпадет с центром квадрата ADFB, т. е. с точкой О (точки В и D симметричны относительно центров обоих квадратов). Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №8

Точка О — центр окружности, вписанной в треуголь­ник АВС, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти стороны треугольника (см. задачу 232*).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — радиус вписанной окружности (рис. 193).
Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Применим формулу Герона:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

С другой стороны, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из уравнения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения = 2. Откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см), Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см), Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см).
Ответ: 15 см; 20 см; 7 см.

Теорема Стюарта

Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.
 

Теорема Стюарта. «Если а, b и с — стороны треугольника и отре­зок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияи Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см. рис. 194) следует:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                     (1)

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения              (2)

Умножим обе части равенства (1) на у, равенства (2) — на Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Сложим почленно полученные равенства:
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Из последнего равенства выразим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема доказана.

Следствие:

Биссектрису треугольника можно найти по формуле (рис. 195)

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

По свойству биссектрисы треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Разделив сторону Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияс в отношении Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим: 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме Стюарта Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример №9

Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть дан треугольник АВС, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — биссектрисы, проведенные к сторонам ВС = а и АС = b соответственно, и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 196). Нужно доказать, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Выразим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и через Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и приравняем полученные выражения. Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По формуле биссектрисы треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Из условия Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Перенеся слагаемые в одну сторону равенства и разложив на множители (проделайте это самостоятельно), получим: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (второй множитель при положительных Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения больше нуля). Утверждение доказано.

Теорема Птолемея о вписанном четырехугольнике

Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон, т. е.Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 197).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (по свойству вписанного четырехугольника) и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияоткуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Аналогично из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТогда  Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема доказана.

Запомните:

  1. Теорема синусов. Стороны треугольника пропорциональны синусам про­тиволежащих углов. Отношение стороны треугольника к синусу проти­волежащего угла равно удвоенному радиусу его описанной окружности:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  2. Радиус описанной окружности треугольника можно найти, используя формулы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  3. Теорема косинусов. Квадрат любой стороны треугольника равен сумме ква­дратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  4. Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — стороны треугольника и с — большая сторона. Если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то треугольник тупоугольный, если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то треугольник остроугольный, если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то треугольник прямоугольный.
  5. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  6. Формула Герона: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  7. Формула медианы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Перпендикулярность прямых и плоскостей в пространстве
  • Углы и расстояния в пространстве
  • Подобие треугольников
  • Решение прямоугольных треугольников
  • Параллелограмм

Треугольник. Расчет сторон прямоугольного треугольника через тригонометрические функции.

Проанализируем прямоугольный треугольник ABC в котором обозначим катеты как а, b и гипотенузу как с соответственно.

Вполне логично сделать вывод, будут верны следующие равенства:

Значит катет прямоугольного треугольника допускается представить как произведение гипотенузы и синуса угла, противолежащего этому катету, либо и косинуса угла, прилежащего к нему.

На основе этих соотношений так же можно определить гипотенузу прямоугольного треугольника:

Иначе говоря, гипотенуза будет частным от деления катета либо на синус противолежащего к нему угла, либо на косинус прилежащего к катету угла.

Значит, катет прямоугольного треугольника допускается представить как произведением другого катета на тангенс угла, противолежащего первому катету, либо на котангенс угла, прилежащего к первому катету.

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

[spoiler title=”источники:”]

http://www-formula.ru/2011-10-09-11-08-41

http://ru.onlinemschool.com/math/formula/triangle/

[/spoiler]

Теорема косинусов

Определение теоремы косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

a2=b2+c2-2*b*c*cos(A)

b2=a2+c2-2*a*c*cos(B)

c2=a2+b2-2*a*b*cos(C)

Теорема косинусов

Расчёт стороны по теореме косинусов

Введите сторону

Введите сторону

Введите угол

Сторона по теореме косинусов

Формула расчёта стороны по теореме косинусов

Где a, b и c – стороны треугольника,
A – угол между сторонами b и c

Расчёт углов треугольника по теореме косинусов

Введите сторону a

a = 

Введите сторону b

b = 

Введите сторону c

c = 

Углы по теореме косинусов

Формулы расчёта углов по теореме косинусов

Где a, b и c – стороны треугольника,
A, B и C – углы треугольника

Доказательство теоремы косинусов

Дано

Треугольник со сторонами a, b и c.

Доказательство теоремы косинусов

Доказать

a2=b2+c2-2*b*c*cos(α)

Доказательство

Из вершины B проведём высоту h

Доказательство теоремы косинусов

Сравним и упростим

Теорема доказана

В статье про прямоугольный треугольник посмотрели задачи связанные с синусами и косинусами из 1 части ОГЭ. Так что обязательно заглядывай.

Получается, что решить прямоугольный треугольник (найти все стороны и острые углы) можно довольно просто, зная всего лишь два элемента прямоугольного треугольника :две стороны (по теореме Пифагора) или сторону и острый угол (из определений синуса, косинуса, тангенса).

Но решить треугольник (найти все стороны и углы ) можно и произвольный, зная три элемента: три стороны, две стороны и угол, или два угла и сторону.

Для первых двух случаев в решении пользуются теоремой косинусов (вполне возможно эта тема вас поджидает уже на следующей неделе в школе, а может уже и была):

в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

Теорема косинусов в 1 части ОГЭ
  • Если известны три стороны треугольника можно найти косинусы всех углов
  • Если известны две стороны и угол между ними треугольника, то можно найти третью сторону.

В этом случае полезно пользоваться таблицей значений косинусов некоторых углов :

Теорема косинусов в 1 части ОГЭ

Рассмотрим решение задачи №16 из сборника Ященко (36 вариантов) на теорему косинусов :

Теорема косинусов в 1 части ОГЭ

Изобразим треугольник АВС и найдем в нем противолежащую сторону для угла АВС.

Теорема косинусов в 1 части ОГЭ

Из рисунка видно, что противолежащая сторона – это сторона АС.

Для стороны АС записываем теорему косинусов:

Теорема косинусов в 1 части ОГЭ

Подставим значения всех сторон:

Теорема косинусов в 1 части ОГЭ

Переносим все “свободные” числа (меняя знак) в левую часть равенства и считаем:

Теорема косинусов в 1 части ОГЭ

Находим косинус угла АВС, как неизвестный множитель:

Теорема косинусов в 1 части ОГЭ

Записываем ответ:

Теорема косинусов в 1 части ОГЭ

Если вы знаете того, кто готовится к ОГЭ, не забудьте поделиться с ним этой информацией. Всегда пригодится.

Продолжение следует…

Не забудь нажать на пальчик вверх после прочтения и подписаться. За это отдельная благодарность

(✿◠‿◠)

Теорема косинусов в 1 части ОГЭ

Добавить комментарий